
Association Aspects

Kouhei Sakurai∗ Hidehiko Masuhara† Naoyasu Ubayashi‡

Saeko Matsuura∗ Seiichi Komiya∗

∗Shibaura Institute of Technology
{sakurai@komiya.ise,matsuura@se,

skomiya@sic}.shibaura-it.ac.jp

†University of Tokyo
masuhara@acm.org

‡Kyushu Institute of Technology
ubayashi@acm.org

ABSTRACT
We propose a linguistic mechanism for AspectJ-like lan-
guages that concisely associates aspect instances to object
groups. The mechanism, which supports association aspects,
extends the per-object aspects in AspectJ by allowing an
aspect instance to be associated to a group of objects, and
by providing a new pointcut primitive to specify aspect in-
stances as execution contexts of advice. With association
aspects, we can straightforwardly implement crosscutting
concerns that have stateful behavior related to a particular
group of objects. The new pointcut primitive can more flexi-
bly specify aspect instances when compared against previous
implicit mechanisms. The comparison of execution times be-
tween the programs with association aspects and the ones
with regular AspectJ aspects revealed that the association
aspects exhibited almost equivalent for the medium-sized
configurations.

1. INTRODUCTION
In aspect-oriented programming (AOP), an aspect is the
unit of modular definitions of crosscutting concerns. As-
pects may be provided as a different module system from
existing ones (e.g., in AspectJ[10]), or may be defined by
using an existing module system (e.g., in Hyper/J[16]). In
both cases, an aspect serves as the encapsulation of state
and behavior, which are represented by instance variables
and advice declarations, respectively, in AspectJ-like lan-
guages.

AspectJ-like languages run an advice body in the context of
an aspect instance, in a similar sense that object-oriented
languages run a method body in the context of an object.
A problem is how to determine an aspect instance as the
context of an advice execution, since aspect instances are
not usually obvious during the program execution. AspectJ,
for example, offers a few mechanisms1 to this problem:

1There are also mechanisms based on the control flow, but
they are not directly relevant to the topic of the paper.

AOSD 04, March 2004, Lancaster UK.

• singleton aspects create only one aspect instance for
each aspect declaration. This type of aspects are use-
ful to implement concerns that have system-wide be-
haviors.

• per-object aspects associate a unique aspect instance
for each object. When an operation in terms of an ob-
ject triggers an advice execution, the system automat-
ically looks up the aspect instance associated to the
object, and uses the instance as the execution context.
This type of aspects are useful to implement concerns
that have a unique state for each object.

Those mechanisms are useful to certain kinds of crosscutting
concerns, but Sullivan et al. pointed out that they do not
straightforwardly support behavioral relationships, which are
the concerns that integrate the behaviors of collections of
objects by extending or modifying their respective behav-
iors[21]. With above mechanisms, such behavioral relation-
ships are usually implemented by creating a singleton as-
pect with a table for associating the states unique to object
groups. The resulted implementations have to have not only
the code for the core behavior but also the code for manag-
ing association in a single aspect definition.

Subsequently, Rajan and Sullivan proposed instance-level
advising by aspect instances as a solution, as demonstrated
in their AOP language Eos[19]. In Eos, the programmer dy-
namically create an aspect instances to represent behavioral
relationships. Each aspect can be associated to the objects
in its representing relation. When a method is called during
program execution, the advice body is executed in the con-
text of each aspect instance that is associated to the target of
the call. As a result, the mechanism can cleanly implement
such behavioral relationships. However, the mechanism can
still be improved with respect to the following problems:
(1) it is not flexible in the selection of aspect instances as it
always selects with respect to the target object, and (2) it re-
quires additional language constructs in order to distinguish
associated objects of the compatible types.

This paper proposes an alternative mechanism called asso-
ciation aspects, which also allows us to associate an aspect
instance to a group of objects. The mechanism addresses
the abovementioned problems by providing a new point-
cut primitive that can more flexibly select aspect instances
upon advice execution, and can distinguish associated ob-
jects without introducing other language constructs. The

Equality

b1

Equality

b2

b3

Figure 1: Integration of Bits

mechanism is implemented by modifying the AspectJ com-
piler. Our benchmark tests showed that the association as-
pects can be implemented with acceptable amounts of over-
heads in comparison to the singleton or per-object aspects
that manually manage tables.

The rest of the paper is organized as follows. Section 2
presents an example of behavioral relationships. Section 3
explains the design of association aspect, our proposed mech-
anism. Section 4 describes how association aspects are com-
piled into native Java programs. Section 5 gives the result of
our benchmark tests to compare the efficiency of association
aspects with respect to the programs in pure AspectJ. Sec-
tion 6 compares association aspects to similar approaches.
Section 7 concludes the paper.

2. MOTIVATING EXAMPLE
This section presents an example system to motivate the
need for association aspects. Section 2.1 presents a problem
of system integration that becomes a crosscutting concern in
object-oriented programming. Section 2.2 then shows that
AspectJ implements the concern in an awkward manner.
Section 2.3 analyzes the conditions when such problems hap-
pen.

The problem presented in this section was first pointed out
by Sullivan, Gu and Cai[21]. Readers who are familiar with
their work can skip to Section 3.

