
Crossver: a Code Transformation Language for
Crosscutting Changes

Kouhei Sakurai
Kanazawa University

k_sakurai@acm.org

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

ABSTRACT
Software evolution sometimes requires changes of module in-
terfaces, which in turn cause crosscutting changes, or changes
of module clients that are spreading over a program. Such
changes on the client-side can be too complicated to be au-
tomatically achieved by text replacement and refactoring
tools. We propose a code transformation language, called
Crossver, for consistently updating code fragments in a pro-
gram. Crossver offers a source-level pattern sublanguage
to express complicated transformation conditions. The pat-
terns are robust against variety among clients thanks to the
dataflow-based pattern matcher. In the paper, we overview
the design and core semantics of Crossver.

1. INTRODUCTION
Software evolution occasionally involves with changes of in-
terfaces of modules, even if a software system has been care-
fully designed at the beginning. Coping with such changes
is a painful task [6] because an interface change of a module
also requires changes of its clients, which can be many, and
spread over many modules in a system. We hereafter refer
to such changes as crosscutting changes.

Change of an interface of a module sometimes causes non-
trivial changes on its clients, i.e., its call sites. Those clients
often spread over many modules in a system. Changes of the
clients have been dealt in an ad-hoc and error-prone manner.

Even though language-level modularization mechanisms, such
as aspect-oriented programming (AOP)[5] are promising for
crosscutting problems, they are less useful to crosscutting
changes. One reason is that we want to change a program
itself rather than behavior of the program for the sake of
future maintainability. Another reason is that most of those
language-level mechanisms rely on runtime information for
judging complicated conditions like data dependency.

We propose a novel program transformation language Crossver,
which can express a set of crosscutting changes as a concise

1 int maxRate = handler.getRequest()
2 .getUser().getMaxDownloadRate();

3 Authority[] maxDownloadRates = handler.getRequest()
4 .getUser().getAuthorities(
5 TransferRatePermission.class);
6 int maxRate = 0;
7 if (maxDownloadRates.length > 0) {
8 maxRate = ((TransferRatePermission)
9 maxDownloadRates[0]).getMaxDownloadRate();

10 }

Figure 1: a changed code fragment in FtpServer:
the older (top) and the newer version (bottom)

script. Notable features of Crossver are: (1) rather than ma-
nipulating intermediate data structures like abstract syntax
trees, the programmer describes code transformation rules
in a pattern language at the source-program level; (2) the
patterns are robust against variations of coding styles as
they are matched by using intra-procedural dataflow; and
(3) transformation rules can be parameterized so as to sub-
sume differences in the code fragments to be transformed.

The rest of the paper is organized as follows. Section 2
shows a concrete example of crosscutting changes from ex-
isting open-source software. Section 3 overviews Crossver’s
design. Section 4 explains semantics of the proposed lan-
guage. Section 5 concludes the paper.

2. CROSSCUTTING CHANGES
We first show a concrete case of crosscutting changes, one of
which is shown in Figure 1. The code fragments above and
below the line are respectively appear in older and newer ver-
sions of a particular update1 of Apache FtpServer2, an open
source FTP server program written in Java. The fragments
appear in the execute method of the RETR class, which han-
dles the get command, but other classes like STOR (which
handles the put command) are also changed in a very simi-
lar but slightly different manner.

2.1 Changes in FtpServer
The change in Figure 1 is caused by an API change of
the getMaxDownloadRate() method. In the older version,
the method should be called on an User object, which is

1The commit ID is d605b9d, time-stamped on December 30,
2006 in the git repository.
2https://mina.apache.org/ftpserver-project/

1 aspect MaxRateUpdate {

2 context(Handler h, int rate): withincode(* (RETR||STOR).execute(..)) {

3 User u = h.getRequest().getUser();

4 replace(rate : u) { rate = #getMaxRate(u); } with {

5 Authority[] maxRates = u.getAuthorities(TransferRatePermission.class);

6 rate = 0;

7 if(maxRates.length > 0) rate = proceed((TransferRatePermission) maxRates[0]);

8 }}

9 pointcut getMaxRate(User u): target(u) &&

10 (call(int User.getMaxDownloadRate()) || call(int User.getMaxUploadRate()));

11 }

Figure 2: The definition of MaxRateUpdate in Crossver

obtained from a sequence of method calls, namely getRe-

quest() and getUser(), on a Handler object (in the han-

dler variable). In the newer version, the method should be
called on an Authority object obtained from a sequence of
method calls, namely getRequest(), getUser(), and getAu-

thorities().

