On-Demand Layer Activation for Type-Safe Deactivation

Tetsuo Kamina
Ritsumeikan University
kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology
aotani@is.titech.ac.jp

Atsushi Igarashi
Kyoto University
igarashi@kuis.kyoto-u.ac.jp

ABSTRACT

Dynamic layer deactivation in context-oriented programming (COP) allows a layer to be dynamically disabled in the running application in a disciplined way. Deactivating a layer may lead to an error if there is another layer which has been activated but depends on the deactivated layer in the sense that the latter calls a method that exists only in the former. A type system or static analysis might be able to check the absence of such depending layers at each deactivation point but it would not be very easy, especially in the open-world setting.

We argue that the on-demand activation, which implicitly activates all layers on which currently activated layer depends, addresses this problem. In this mechanism, the precedent layer deactivation is canceled when the depending layer requires the implementation of the deactivated layer. This means that this mechanism can ensure that all method calls succeed without performing the checks of absent depending layers, which simplifies the type system. We formalize this idea as an extension of ContextFJ, a COP extension of Featherweight Java, and prove its type soundness.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and Theory; D.3.3 [Programming Languages]: Language Constructs and Features

General Terms
Languages

Keywords
Dynamic layer deactivation, ContextFJ, Type soundness

1. INTRODUCTION

Context-Oriented Programming (COP) is an approach to improve modularity of variations of behavior that depend on contexts [9]. A number of COP languages provide linguistic constructs that modularize such variations using layers, and that activate/deactivate them according to the executing contexts [2, 3, 6, 14]. A layer defines a number of partial methods. A partial method is a method that can run before, after, or around a (partial) method with the same name and signature defined in a different layer or a class. Thus, it provides the specific behavior of the system only when the layer is active.

In this paper, we consider a language mechanism in COP, method introduction by layers, i.e., allowing a layer to declare partial methods that introduce new behavior to existing classes. This mechanism makes the type system interesting, and actually there are a number of cases where such mechanism is useful in particular when we can describe dependency between layers using, e.g., the requires relations [11]. However, this mechanism makes the type system complex when we consider dynamic layer deactivation, which disables the layer dynamically. If a layer can introduce new methods, deactivating a layer may lead to an error if there is another layer that has been activated but depends on the deactivated layer in the sense that the latter calls a method that exists only in the former.

We might develop a type system that can check the absence of such depending layers at each deactivation point. However, it would not be very easy, especially in the open-world setting. In fact, although a number of COP calculi have been developed thus far [4, 10, 1, 11, 15], none of them combines the method introduction by layers with dynamic layer deactivation.

In this paper, we argue that on-demand activation, which implicitly activates all layers on which currently activated layer depends, addresses this problem. This mechanism is formerly known in [5, 16], but is not discussed in the setting of method introduction by layers. We show that this mechanism simplifies the type system because it can ensure that all method calls succeed without performing the checks of absent depending layers. The idea is that, instead of activating the depended layers when the depending layer becomes active, our mechanism postpones the activation of depended layers until when each method call occurs. In this sense, our mechanism is different from those proposed in [5, 16]. We formalize this idea as an extension of ContextFJ [11], a COP extension of Featherweight Java [12]. Our calculus, ContextFJ\textbackslash{}, includes layer deactivation (i.e., without), which is not included in ContextFJ, and provides dynamic semantics.
and a type system modified from ContextFJ according to the above idea. We prove its type soundness.

The rest of this paper is organized as follows. Section 2 reviews the language mechanisms for COP, in particular the method introduction by layers and dynamic layer deactivation, and argues that how on-demand activation addresses the aforementioned problem. Section 3 introduces the syntax, operational semantics, and type system of ContextFJ. Section 4 concludes this paper and discusses related work.