2.1 System Integration
Integration of independently developed systems often raises
crosscutting concerns; it often requires modifications on many
descriptions of participating systems[20, 21, 22]. For exam-
ple, assume that one build an integrated development en-
vironment (IDE) system by integrating a text editor and a
compiler system[20, 22]. Without AOP, description for the
integration concern need to appear in several places in both
sub-systems; e.g., a “save” method not only writes to a file,
but also needs to invoke the compiler.

For the concreteness, we consider integration of Bit objects
in the paper. A Bit object has a Boolean instance variable
and methods for setting, clearing, and getting the value of
the variable:

class Bit {

boolean value = false;

void set() { value = true; }

void clear() { value = false; }

boolean get() { return value; }

}

The integration concern is to synchronize the states of par-
ticular Bit pairs, which is represented by relations. A re-
lation consists of a type (either equality or trigger) and a
pair of Bit objects. The relations are created dynamically
during program execution.

Figure 1 shows three Bit objects (illustrated as ovals) con-
nected by two equality relations (illustrated as diamonds).
An equality relation propagates set and get calls on the
left-hand side to the right-hand side and vice versa. There-
fore, when set is called on b2, the top equality relation calls
set on b1, which in turn makes the bottom equality rela-
tion to call set on b3. Note that the relations should not
cause an infinite loop; i.e., the call on b1 by the top equality
relation should not be propagated back to b2.

A trigger relation merely propagates calls on the left-hand
side to the right-hand side.

Note: we continue the discussion with a premise that the
above system integration is a crosscutting concern, but one
might think it could be implemented within traditional object-
oriented programming. The interested readers can find de-
tailed discussion on this issue in Sullivan, et al.’s paper [21].

2.2 A Solution in AspectJ
It is possible to define aspects in AspectJ that implement the
above relations, but the definitions are not straightforward
enough.

Figure 2 shows a possible definition of the equality relation
in AspectJ2. In order to represent the state of each relation,
the aspect defines an inner-class called Relation, which has
references to the related Bit objects and a busy flag. The
aspect adds a list of Relations to each Bit object, so that
the advice can find Relations from a Bit object.

Two advice declarations capture set and clear calls, re-
spectively, to any Bit object. The bodies of advice obtains
a relations list from a target object. For each Relation

in the list, it checks the flag and invokes the same method
when the advice is not recursively executed for the same
Relation.

The static method associate creates a relation. When the
method is called with two Bit objects, it creates a Relation

object and registers it into each of the relations lists in the
given Bit objects. The integrated system of Bits specified
in Figure 1 can be constructed by executing the following
code fragment:

Bit b1 = new Bit(), b2 = new Bit(), b3 = new Bit();

Equality.associate(b1,b2); //connect b1 and b2

Equality.associate(b1,b3); //connect b1 and b3

2.3 Problem of AspectJ Solution
The Equality aspect in the AspectJ solution shown in Fig-
ure 2 does not straightforwardly model the equality rela-
tions.

2The definition is written by the authors who follow the
outline originally presented by Sullivan, et al.

aspect Equality {

static class Relation {

Bit left, right;

boolean busy = false;

Bit getOpponent(Bit b) {

return b==left ? right : left;

} }

private List Bit.relations = new LinkedList();

static void associate(Bit left, Bit right) {

Relation r = new Relation();

r.left = left;

r.right = right;

left.relations.add(r);

right.relations.add(r);

}

after(Bit b): call(void Bit.set())

&& target(b) {

for (Iterator iter=left.relations.iterator();

iter.hasNext();) {

Relation r = (Relation) iter.next();

if (!r.busy) { //to avoid

r.busy = true; //infinite loop

r.getOpponent(b).set();

r.busy = false;

}

}

}

// advice for the clear method goes here

// ...

}

Figure 2: An Implementation of Equality Relation in AspectJ

At design level, an equality relation is an entity that en-
capsulates the state (related objects and a busy flag) and
the behavior (detection and propagation of method calls).
It would be straightforward if a relation is modeled by an
instance at the programming level. However, the solution
models the relation as an aspect declaration (for the behav-
ior) and an instance of an inner-class (for the state).

In addition, the solution has to manage lists of the states
for finding associated relations to an object. This is verbose
and distracts the programmer’s attention from the actual
behaviors added by the relation.

In general, aspect instantiation mechanisms in AspectJ are
not sufficient to straightforwardly implement concerns that
affects a groups of objects, and have stateful behavior. As it
is natural idea to encapsulate the state and behavior in an
aspect instance, a mechanism that enables to create aspect
instances on a per-object-group basis would be useful.

In other words, the singleton aspects in AspectJ is not suit-
able because it can create no more than one instances. As a
result, the implementation would have to allocate the states
in different objects, and manage a table to keep those ob-
jects.

The per-object aspects in AspectJ, namely pertarget and
perthis aspects, are not suitable either. This is because
only one per-object aspect instance is allowed to exist for
each object. In order to represent relations between objects,
more than one aspect instances would exist for one object.

We do not believe that this problem is unique to large-scale
system integrations. Rather, similar problems could be ob-
served in smaller-scale systems. For example, in the AspectJ
implementation of GoF Design Patterns[5] by Hannemann
and Kiczales[6], 6 out of 23 patterns manage the relations
and their states by using tables.