2.2 Parameterized changes
The pair of the abovementioned versions has similar yet
slightly different changes in more than one modules. The
change in STOR is similar to the one shown above, but slightly
different. It is about the call of getMaxUploadRate instead
of getMaxDownloadRate.

We call such changes parameterized ; when there is a code
fragment that calls either getMaxDownloadRate() or get-

MaxUploadRate() (let say m) in a specific way, we transform
the fragment into a particular form in which a method name
is filled with m. This kind of parameterized changes make
transformation languages complicated. However, in a gen-
eral software evolution scenario, it is not rare that a change
has many parameters.

Parameterized changes are not easily realized by using exist-
ing refactoring tools like CatchUp![4], RefactroingCrowler[3]
and Cider[10]. In order to carry out parameterized changes,
a tool needs to recognize a code fragment to be transformed
with its parameter positions so as to fill the parameters
in the resulted code. However, those automated refactor-
ing tools are not powerful enough to recognize complicated
source code fragments.

2.3 Toward scripting crosscutting changes
We examined crosscutting changes in revision histories of
several open source software systems, and observed that
crosscutting changes cause make a program less maintain-
able, hard to be reasoned about and error-prone. Based on
our examination, we designed a code transformation lan-
guage that has the following properties.

1. Scriptable: Developers want to manage a crosscutting
change as a script, so that they can apply it to recur-
ring change requests, and modify it for different change
requests in future.

2. Concise yet robust pattern specification: We proposed
a source-level pattern language that matches based on
dataflow in order to deal with similar yet slightly dif-
ferent changes. In those change variations, we some-

times found that the source code fragments have the
same dataflow structure even though they syntacti-
cally differ. For example, two code fragments com-
monly call getMaxDownloadRate() on a User object
that is obtained through calls of the getRequest() and
getUser() methods. However, at the syntactic level,
the one fragment chains those intermediate method
calls in one expression whereas the other separates
them into different statements interleaved with other
operations.

For the purpose, there are existing techniques such as
matching with abstract syntax tree in term-rewriting
systems or the AspectJ’s pointcuts language. How-
ever, naive adoption of them is insufficient for specify-
ing many subsequent expressions in a code fragment.
The system needs to directly represent code fragments
in concrete code syntax and also to abstract as pat-
terns for matching wide-spreading code fragments. For
instance, a call chain of methods may form into sep-
arated statements via local variables or composed ex-
pressions within a single statement. So, the system
needs to specify both cases at once.

3. Parameterized Transformation: The system also needs
to abstract out parts in code fragments of crosscutting
changes. A change script will have a set of transfor-
mation specification which generates an updated code
fragment from a specified code fragment. The system
needs to support of filling parametric parts for each
code fragment. This means that the system refers the
collected information while specifying the code frag-
ment, such as data-flow and concrete elements speci-
fied by abstract patterns.

There are many program transformation systems like TOM[1],
JunGL[12], RASCAL[7] and MetaBorg[2]. They tend to
support implementing code analysis or domain specific lan-
guages, and therefore, they are not suitable for most devel-
opers to use to define scripts of crosscutting changes. For
instance, in TOM, JunGL and RASCAL, developers cannot
write concrete syntax code for pattern matching. MetaBorg
has ability to write concrete code for matching. However
the patterns are independent and global, thus it is difficult
to write for matching a subsequent expressions like method
chains in a same context.

Arcum[11] is a language that has ability to modularize changes
themselves. However, it seems less expressive specification
for matching widely spreading code fragments.