2. TYPE-SAFE LAYER DEACTIVATION

2.1 Reviewing COP Mechanisms

We show the motivation for combining dynamic layer deactivation and method introduction by layers by using the telecom simulation example. This example includes classes `Customer` and `Connection` to represent customers and phone calls between them, respectively.

```java
class Customer { .. }
class Connection {  
    Connection(Customer a, Customer b) { .. }
    void complete() { .. }
    void drop() { .. }
}
```

The usage of these classes is demonstrated as follows:

```java
Connection simulate() {  
    Customer tetsuo = .., tomoyuki = ..;
    Connection c = new Connection(tetsuo, tomoyuki);
    // Tetsuo calls Tomoyuki
    c.complete(); // Tomoyuki accepts
    c.drop(); // Tomoyuki hangs up
    return c;
}
```

Then, we consider two additional features, measuring the duration of phone calls, and calculating and charging the cost of them, which are dynamically composed with the system. In COP, such dynamically composed features are implemented using layers. The following `Timer` layer implements the former feature:

```java
layer Timing {  
    class Connection {  
        Timer timer;
        void complete() { proceed(); timer.start(); }
        void drop() { timer.stop(); proceed(); }
        int getTime() { return timer.getTime(); }
    }
}
```

Two partial methods, `complete` and `drop`, override the original methods when `Timing` is active (as explained below). This layer also introduces a method, `getTime`, and a field, `timer`. The `proceed()` calls delegate behavior to overridden methods.

Layers can dynamically be composed with the system by using layer activation. The following `ensure` construct [11] is provided for this purpose.

```java
ensure Timing {  
    Connection c = simulate();
    System.out.println(c.getTime());
}
```

without Timing { // free talk
 Connection c = Connection(tetsuo, naoko);
 c.complete();
 ensure Billing {
 // checks the amount of charge for
 // the past charged calls
 System.out.println(c.getAmount());
 }
 c.drop();
}
```

Figure 1: Activating Billing within the activation of Timing.

The layer activation is effective for the dynamic extent of the execution of the `ensure` block. Thus, during the execution of the `simulate` method, the `Timing` layer is active; when `complete` and `drop` are called, the corresponding partial methods defined in `Timing` that start and stop the timer respectively are called. Note that we can call `getTime`, which is introduced in `Timing`, within the `ensure` block.

The latter feature is implemented by the layer `Billing`, which is defined as follows:

```java
layer Billing requires Timing {
 class Connection {
 int amount = 0;
 int getAmount() {
 return amount;
 }
 void charge() {
 int cost = getTime(); amount += cost;
 }
 void drop() { proceed(); charge(); }
 }
}
```

This layer overrides the `drop` method and introduces two methods, `getAmount` and `charge`, which calculate the cost of phone calls and charge that cost, respectively. The cost is calculated based on the duration of phone calls. This means that this layer assumes that `Timing` is active when the partial methods defined in this layer is called. This assumption is denoted by the `requires` clause in the first line of the layer declaration.

In ContextFJ [11], to activate `Billing`, we need to activate `Timing` before, which means that `Billing` can be activated only within the `ensure` block that activates `Timing`.