3. ASSOCIATION ASPECT
3.1 Overview
We propose an extension to the AspectJ’s aspect instantia-
tion mechanism, called an association aspect, that allows the

aspect Equality perobjects(Bit, Bit) {

Bit left, right;

Equality(Bit l, Bit r) {

associate(l, r); //establishes

left = l; right = r; //association

}

after(Bit l) : call(void Bit.set())

&& target(l) && associated(l,*){

propagateSet(right); //when left is called,

} //call set on right

after(Bit r) : call(void Bit.set())

&& target(r) && associated(*,r){

propagateSet(left); //when right is called,

} //call set on left

boolean busy = false; //indicates if the

//relation is active

void propagateSet(Bit opp) {

if (!busy) { //call set on opp

busy = true; //unless it already has

opp.set(); //propagated

busy = false;

} }

// advice decls. for clear method go here

}

Figure 3: Equality Relation with Association Aspect

programmer to associate an aspect instance to a tuple of ob-
jects. Association aspects are designed to straightforwardly
model crosscutting concerns like behavioral relations, which
coordinate behavior among a particular group of objects.

Two basic functions support the association aspects: (1) a
function to associate an aspect instance to tuples of objects,
and (2) a function to select aspect instances based on the
association at advice execution.

Figure 3 shows the Bit integration example rewritten with
the association aspect. The perobjects modifier on the first
line declares that its instance is to be associated to a pair of
Bit objects. The following statements builds the integrated
Bits in Figure 1:

Bit b1 = new Bit(), b2 = new Bit(), b3 = new Bit();

Equality a1 = new Equality(b1,b2);

Equality a2 = new Equality(b1,b3);

The new expressions create Equality aspect instances. The
constructor of Equality associates the created instance to
the given Bit objects.

The associated pointcuts in the advice declarations spec-
ify what aspect instances shall be used as the execution
context of the advice bodies. The combination of point-
cuts target(l) && associated(*,l) selects aspect instances
that are associated to the current target object. The se-
lected aspect instances serve as execution context of advice;
i.e., the body of advice runs with accesses to the instance
variables of the selected aspect instances.

For example, when a program evaluates b2.set(), aspect
instance a1 is selected by the second advice, and executes
the advice body. The advice checks flag in a1, and calls
set on left, which is bound to b1 in a1.

We hereafter refer to the process that selects aspect in-
stances and runs advice body in the context of selected in-
stances as advice dispatching to aspect instances.

The following subsections explains the association and ad-
vice dispatching mechanisms in greater detail.

3.2 Creating and Associating Aspect Instances
Association aspects are declared with perobjects modifiers.
They are defined by the following syntax:

aspect A perobjects(T,. . .) { mdecl . . . }

where A is the name of the aspect, T is the type of ob-
jects to be associated, and mdecl is the member declaration
including constructor, method, variable, advice, etc.

The association aspects can be instantiated by executing a
new A(. . .) expression, which is similar to objects. Cre-
ation of a new aspect instance also invokes a constructor
for initialization. A newly created aspect instance is not
associated to any objects.

The perobjects(T1,T2,. . .,Tn) modifier automatically de-
fines an associate method in A. It takes n objects of
type T1, . . . , Tn, and associates the aspect instance to the
given objects o1, . . . , on. The modifier also defines a void

A.delete() method, which revokes association.

In contrast to per-object aspects in AspectJ, creation and
association of association aspects are explicit. This is due
to the typical usage of association aspects, in which they
represent explicit artifacts such as the Equality relations in
the Bit integration example. When association aspects are
required for objects in certain join points, it is possible to
make those operations non-intrusive by defining advice as
we will see in Section 3.4.

3.3 Dispatching to Aspect Instances

(1) b2.set()

a1

b1

a2

b2

b3

target(r) &&
associated(*,r) = true

target(r)&&
associated(*,r) = false

(2) a1 runs advice

(3) left.set()

a2 does not run

Figure 4: Advice Dispatching to Associated Aspects

Semantically, dispatching advice to aspect instances is re-
alized by trying to execute the same advice in the context
of all aspect instances, and only the instances that satisfy
the pointcut actually run the body. In order to select asso-
ciated aspect instances, we provide a associated pointcut
primitive.

Figure 4 illustrates the semantics in terms of the example
presented at the beginning of the section. The evaluation
of b2.set() creates a call join point (1). We here focus
on the execution of the second advice declaration. Each
aspect instance tests the pointcut. Since the pointcut is
satisfied only when an aspect instance is associated to b2

as the second parameter, a1 is the only aspect instance to
run the advice (2). The advice body propagates the call
by accessing an instance variable stored in the execution
context, a1 (3).

Aspect instances are ordered in undetermined order to test-
and-execute an advice declaration. For around advice, when
an aspect instance executes a proceed form, the next aspect
instance then test-and-executes the same advice.

An associated pointcut determines how an aspect in-
stance is associated to objects. In an aspect declared
with perobjects(T1,. . .,Tn), the pointcut is written as
associated(v1,...,vn) where vi is either

• a variable, which must be bound by another pointcut
(e.g, by target(vi)), or

• an asterisk (*) as a wild card.

An additional restriction is that an associated pointcut has
at least one bound variable in its parameter.