DeltaJ[8, 9] is also a language for modularizing changes.
DeltaJ provides description of changes of existing module
interfaces (such as method additions or deletions), however
it does not provide transformation within code fragments of
methods.

3. THE CROSSVER LANGUAGE
In this section, we proposes Crossver as a new transforma-
tion language for Java. Note that Crossver borrowed several
keywords and constructs from AspectJ which is an aspect-
oriented extension for Java. Figure 2 is an example script
definition in Crossver for the crosscutting changes shown in
the previous section.

We first present a brief overview of Crossver before explain-
ing each feature of the language.

3.1 Overview of Crossver
We designed Crossver for the developer who needs to cope
with crosscutting changes of the design of components in
the code base that cause breaks in the code fragments of
their client code. The developer writes a script as an aspect,
which has expressive descriptions for matching and replac-
ing the breaking code fragments. The developer can auto-
matically obtain upgraded code for the crosscutting change
by applying the aspect and the code base to the Crossver
transformation engine. For example, the aspect in Figure 2
upgrades the code in Figure 1 from the top to the bottom.
The figure shows only the code of the class RETR, but the
aspect can also upgrade the class STOR at once.

The aspect has enumeration of contexts and each context
description specifies a sort of code fragments relating to the
crosscutting change. The context has the following features.

1. For the specification, it can write patterns in the con-
crete syntax. Such patterns can match not only ex-
act code based on syntax tree but also code involving
same data flow via local variables or compositions of
expressions. For instance, the pattern o.m1().m2()

can match v=o.m1(); v.m2(); via the local variable
v.

2. Moreover, it can also match arbitrary or selective parts
in the fragments through AspectJ’s pointcut descrip-
tions and regular expression’s star-operator-like form.

3. A context description involves partial replacements of
matched code fragments. The replacements achieve
to transform the code fragments with referring to col-
lected information while matching.

Those features promote writing parametric transformation,
i.e. more general and semantic specifications and genera-
tions with ignoring variance of syntactic code styles.

The rest of the section explains each language constructs
followed by the example in Figure 2.

3.2 Definition of contexts of changes
Line 1 declares the aspect MaxRateUpdate as the script for
the changes.

Changes are described as a context like lines 2–8, with the
syntax

context(Ti vi, . . .): P { Sc . . . }

where Ti vi are formal parameters, P is AspectJ’s pointcuts
and Sc are statement patterns. A context describes a set
of patterns matching target code fragments, and contains
partial replacements. The parameters vi are variables of the
context values and can be used in Sc. Parameters vi and
pointcut P can narrow matching target of Sc. Those pa-
rameters match with occurrences of those values with types
Ti. In line 2, the withincode pointcut specifies execute

methods in both RETR and STOR as matching targets.

The statement patterns Sc can accept patterns for match-
ing subsequent statements and expressions in the concrete
Java syntax. Line 3 is a statement pattern that matches a
sequence of method calls starting from occurrence of a some
Handler value (described as h). It matches subsequent calls
getRequest() to the value, and the getUser() call to the
returned value. The returned value of the latter call is de-
fined as the additional (local) value u in the context, which
can be used in the subsequent matching and transformation.

The statement patterns are expressive. Developers can eas-
ily describe intra-procedural dataflow between expressions
through composition of them (e.g. method call chains) and
local variables in the context.

3.3 Transformation code as partial replacements
Statement patterns can contain descriptions of replacements
which partially transform matched code. Lines 4–7 are a
replacement in the context, followed by the syntax

replace(out:opt in . . .) { Sp . . . } with { Sr . . . }

where out and in are references of context variables, Sp are
statement patterns, Sr are replacement statements. The re-
place construct specifies replacements of matching Sp sub-
sequent to the previous statement pattern within the enclos-
ing context. Note that the statement patterns Sp in replace

cannot recursively contain replace descriptions.

In line 4, replace(rate : u) specifies the variable rate as
the output value of the context, and it is assigned within
both subsequent two sub-blocks. Also, u can be used in the
same blocks as an input value.