```java
ensure Billing { simulate(); }
```

Within `ensure Billing`, both `Timing` and `Billing` are active, and the partial methods in `Billing` override the ones in `Timing` because `Billing` is the most recently activated layer. Thus, `drop` called in `simulate` charges the cost of the phone call on the caller.

2.2 Problem Statements

Method introduction by layers interacts badly with dynamic layer deactivation. The piece of code in Figure 1 representing a free phone call illustrates this problem. Within
without Timing, which deactivates Timing so as to make the phone call free. Billing is activated just to check the total amount of charges for the past calls. Of course, this check of charges does not require any Timing functions; the getAmount method just returns the current amount of charges that are accumulated during the past phone calls. There are two problems in this code. First, assuming that ContextFJ supports without, this code is rejected by the compiler just because the activation of Billing is not enclosed within Timing. ContextFJ forces us to activate Timing whenever we want to activate Billing. This enforcement is applied even when we use the feature of Billing that does not depend on Timing.

Second, actually ContextFJ does not support without. If layers can dynamically be deactivated, the invocation of a method introduced by the deactivated layer results in a failure when the layer depending on the deactivated layer calls that method. To statically check such an error, we need to gather information about “which layer is absent” at each deactivation point, which is not be very easy, especially in the open-world setting.

2.3 On-Demand Activation

We argue that on-demand activation addresses the aforementioned problems. It implicitly activates layers on which currently activated layer depends. To represent this mechanism, we propose the activates clause that specifies the layers that are implicitly activated when the declared layer is used.

layer Billing activates Timing {
  /* The body is the same as above */
}

We can activate Billing anywhere, regardless of the condition whether this activation is enclosed with the activation of Timing. For example, the activation of Billing within without Timing shown in Figure 1 is now allowed.

On-demand activation also simplifies programs when we require both Billing and Timing. For example, when we call the simulate method with the feature of charging, we enclose this method call just within ensure Billing instead of activating Timing explicitly:

\[
\text{ensure Billing} \{ \text{simulate;} \}
\]

The layer specified by the activates clause (Timing) becomes active just before the partial method defined in Billing is called, and is deactivated after that call. Thus, the above piece of code safely executes the feature of charging of the phone call as in the case where we explicitly enclose this piece of code within ensure Timing.

Note that the activation of Timing is not performed when Billing is activated but postponed until when each method call occurs. If the activation of Timing is performed when Billing is activated by ensure, the following code

\[
\text{ensure Billing} \{ \text{without Timing} \{ \text{c.charge;} \}; \}
\]

would result in an error because charge calls getTime, which is introduced by Timing but it is deactivated within the context of the call of charge. Thus, it is necessary to activate Timing at each method call. In this sense, our mechanism is different from those proposed in [5, 16].

We can even call the method introduced by Timing within the ensure Billing block as follows:

\[
\text{ensure Billing} \{ \text{without Timing} \{ \text{c.charge;} \}; \}
\]

This piece of code activates Billing and calls getTime introduced by Timing. This is allowed because we know that within ensure Billing, Timing will be active around each method call.

This mechanism makes the type system as simple as that of ContextFJ. It is not necessary to gather the information about the absent layers, because the on-demand activation ensures that a call of method introduced by the layer specified by activates always succeed. We further discuss the type system in Section 3.

One may wonder if on-demand activation makes it difficult to reason about the fact that the body of layer specified by without is never executed within the dynamic extent of the without block. For example, we do not want to execute any “timing” functions during the free talk (Figure 1). Actually, the same problem exists in the existing COP languages supporting without, because they also allow us to activate a layer within the without block that deactivate that layer.