The pointcut associated(v1,...,vn) is evaluated to true
for an aspect instance that is associated to 〈o1, . . . , on〉, if,
for all 1 ≤ i ≤ n, vi is either an asterisk, or vi is a vari-
able bound to oi. The asterisks allow more than one aspect
instances to match the same join point.

Note that the pointcut distinguishes parameter positions.
This is useful to define “directed” relations that captures
different events on the different sides of the relations.

3.3.1 Binding to Associated Objects

The associated pointcut can bind variables to associated
objects when free variables are written instead of wild cards.
For example, the following declaration, which is slightly
modified from the first advice declaration in the Figure 3,
has a free variable r instead of the wild card:

after(Bit l, Bit r) : call(void Bit.set())

&& target(l) && associated(l,r) {

propagateSet(r);

}

The modified advice has the same behavior to the original
one except that it binds r to the associated object at the
second parameter position when it executes the body.

The binding feature can give shorter definitions to symmet-
ric association aspects, which equally treat their associated
objects. For example, the following single advice declara-
tion can substitute for the first two advice declarations in
Figure 3:

after(Bit b,Bit o): call(void Bit.set())&&target(b)

&& (associated(b,o) || associated(o,b)) {

propagateSet(o);

}

This is because the associated pointcuts identify aspect
instances that are associated to the target object regardless
parameter position, and then the binding feature binds o to
the associated object that is not the target.

3.4 Static Advice
Association aspects can declare static advice, which provides
similar semantics to the advice declarations in singleton as-
pects. When an advice declaration has static modifier,
pointcut matching and execution is performed exactly once
regardless the number of existing aspect instances. Obvi-
ously, a static advice declaration may not use associated

pointcut. The execution context of static advice is the aspect-
class; the advice body can only access to static (or class)
variables.

The static advice declarations are typically useful for boot-
strapping. In order to create a new aspect instance by using
the advice mechanism, a static advice declaration should
be used because there are no aspect instances at the begin-
ning. For example, the advice in the following code creates
an Equality instance when callSomeMethod() happens:

aspect Equality perobjects(Bit, Bit) {

static after(Bit l, Bit r) :

callSomeMethod() && args(l,r) {

new Equality(l,r); //creates an aspect instance

}

...

}

3.5 Finding Aspect Instances
It is sometimes necessary to check if there is any aspect
instance associated to a particular tuple of objects, or to do

aspect Equality perobjects(Bit,Bit) {

...

static void showAll(Bit b) { } // empty body

after(Bit b) :

call(void Equality.showAll(Bit))&&args(Bit b)

&& (associated(b,*) || associated(*,b)) {

System.out.println(this); //this is bound to

} } //associated instance

Figure 5: An Idiom to Enumerate Aspect Instances

something on all aspect instances associated to a particular
object (e.g., deleting all aspect instances associated to an
object). Those operations can be realized by means of advice
declarations with associated pointcuts. We therefore do
not provide specific primitives for such purposes.

An example is to prevent creating no more than one Equality
aspect instance for the same pair of objects. The next advice
does the job:

aspect Equality perobjects(Bit,Bit) {

...

Equality around(Bit l, Bit r) :

call(new Equality(Bit,Bit)) && args(l,r)

&& (associated(l,r) || associated(r,l)) {

return this;

} }

When a program executes new Equality(b,b′) and there is
an aspect instance a associated to 〈b, b′〉 or 〈b′, b〉, the above
advice returns a instead of creating new one. When there
is no such an aspect instance, a new Equality instance will
be created because the advice does not run at all.

Enumerating all aspect instances associated to a particular
object can be realized by an empty static method with an
advice declaration. For example, execution of Equality.

showAll(b) in Figure 5 displays all aspect instances that
are associated to b.

4. IMPLEMENTATION
The mechanisms for association aspects are implemented3

by modifying AspectJ compiler version 1.0.6. Similar to
the original compiler, it takes class and aspect declarations
as inputs, and generates Java bytecode as compiled code.
We first review how the original AspectJ compiler generates
compiled code. We then show how the extended compiler
generates code for association aspects. For readability, we
present compiled code at the Java source-code level.

4.1 Compilation of Regular AspectJ Programs
AspectJ compiler translates an aspect declaration into a
class, and an advice body into a method of the class, re-
spectively. Advice is executed by the inserted method calls

3The implementation is available at http://www.komiya.
ise.shibaura-it.ac.jp/~sakurai/. Currently, the
associated pointcut is provided as a modifier to an advice
declaration. This makes the mechanism less expressive, but
does not cause a serious problem.

class Bit { //translated

Counter _aspect; //associated aspect instance

boolean value; //original instance variable

public synchronized void _bind() {

if (_aspect == null) _aspect = new Counter();

}

//definitions of set, clear and get methods

//...

}

class Counter { //translated

int count = 0; //instance variable

public final void _abody0() {//body of the after

count++; //advice

} }

Figure 6: Compiled Code by AspectJ

into locations where the pointcut of the advice statically
matches. Dynamic conditions in the pointcut (e.g., cflow
and if) are translated into conditional statements inserted
at the beginning of translated advice. Masuhara et al. gave
a semantic model of the translation by using partial evalu-
ation of an interpreter[11].