The special form #pc(e,...) refers named pointcut pc with
arguments e. This can matches a statement by a composed
pointcut pattern. The use of pointcut languages within
statement patterns can deal with parameters in code frag-
ments. For instance, #getMaxRate(u) of line 4 refers the
named pointcut of line 9–10, which matches a call of get-
MaxDownloadRate() or getMaxUploadRate().

The special form proceed(e,...) appears in the replace-
ment block, refers the original code matched by the state-
ment patterns of replace with replacing arguments to e.
In line 7, proceed calls the matched original call of get-
MaxDownloadRate() or getMaxDownloadRate() with an ar-
gument obtained from the array maxRates instead of u. It
returns an integer and used as the output rate.

1 public class RubyFixnum extends RubyInteger {
...

2 public RubyFixnum op_plus(RubyFixnum other) {
3 return m_newFixnum(getRuby(),
4 getValue() + other.getValue());

5 public RubyNumeric op_plus(RubyNumeric other) {
6 if (other instanceof RubyFloat) {
7 return RubyFloat.m_newFloat(getRuby(),
8 getDoubleValue()).op_plus(other);

... //omitted code for the big integer (RubyBignum)
9 } else { return m_newFixnum(getRuby(),

10 getValue() + other.getLongValue());
11 }

Figure 3: change lines in the JRuby’s RubyFixnum

class: the former version (top) and the latter version
(bottom)

1 aspect FixnumFloat {
2 context(Ruby r, RubyFixnum other, Object ov,
3 RubyFixnum rv): op(*) {
4 replace() { ov = other.getValue(); } with {}
5 replace(rv :) {
6 rv = m_newFixnum(r, anycode(getValue(), ov));
7 } with {
8 if (other instanceof RubyFloat) {
9 rv = #op(RubyFloat.n_newFloat(r,

10 getDoubleValue()), other);
11 } else {
12 rv = proceed(r, other.getLongValue());
13 } }}
14 pointcut op(RubyNumeric oth):
15 withincode(* op_*(..)) && args(oth);
16 }

Figure 4: The definition of FixnumFloat in Crossver

3.4 Arbitrary code matching for flexible trans-
formations

Crossver has ability to describe flexible transformations thanks
to the mechanism of arbitrary code matching. Here, we will
show that with another example of crosscutting changes.

Figure 3 shows another example of crosscutting change ap-
peared in JRuby3, the commit 0c68e63. JRuby is an inter-
preter for Ruby scripting language, and it has several classes
for representing runtime number values such as RubyFixnum
and RubyFloat. RubyFixnum represents an integer value and
it can be computed through methods op_plus(..) and
op_minus(..) with taking another value as the operand.
The figure shows two versions of the op_plus method. The
newer version supports the adding operation of the integer
and an floating point number, which is achieved by the con-
ditional branch regarding RubyFloat (lines 6–8). Note that
the older code for the operation is partially updated as the
call from other.getValue() (in line 4) to other.getLongValue()
(in line 10).

The changes are crosscutting because it happens not only
the adding operation (op_plus) but also the subtracting op-
eration (op_minus). Most parts of the code for the changes
are identical but only the operator (+ and -) and a calling
method (op_minus for op_plus in line 8) are different.

3http://www.jruby.org

Figure 4 shows the aspect in Crossver for Figure 3. A state-
ment for the operation is replaced by the two separated re-

place blocks. As the separation, we want to describe trans-
formation of the call from getValue() to getLongValue().
The first replacement specifies the call as replaced with an
empty block, which means the deletion of the call, and the
second replacement specifies the enclosing expressions of the
call. This makes the proceed call in the second replacement
exclude the call for other.getValue() but include other
operations, the first getValue(), the + operation and the
m_newFixnum call.

The included operations in the second replacement are vary-
ing with each code fragment in op_plus and op_minus, thus
we need to write patterns for matching them. The opera-
tions are the sort of binary operation (+ and -), and not suit-
able for writing name-based pattern matching like pointcuts
op in lines 14–15 of Figure 4 (Note that it can successfully
match both op_plus and op_minus by op_*). In general,
such operations may be plural operations composed by ar-
bitrary expressions.