To address this problem, we can apply other static analyses such as model checking to validate such a requirement.

One may also wonder if, instead of introducing activates, we could wrap the body of a partial method that requires another layer in an ensure statement to activate that layer. For example, at first, enclosing the bodies of charge and drop belonging to Billing by ensure Timing {...} seems to work. Actually, this workaround does not work in ContextFJ (as well as many of COP languages), where the behavior of proceed calls is fixed when the method is invoked and does not change by surrounding layer (de)activation statements. Thus, proceed in Billing may not proceed to partial methods in Timing.

2.3.1 Activation order

If multiple layers are active, there may be multiple partial methods with the same name and signature and thus the partial method lookup should be performed in a well-defined order. Most of COP languages take the strategy that the most recently activated layer has the highest priority.

When we consider the on-demand activation, we also need to define the order of layers that are activated implicitly. For example, the method calls within ensure Billing {...} activate Timing if it is not active before the execution of ensure block. Since the body of Billing assumes that Timing is already active, it is necessary that Billing has a higher priority than Timing. Similarly, if Timing activates another layer, that layer should have the lowest priority, followed by Timing and Billing.

We also have to consider the situation where a layer activates multiple layers as follows.

\[
\text{layer A activates L_1, \ldots, L_n \{ \ldots \}}
\]

In this case, the layers specified by the activates clause become active in the order specified by the programmer: L_1, L_2, \ldots, L_n. Furthermore, there is a set of layers that L_1 activates, another set of layers that each element of that set activates, and so on; i.e., we need to obtain a transitive closure \Lambda of the activates relation for L_1. Similarly, there
are transitive closures $\Lambda_2, \ldots, \Lambda_n$, of the $\text{activates}$ relation for $L_2, \ldots, L_n$, respectively. We need to carefully consider the order of those active layers. For example, we cannot put the layers $A_2$ after $L_1$ if $L_1$ activates some elements in $A_2$. In general, the ordering of active layers is determined as follows.

1. Insert layers specified by the $\text{activates}$ clause of each activated layer into the tail of the list of activated layers (the head of that list has the highest priority).

2. Repeat 1 for each newly activated layer until when there are no layers declaring $\text{activates}$.

This rule ensures that the layers specified by $\text{activates}$ always have lower priority than that of the layer declaring $\text{activates}$. Thus the call of method introduced by the layer declared in $\text{activates}$ never fails.

Note that we also need to remove the duplicated layers from the list of active layers. To avoid duplicate calls of the same partial method in one single method call, most COP languages disallow the same layer to be active twice at the same time. However, the above rule does not eliminate such duplicate layers. For example, if the layer $A$ activates layers $C$ and $B$, and the layer $B$ activates the layer $C$, $\text{ensure } A \{ \ldots \}$ results in the list of active layers: $C, B, C, A$. The duplicated layer $C$ should be removed before the execution of the method body starts.

Again, we need to be careful to remove such duplicated layers. Removing the layer activated by other layer may result in failure when the activating layer calls a method introduced by the activated layer. For example, if we remove $C$ at the left-hand side of $B$ in the above list of active layers, the call of partial method declared in $B$ that uses methods introduced by $C$ may result in failure. Thus, to finalize the creation of the list of active layers, we need to remove duplicate layers from that list according to the rule described as follows:

If the same layer is activated twice or more in the same list of active layers, we remove those layers other than the one that has the lowest priority from that list.

### 2.3.2 On-demand activation vs requires relation

Instead of the $\text{requires}$ construct in [11] where the requiring layer assumes that the required layers are already active, the $\text{activates}$ construct activates all the "required" layers one after another. This mechanism can eliminate unnecessary and tedious nesting of $\text{ensure}$ blocks, and easily enables type checking of layer activation for COP languages with the method introduced by layers and $\text{without}$.