Consider the following (non-association) aspect definition
which counts invocations of a method on a per-target-object
basis:

aspect Counter pertarget(callSet()) {

pointcut callSet() : call(void Bit.set());

int count = 0;

after() returning() : callSet() {

count++;

} }

Compilation of Counter aspect with Bit class yields the
code shown in Figure 64. A statement b.set(); where b is
of type Bit is translated into the following statements:

b._bind(); //create&associate if not yet

b.set();

b._aspect._abody0();//advice dispatching

The Counter aspect is translated into a class. The variable
count becomes an instance variable, and the after advice
becomes a method.

The Bit class has an instance variable _aspect, which keeps
an aspect instance (i.e., a Courier object) associated to
the Bit object. The _bind method creates an associated
Counter instance for a Bit object if it is not yet created.

The translated call to set method is surrounded by a call
to _bind and a call to run the advice body. The latter call

4Note that the code is drastically simplified from what
the actual compiler generates. For readability, we inlined
method calls and renamed compiler-generated methods and
fields, and removed unimportant access modifiers.

a1

aspects1

a2

key value

key value

key value

aspects2

aspects2
b1

b2

b3

Figure 7: Implementation of Association with Maps

is realized by invoking an instance method of Counter class.
As a result, the body of the advice is executed in the context
of an associated aspect instance.

4.2 Compilation of Association Aspects
4.2.1 Compilation of Bit Integration Example
Association aspects are compiled into Java classes in a sim-
ilar manner to other aspects, except for association and ad-
vice dispatching. We first show how Bit integration with
association aspects is compiled.

The translated Bit class has fields aspects1 and aspects2

to keep maps from Bit to Equality:

class Bit {// translated

Map aspect1 = new HashMap(); //Bit -> Equality

Map aspect2 = new HashMap(); //Bit -> Equality

...

}

Those two maps are used for processing pointcuts
associated(b,*) and associated(*,b), respectively. They
preserve the following invariants: when an aspect instance
a associated to 〈b1, b2〉, b1.aspect1.get(b2) = a and
b2.aspect2.get(b1) = a.

Figure 7 shows how the implementation represent the asso-
ciations of the integrated Bits in Figure 1.

Advice dispatching is translated into a loop over all key-
value pairs in a map. A statement b.set(); is translated
into the following code5 for dispatching the first advice dec-
laration:

b.set(); //original call

for(Bit v: b.aspects1.keys()) { //for the first

Equality a=aspects1.get(v); //after-advice

a._abody0(b);

}

for(Bit v: b.aspects2.keys()) { //for the second

Equality a=aspects2.get(v); //after-advice

a._abody1(b);

}

The two for-loops correspond to the two advice declarations.
Since the first advice has associated(l,*) pointcut where

5The syntax for(T v : e) s is a shorthand for looping s
for each v of type T in iterator e.

l is the target of the call, it processes all the aspect instances
a in aspect1 map of the target object, and runs the body
of advice by invoking instance method of a. The code for
the second advice is the same to the first one except for the
map.

When all parameters to the associated pointcut are bound,
advice dispatching is translated into simple look-up in the
map. For example, the parameters to the associated point-
cut in the following advice are both bound by args:

after(Bit l, Bit r) : call(new Equality(Bit,Bit))

&& args(l,r) && associated(l,r) {

System.out.println("duplicated!");

}

Then the translation of an expression new Equality(b1,b2)

yields the next statements subsequent to the original expres-
sion:

Equality a = b1.aspects1.get(b2);

if (a != null) a._abody2(b1,b2);

4.2.2 Compilation Strategy
The general compilation strategy is slightly more compli-
cated because we allow to associate aspects to arbitrary
number of (i.e., even more than two) objects, and to use
wild cards at any parameter positions in associated point-
cuts.

Basically, the compiler processes associated pointcuts for
each binding pattern. A binding pattern of an associated

pointcut is a set of all parameter indices where bound vari-
ables appear.

Assume aspect A is declared with perobjects(T1,...,Tn)

and pointcut associated(v1,...,vn). Let bp(v1, . . . , vn) =
{i1, . . . , ik} such that vj is bound if and only if j ∈
bp(v1, . . . , vn). Also let wp(v1, . . . , vn) = {ik+1, . . . , in} such
that vj is a wild card if and only if j ∈ wp(v1, . . . , vn).

Then, the compiler installs a map into type Ti1 . The map
is of type Ti2 → Ti3 → · · · → Tin where ij is j’th index
in bp(v1, . . . , vn) or (j − k)’th index in wp(v1, . . . , vn). The
advice dispatching code is translated, given the values of
vi1 , . . . , vik , into a sequence of map lookup operations fol-
lowed by (n − k)-nested loops that processes over the map.

Below, we present the code for association and advice
dispatching when the first k parameters are bound; i.e.,
bp(v1, . . . , vn) = {1, . . . , k}. The code for the other bind-
ing patterns is the same modulo permutations of indices.

First, the compiler adds a field aspects of type Map into
T1. The initial value of the field is an empty map. The
associate method is defined like this:

void associate(T1 v1,T2 v2,. . .,Tn vn) {

Map m1 = v1. aspects;

Map m2 = getOrCreate(m1,v2);

Map m3 = getOrCreate(m2,v3);

static void dispatch(T1 v1,...,Tk vk) {

if(! <parameterless dynamic conditions>)return;

Map m1=v1. aspects;

Map m2=m1.get(v2); if(m2==null)return;

...