To achieve matching such operations, we can use the form
anycode(e,. . .) as a star operator in terms of regular ex-
pressions. The anycode abstracts a set of expressions and
statements in a method, and matches to them. In line 7 of
Figure 4, the anycode form abstracts the binary operation,
with constraints that it takes two values from getValue()

and ov and be passed to m_newFixnum as the second argu-
ment.

4. SEMANTICS OF CROSSVER
This section presents a brief overview of semantics of Crossver
as transformation rules of the term T consisting of the fol-
lowing syntax:

T ::= K(T, . . .) Expression
| V Variable
| C Constant value
| replace(V : V, . . .) T with T Replacement

K ::= if | while | call | assign | sequence | anycode | . . .

where V is local variables and C is constant values including
symbols. We assume expressions take the SSA (static single
assignment) form. The assignment t to v is translated as the
term assign(t, v) and denoted by v=t for short. The term
sequence(t1, t2) is a sequence of two subterms and denoted
by t1;t2 for short.

A transformation is denoted by t/p ⇒ t′, S, where t is the
translated term, and p is the pattern term, and t′ and S is
the generated term and bindings after the transformation,
S consists of a sequence of the form v 7→ t.

Figure 5 shows transformation rules of Crossver. Rules for
variables (T-Var and T-PVar) means unifying the variable as
a binding. Rules for sequences (T-Seq1 and T-Seq2) means
traversing the pattern to the term tree.

Rules for constants (T-Cnst) and expressions (T-Exp) means
just matching with the concrete instances of the syntax tree.
Note the rule for expressions covers matching with a se-

v/t ⇒ t, {v 7→ t} (T-Var)
t /∈ V

t/v ⇒ t, {v 7→ t}
(T-PVar)

t1/p ⇒ t′1, S

t1;t2/p ⇒ t′1;t2, S
(T-Seq1)

t2/p ⇒ t′2, S

t1;t2/p ⇒ t1;t′2, S
(T-Seq2)

c = c′

c/c′ ⇒ c, ∅
(T-Cnst)

k = k′ S0 = ∅ Si−1 ◦ ti/Si−1 ◦ pi ⇒ t′i, S
′
i Si = Si−1 + S′

i

k(t1, . . . , tn)/k(p1, . . . , pn) ⇒ k(t′1, . . . , t
′
n), Sn

(T-Exp)

t1/p ⇒ t′1, S t′′1 = t′1[⊘/S′.xj] tl = S′.xj ; . . . [ali/S.vi] . . . t′2 = S ◦ t2[tl/rl] . . .

t1/replace(v0:vi, . . .) p with t2 ⇒ t′′1;t
′
2, S

(T-Repl)

where all kj(. . .) ∈ p and kj ̸= sequence, let S′ = {xj 7→ kj(. . .)}, and rl = proceedl(ali , . . .) ∈ p

k = k′ S0 = ∅ Si−1 ◦ ti/Si−1 ◦ anycode(pi, . . .) ⇒ t′i, S
′
i Si = Si−1, S

′
i {pi 7→ } ⊆ Si

k(ti, . . . , tn)/anycode(pi, . . .) ⇒ k(t′i, . . . , t
′
n), Sn

(T-Any1)

t/pi ⇒ t′, S

t/anycode(pi, . . .) ⇒ t′, S
(T-Any2) t/anycode(pi, . . .) ⇒ t, ∅ (T-Any3)

(t′, S) = matchPointcuts(t, n, ai, . . .)

t/pointcut(n, ai, . . .) ⇒ t′, S
(T-Pc)

Figure 5: Transformation rules

quence of patterns. We denote application of the bindings S
to the term t by S◦t, namely, substitution of all v occurred in
t with tv if {v 7→ tv} ∈ S. S+S′ means a composition of two
bindings. For the composition, if there exists bindings for
same variable in both S and S′, it prefers the latter instance
in S′. The rule for expressions translates each sub-term step
by step, and composes the obtained bindings with the one
of the previous step. It derives the bindings obtained at the
last step.