Map mk=mk−1.get(vk); if(mk==null)return;

for (Tk+1 vk+1 : mk.keySet()) {

Map mk+1 = mk.get(vk+1);

for (Tk+2 vk+2 : mk+1.keySet()) {

...

for (Tn vn : mn−1.keySet()) {

A a = mn−1.get(vn);

a. abody(v1,...,vk);

}

...

} } }

void abody(T1 v1,...,Tk vk) {

if (! <dynamic conditions>) return;

//statements in the advice body

}

Figure 8: Code for Advice Dispatching and Body

. . .
Map mn−1 = getOrCreate(mn−2,vn−1);

mn−1.put(vn−1,this);

}

where getOrCreate(m,k) returns a value for the key k in
the map m if it is registered. Otherwise, it creates a new
Map object, registers it in m with the key k, and returns the
created map. We actually use java.util.HashMap for a Map

implementation.

The advice dispatching is realized by inserting calls to the
dispatching method _dispatch in Figure 8 into the loca-
tions where the advice statically matches. The dispatching
method takes k parameters from the context (i.e., the join
point), finds all aspect instances associated to those values,
and calls _abody on each found aspect instance.

The _abody is the method translated from the advice body,
which first checks conditions due to dynamic pointcuts (e.g.,
if and type-tests), followed by the body of the advice.

When the pointcut has all bound variables in its parameter,
the dispatching method simply looks up the nested maps
until it reaches to an aspect instance.

4.2.3 Compilation of Around Advice and Proceed
Compilation of around advice is a little more complicated
due to its proceed mechanism. In short, our compiler basi-
cally follows the strategy in the existing AspectJ compiler,
which generates a closure for proceeding.

A difference from the original AspectJ compilation is that
the execution of proceed in an advice body of association
aspect may run the same body in the context of a different
aspect instance, whereas the execution of proceed in non-
association aspect always run a different advice body, or the
original join point.

To cope with the difference, our compiler generates a closure
that has iterators over maps. When the closure is called,
it takes the next aspect instance from the iterators, or it
advances to the next advice execution (or the original join
point execution) when there are no more aspect instances
available in the iterators.

5. PERFORMANCE EVALUATION
We carried out micro-benchmark tests for comparing run-
time efficiency between (1) programs with association as-
pects, (2) programs with singleton aspects that manually
manage associated states, and (3) programs with per-object
aspects in AspectJ.

All benchmark tests were executed by Sun HotSpot Client
Java VM version 1.4.2 beta, running on a Celeron 800MHz
Windows XP Professional machine with 512MB memory.
Each execution time was measured by averaging the execu-
tion time, which is obtained through currentTimeMillis,
of a loop that runs more than one second.

5.1 Performance of Basic Operations
We measured the costs of the basic operations, namely ob-
ject creation, aspect instantiation and association, and method
invocation with advice execution. They are measured by ex-
ecuting programs that perform the following operations:

1. (OBJ:) create n objects that have an n-ary empty
method and instance variables,

2. (ASSOC:) create an aspect instance and associate it
to the n objects, and

3. (ADV:) invoke the empty method on an object.

where the aspect has an advice declaration that picks m
(1 ≤ m ≤ n) objects from the arguments at the step 3,
and finds the aspect instance by using those objects. The
body of the advice simply increments five integer instance
variables. The aspect definition looks like this:

aspect Test perobjects(C,. . .,C) {

int x1, x2, x3, x4, x5;

Test(C o1,. . .,C on) {

associate(o1,. . .,on);

}

before() : callEmptyMethod()

&& args(o1,. . .,om,*,. . .,*)
&& associated(o1,. . .,om,*,. . .,*) {

x1++; x2++; x3++; x4++; x5++;

} }

There are three actual implementations of the aspect:

AA: that uses an association aspect (shown above),

SNG: that uses a singleton aspect in AspectJ with inner-
class objects stored in HashMaps for associated states,
and

PO: that uses per-object aspect in AspectJ (namely
pertarget). This is used only when n equals to one.

n m AA SNG PO AA/SNG

OBJ 1 0.951 0.891 0.901 1.07
2 1.35 1.33 1.02
3 1.36 1.32 1.03

ASSOC 1 0.320 2.15 0.373 0.15
2 4.21 7.42 0.57
3 11.5 16.1 0.71

ADV 1 1 0.0781 0.144 0.137 0.54
2 1 0.840 0.831 1.01
2 2 0.194 0.250 0.78
3 1 1.81 1.59 1.14
3 2 0.844 0.941 0.90
3 3 0.310 0.360 0.86

Table 1: Execution Times (in µsec.) of Basic Oper-
ations

n AA SNG AA
SNG

10 1.32 0.760 1.7
20 1.98 1.32 1.5
30 3.00 2.20 1.4
40 4.50 3.31 1.4
50 6.31 12.9 0.5

n AA SNG AA
SNG

60 9.95 13.7 0.7
70 16.1 15.6 1.0
80 24.5 24.7 1.0
90 53.6 43.1 1.2
100 356 161 2.2

Table 2: Execution Times (in msec.) of Bit Integra-
tion with n Relations

Table 1 shows the execution times of those basic three op-
erations for different n, m combinations. OBJ denotes the
time for generating one object. OBJ and ASSOC times are
insensitive to m. The rightmost column shows the relative
execution times of AA with respect to SNG.

As we can see, AA poses at most 14% overheads compared
to the manual implementation, SNG. Those numbers are
reasonable consequence as compiled code for AA basically
does the same operations to what SNG does, yet in much
more concise descriptions.

5.2 Performance of Bit Integration
We also compared the performance by running the Bit inte-
gration example in AA and SNG implementations (as shown
in Figure 2 and 3, respectively). The benchmark programs
first create 100 Bit objects, which are randomly connected
via n equality and trigger relations, and then invoke set and
clear methods on randomly selected objects for 1000 times.

The overall execution times are shown in Table 2 and Fig-
ure 9. As seen in the rightmost column on the table, the
relative execution times of AA with respect to SNG range
0.5 to 2.2, depending on the density of the relations. We
presume that the difference is caused by the different col-
lection libraries used in AA and SNG. AA uses hash tables
for association management in its implementation, whereas
SNG uses linked lists. As a hash table usually optimized for
medium-sized entries, it could give worse performance for
smaller and larger number of relations.

6. DISCUSSION
6.1 Comparison with Eos

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

ex
ec

ut
io

n
tim

es
 (

m
se

c.
)

number of relations

AA
SNG

Figure 9: Execution Times (in mesc.) of Bit Inte-
gration

As the work on the association aspects is based on the work
on Eos[19], we here discuss the differences in detail.

The most notable difference is that Eos implicitly uses the
current target object when selecting aspect instances at ad-
vice execution. In contrast, association aspects can use arbi-
trary objects that are explicitly specified by pointcuts. The
mechanism in Eos is less flexible for the following situations:
(1) when aspect instances should be selected by using a non-
target object; e.g., when advising a call to a class method,
and (2) when aspect instances should be selected by using
more than one object; e.g., when a security concern is to
prevent method calls from object A to B, it can be realized
by an aspect instance associated to A and B. When a call
from A to B happens, all the aspect instances associated to
B run an advice body in Eos, even though the caller object
A could be used for selecting aspect instances.

Both association aspects and Eos can distinguish roles of as-
sociated objects. Eos, however, distinguishes by introducing
additional role constructs around advice declarations, which
might make it difficult to reuse aspects. For example, even
though Trigger and Equality aspects in Section 2.1 only
differ in what objects should be used at advice dispatching,
the declarations in Eos have different program structures as
the former has to enclose advice declarations in a role con-
struct. Since association aspects distinguish roles of objects
by the parameter positions in the associated pointcuts, the
declarations of those aspects can only differ in the point-
cuts. Our approach, in which advice dispatching is govern
by pointcuts, would fit the other language features in As-
pectJ, as it usually reuses aspects through the abstraction
mechanisms of pointcuts (i.e., the named pointcuts and the
abstract pointcuts).

It may first seem that the implicit dispatching mechanism
is more convenient than explicit ones for symmetric asso-
ciations, but it is actually as not as we first thought. For
example, the first two advice declarations in Figure 3 can
be written as below with implicit mechanisms:

after(Bit b): call(void Bit.set())&&target(b) {

if (!busy) {

busy = true;

if (b == left) left.set(); else right.set();

busy = false;

} }

Although the advice has a shorter pointcut, the body has to
check which left or right is the target in order to propa-
gate the call to the counterpart of the target. In association
aspects, it is possible to determine the counterpart of the
target by merely using pointcut, as we have seen in Sec-
tion 3.3.1, which results in simpler advice body.

Both Eos and association aspects should be careful about
performance penalty for the objects with no associated as-
pect instance. For the Bit integration example, a set call
to a Bit object that has no associated Equality instances
should not have significant overhead. There are two possible
dimensions to the overhead.

The first is the number of aspect instances. A naive imple-
mentation (which is called the first work-around[19]) would
significantly degrade its performance to look up a system-
wide table of aspect instances. Both Eos and association
aspects avoid this problem by having a list of associated
aspects in each object.

The second is the number of advice declarations that stat-
ically match to the call. Association aspects would lin-
early degrade the performance as each advice declaration
adds a loop over an empty list into the method call expres-
sion. Eos avoids this problem by having a list of thunks
for each method call expression. However, the approach in
Eos requires more memory and more operations for associ-
ating/unassociating aspect instances, further investigations
are needed to evaluate the tradeoffs.

6.2 Other related work
There was also a similar mechanism that associates aspect
instances to objects in the older versions of AspectJ6.

Mezini and Ostermann propose Caesar, a model for AOP[13,
14]. In Caesar, wrapper instances roughly correspond to as-
pect instances in AspectJ, but they can be manually instan-
tiated and associated to objects. In addition, the wrapper
recycling mechanism helps to retrieve associated wrappers
from objects. However, as far as the authors understand,
each wrapper can only be associated to one object. The asso-
ciation aspects integrate those instantiation and association-
to-objects features into AspectJ’s aspects.