The rule for replacements (T-Repl) means a replacement of
matching pattern including the support of proceed form.
The rule first matches the pattern p with t1, second re-
moves matched all sub-terms, which are associated with xj

in the temporary bindings S′, from the transformed term t′1,
and gets t′′1 . We denote the substitution of the term t with
t′ within s by s[t′/t], and ⊘ means the empty term. S.v
means obtaining the associated term for v from S. The rule
also constructs the term tl for each proceedl, as the original
term applied by the proceed. The term tl is composition of
matched sub-terms (S′.xj) and substitutions of arguments
of the proceed ([ali/S.vi]). It is applied as a substitution to
the replacement t2 and gets t′2. The rule produces a sequence
of t′′1 and t′2.

The three rules for anycode supply the feature of arbitrary
matching, similar to the star operator in the regular expres-
sion. The term anycode can be matched with any kind of
expressions with recursively down to sub-terms (T-Any1).
The matching is limited to the cases of all arguments pi of
anycode matches to some sub-term ti (denoted by {pi 7→
} ⊆ Si). It can also matches any terms whose sub-term pi
matches to the term (T-Any2) or nothing (T-Any3).

The rule for pointcuts (T-Pc) supports pointcut matching.
The term pointcut takes a name of pointcut declaration n
and arguments ai, and calls matchPointcuts which matches
the specified pointcuts with arguments to the given term t
followed by AspectJ’s pointcuts semantics.

5. CONCLUSION
In this paper, we proposed a new transformation language
Crossver which can express a set of crosscutting changes as
a concise script. With the language, developers can write

a set of transformation rules between versions in expres-
sive and robust way. The language supports writing ex-
pressive patterns namely, matching and substitution with
intra-procedural data-flow, concrete syntax and regular ex-
pressions. We presented semantics of Crossver as transfor-
mation rules of terms.

We are currently working on development of the implemen-
tation of Crossver, which is built on top of existing AspectJ
and Eclipse Java compilers. As a future work, we are con-
sidering to integrate the language into an existing version
control system (e.g. git).

6. REFERENCES
[1] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and

A. Reilles. Tom: piggybacking rewriting on Java.
RTA’07, pp. 36–47, 2007.

[2] M. Bravenboer and E. Visser. Concrete syntax for
objects: domain-specific language embedding and
assimilation without restrictions. OOPSLA ’04, pp.
365–383, 2004.

[3] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automated detection of refactorings in evolving
components. ECOOP ’06, pp. 404–428, 2006.

[4] J. Henkel and A. Diwan. CatchUp!: capturing and
replaying refactorings to support API evolution. ICSE
’05, pp. 274–283, 2005.

[5] G. Kiczales et al. Aspect-oriented programming.
ECOOP’ 97, pp. 220–242, 1997.

[6] M. Kim et al. An empirical investigation into the role
of API-level refactorings during software evolution.
ICSE’ 11, pp. 151–160, 2011.

[7] P. Klint et al. RASCAL: a domain specific Language
for source code analysis and manipulation. SCAM ’09,
pp. 168–177, 2009.

[8] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella.
Delta-oriented programming of software product lines.
SPLC’10, pp. 77–91, 2010.

[9] S. Schulze, O. Richers, and I. Schaefer. Refactoring
delta-oriented software product lines. AOSD ’13, pp.
73–84, 2013.

[10] M. Shomrat and Y. A. Feldman. Detecting refactored
clones. ECOOP’ 13, pp. 502–526. 2013.

[11] M. Shonle et al. A framework for the checking and
refactoring of crosscutting concepts. TOSEM,
21(3):15:1–15:47, 2012.

[12] M. Verbaere, R. Ettinger, and O. Moor. JunGL: a
scripting language for refactoring. ICSE ’06, pp.
172–181, 2006.