Several AOP systems with dynamic weaving mechanisms,
such as PROSE[17, 18], Handi-Wrap[2], JBoss[4] and As-
pectWerkz[3], can create multiple aspect instances from an
aspect declaration. If those mechanisms could install as-
pect instances to a group of objects, behavioral relationships
could be straightforwardly implemented. However, as far as
the authors understand, those mechanisms install aspect in-
stances on a per-runtime-system basis; i.e., installation of
an aspect instance affects all objects belonging to the af-

6The versions prior to 1.0 of AspectJ are no longer available
publicly. Several literatures[7, 8] that use versions up to 0.6
mention such a feature.

fected classes. Handi-Wrap can define a library to establish
association between objects and wrapper instances, though.

Even if those mechanisms could implement what association
aspects can do, we believe that association aspects would
give more declarative definitions in many applications. With
dynamic weaving mechanisms, association and advice dis-
patching should be understood by means of the side-effects
of weaving.

7. CONCLUSION
We proposed the association aspects, which are simple ex-
tensions to the aspect instantiation mechanisms in AspectJ.
The pointcut-based advice dispatching mechanisms enable
flexible yet concise descriptions of aspects whose instances
are associated to more than one objects. As a result, the
association aspects can give straightforward representations
of crosscutting concerns that have stateful behavior with re-
spect to particular group of objects.

We developed a compiler for association aspects by modify-
ing the AspectJ compiler. The benchmark tests exhibited
the slowdown factors of the programs using association as-
pects with respect to the regular AspectJ programs are 0.5
to 2.2. We believe further optimizations are possible to re-
duce the overheads. For example, eliminating maps that
manage associations could improve memory performance.

The future work is to apply association aspects to cross-
cutting concerns in practical applications. Such concerns
would include GUI and security. We are currently examin-
ing a GUI application multiple views without changing the
original code, and GoF’s Design Patterns.

To investigate what design level concepts are appropriate to
be modeled by association aspects is also left for the future
work. We presume there are many possibilities in concepts
like relation objects in UML and roles in collaboration de-
signs. For example, among role model implementations in
AspectJ[7], those that are involved with many intrinsic in-
stances could be implemented with association aspects. This
would help designing aspect instances in association aspects
as well as Eos, which has role constructs to distinguish as-
sociated objects.

8. ACKNOWLEDGMENTS
We are very grateful to Kevin Sullivan and Hridesh Rajan
for the detailed information on Eos and the comments on the
paper. We also would like to thank Tetsuo Tamai, Tomoyuki
Kaneko, Etsuya Shibayama, anonymous reviewers and the
members of the PoPL and Kumiki meetings at University of
Tokyo for their comments on the early draft of the paper.

9. REFERENCES
[1] M. Aķsit, ed. Proc. of AOSD’03. 2003.

[2] J. Baker and W. Hsieh. Runtime aspect weaving
through metaprogramming. In [9], pp.86–98.

[3] J. Bonér and A. Vasseur. AspectWerkz. http://

aspectwerkz.codehaus.org/.

[4] B. Burke and A. Brok. Aspect-oriented programming
and JBoss. O’Reilly Network, May 2003. http://

www.oreillynet.com/pub/a/onjava/2003/05/28/

aop jboss.html.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[6] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In [12],
pp.161–173.

[7] E. A. Kendall. Role model designs and
implementations with aspect-oriented programming.
In [15], pp.353–369.

[8] M. Kersten and G. C. Murphy. Atlas: A case study in
building a web-based learning environment using
aspect-oriented programming. In [15], pp.340–352.

[9] G. Kiczales, ed. Proc. of AOSD’02. 2002.

[10] G. Kiczales, et al. An overview of AspectJ. In ECOOP
2001, pp.327–353, 2001.

[11] H. Masuhara, G. Kiczales, and C. Dutchyn. A
compilation and optimization model for
aspect-oriented programs. In Proc. of Compiler
Construction (CC2003), pp.46–60, 2003.

[12] S. Matsuoka, ed. Proc. of OOPSLA2002. Nov. 2002.

[13] M. Mezini and K. Ostermann. Integrating
independent components with on-demand
remodularization. In [12], pp.52–67.

[14] M. Mezini and K. Ostermann. Conquering aspects
with Caesar. In [1].

[15] L. M. Northrop, ed. Proc. of OOPSLA’99, Oct. 1999.

[16] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns and the hyperspace approach. In Proc. of
the Symposium on Software Architectures and
Component Technology. 2000.

[17] A. Popovici, G. Alonso, and T. Gross. Just-in-time
aspects: efficient dynamic weaving for Java. In [1],
pp.100–109.

[18] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In [9],
pp.141–147.

[19] H. Rajan and K. Sullivan. Eos: Instance-level aspects
for integrated system design. In Proc. of ESEC/FSE,
pp.297–306, 2003.

[20] K. Sullivan. Mediators: Easing the design and
evolution of integrated systems. PhD Thesis, Dept. of
Computer Science, University of Washington,
published as TR UW-CSE-94-08-01, 1994.

[21] K. Sullivan, L. Gu, and Y. Cai. Non-modularity in
aspect-oriented languages. In [9], pp.19–27, 2002

[22] K. Sullivan and D. Notkin. Reconciling environment
integration and software evolution. ACM TOSEM,,
1(3):229–268, July 1992.