We do not argue that $\text{requires}$ should be replaced with $\text{activates}$, however. The $\text{requires}$ construct would exert its usefulness on requiring the interface of layers (although the current version of $\text{requires}$ in [11] requires the implementation of the specified layers.) In $\text{requires}$, we may assume that the layers providing this interface are active but do not have to concern about the concrete implementations. Likewise, we may write the $\text{requires}$ clause like "$\text{requires LayerA or LayerB.}" The $\text{activates}$ construct is not suitable for specifying such interfaces, because the resulting activation (of the implementation) would be ambiguous. Thus, we consider that $\text{requires}$ and $\text{activates}$ are complementary.

#### 3. FORMALIZATION

We formalize the aforementioned idea as a core calculus ContextFJ\|. Due to the limited space, we only present key rules throughout this section. Omitted rules are identical to those in [11].

#### 3.1 Syntax

Let metavariables $C, D, E,$ and $F$ range over class names; $L$ over layer names; $f$ and $g$ over field names; $m$ over method names; and $x$ and $y$ over variables, which contain a special variable $\text{this}$. The abstract syntax of ContextFJ\| is shown in Figure 2. As in FJ, overlines are used to denote sequences: i.e., $\overline{f}$ stands for a possibly empty sequence $f_1, \ldots, f_n$, and similarly for $\overline{C}, \overline{x}, \overline{e}$, and so on. Layers in a sequence are separated by semicolon. The empty sequence is denoted by $\overline{e}$. We write $\overline{C\{f; i \overline{e} \} \mid \overline{L}}$ for 

$$
\text{L.m(} \overline{f} \text{)}\text{C(} \overline{L} \text{)}\text{.this.} \overline{e} \text{),}
$$

where $n$ is the length of $\overline{C}$ and $\overline{f}$, and similarly $C(f_1; \overline{f})$ as shorthand for the sequence of declarations $C_1; \ldots; C_n; f_1; \ldots; f_n; \ldots$.

An expression $e$ can be a variable, field access, method invocation, object instantiation, layer activation/deactivation, and $\text{proceed/super}$ call. It can also be special run-time expressions that are not supposed to appear in classes like $\text{new } C(\overline{f})\text{::<}\overline{L}\text{.m(} \overline{e} \text{)}\text{.m(} \overline{e} \text{).}$ The expression $\text{new } C(\overline{f})\text{::<}\overline{L}\text{.m(} \overline{e} \text{).}$, where $\overline{L}$ is assumed to be a prefix of $L$, basically means that $m$ is going to be invoked on $new C(\overline{f})$. The annotation $\text{::<}\overline{L}\text{.m(} \overline{e} \text{)}\text{.m(} \overline{e} \text{).}$ indicates where method lookup should start, and is used to give a semantics of $\text{super}$ and $\text{proceed}$ by simple substitution-based reduction.

Unlike the existing COP languages, the calculus does not provide syntax for layers. Partial methods are registered in a partial method table. Let $\mathcal{R}$ be a binary relation on layer names; $(L_1, L_2) \in \mathcal{R}$ intuitively means that layer $L_1$
filter(\(\text{fix}(L)\)) = \(L\)

\[
\frac{\text{L} \vdash \text{new C}(\mathcal{T}) \land \text{method}(\mathcal{T}) \rightarrow e' \quad \text{(R-Invk)}}
\]

\[
\text{mbody}(m, C', L'', E) = x. e \text{ in } C'' \vdash (\mathcal{E''}; \text{L''})
\]

\[
\frac{\text{class } C' \subset D(\ldots)}{\text{L} \vdash \text{new C}(\mathcal{T}) \cdot m(\mathcal{T}) \rightarrow e' \quad \text{(R-Invk)}}
\]

\[
\frac{\text{ensure}(L, L) = \text{L} \quad \text{L} \vdash e \rightarrow e'}{\text{L} \vdash \text{ensure } L e \rightarrow \text{ensure } L e' \quad \text{(R-Ensure)}}
\]

\[
\frac{\text{remove}(L, L) = \text{L} \quad \text{L} \vdash e \rightarrow e'}{\text{L} \vdash \text{without } L e \rightarrow \text{without } L e' \quad \text{(R-Without)}}
\]

Figure 3: ContextFJ\{ computation (selected)

activates \(L_2\). In the following sections, we assume a fixed dependency relation between layers and write \(L \text{ act } \Lambda\), read “layer \(L\) activates layers \(\Lambda\),” when \(\Lambda = \{L' | (L, L') \in \mathcal{R}\}\).

A ContextFJ\{ program \((CT, PT, e)\) consists of a class table \(CT\), which maps a class name to a class definition, a partial method table \(PT\), which maps a triple \(C, L, m\) of class, layer, and method names to a method definition, and an expression that corresponds to the body of the main method. In what follows, we assume that \(CT\) and \(PT\) satisfy the following sanity conditions:

1. \(CT(C) = \text{class } C \ldots \) for any \(C \in \text{dom}(CT)\).
2. \(\text{Object} \notin \text{dom}(CT)\).
3. For every class name \(C\) (except \(\text{Object}\)) appearing anywhere in \(CT\), we have \(C \in \text{dom}(CT)\).
4. There are no cycles in the transitive closure of the \(<\) clauses.
5. There are no cycles in the transitive closure of the \(\cdot\) clauses.
6. \(PT(m, C, L) = \ldots m(\ldots)\{\ldots\} \) for any \((m, C, L) \in \text{dom}(PT)\).

3.2 Operational semantics

The operational semantics is given by a reduction relation of the form \(\text{L} \vdash e \rightarrow e'\), read “expression \(e\) reduces to \(e'\) under the activated layers \(L\).” The reduction rules are shown in Figure 3. We only show the rules for method invocation, partial method invocation, \(\text{ensure}\) and \(\text{without}\). For other rules, the reader can consult the ContextFJ\{ paper [11].

The rule \(\text{R-Invk}\) is for method invocation. It initializes the cursor of the method lookup to be at the receiver’s class and the currently activated layers. Note that the activated layers \(\text{L}^*\) is updated in the hypothesis part. The auxiliary function \(\text{fix}\) is defined as follows. We write \(\text{L} \text{ act } \Lambda\) to denote \(\Lambda\) as shorthand for the set union “\(\Lambda_1 \cup \Lambda_2 \cup \cdots \cup \Lambda_n\)”, where \(\text{L} \text{ act } \Lambda_1\), \(\text{L} \text{ act } \Lambda_2\), \ldots, and \(\text{L} \text{ act } \Lambda_n\). We apply set operators (such as \(\setminus\)) to sequences by regarding the operand sequence as a set. We assume that if the elements in \(\Lambda\) are ordered as specified by the programmer when \(\text{L}\) is used as an argument to \(\text{fix}\).

\[
\text{L} \text{ act } \Lambda \vdash \text{fix}(\Lambda); L = \mathcal{E} \quad \text{L} \text{ act } \emptyset \vdash \text{fix}(\emptyset) = \mathcal{E}
\]

The auxiliary function \(\text{filter}\) removes duplication of active layers as specified in Section 2.3.1.

The rule \(\text{R-InvkP}\) deals with the case where the method body is found in layer \(L_0\) in class \(C''\). In this case, \(\text{proceed}\) in the method body is replaced with the invocation of the same method with the cursor pointing to the next layers \(L'\). The auxiliary function \(\text{mbody}\), which is defined in [11], returns the parameters and body \(x. e\) of method \(m\) in class \(C\) when the search starts from \(L\). \(L\) keeps track of the layers that are active when the search initially started. It also returns the information on where the method has been found.

The following two rules relate to layer activation and deactivation. The rule \(\text{R-Ensure}\) means that \(e\) in \(\text{ensure } L\) should be executing by activating \(L\) and all layers in transitive closure of \(\text{act}\) for \(L\). The auxiliary function \(\text{ensure}\) is defined as

\[
\begin{align*}
\text{ensure}(L, L) & = \mathcal{E} \quad \text{if } L \in \mathcal{E} \\
\text{ensure}(L, L) & = \mathcal{E}, L \quad \text{otherwise}
\end{align*}
\]

Similarly, the rule \(\text{R-Without}\) means that \(e\) in \(\text{without } L\) should be executing under the context where \(L\) is absent.

The auxiliary function \(\text{remove}(L, \mathcal{E})\) removes \(L\) from \(\mathcal{E}\) (or returns \(\mathcal{E}\) if \(L\) is not in \(\mathcal{E}\)). Once the evaluation of the body of \(\text{ensure/without}\) is finished, it returns the value of the body, which is omitted in this paper.

3.3 Type system

In this section, we give a type system of ContextFJ\{ with type-safe layer deactivation. Typing rules for classes, methods, and partial methods are identical to those of ContextFJ. Thus, we only discuss expression typing.

A type environment, denoted by \(\Gamma\), is a finite mapping from variables to class names (that are also types). We write \(\mathcal{X} : \mathcal{C}\) for a type environment \(\Gamma\) such that \(\text{dom}(\Gamma) = \{\mathcal{X}\}\) and \(\Gamma(x_i) = C_i\) for any \(i\). We use \(L\) to stand for a location, which is either \(\mathcal{E}\) (the main expression), \(\mathcal{C}. m\) (the body of method \(m\) in class \(C\) in the base layer), or \(L. C. m\) (the body of method \(m\) in class \(C\) in layer \(L\)).

The typing rules for expressions are shown in Figure 4. A type judgment for expressions is of the form \(\text{L}; \Lambda; \text{Γ} \vdash e : C\), read “expression \(e\) is given type \(C\) under context \(\Gamma\), location \(L\), and a set of statically-known activated layers \(\Lambda\).” Activated layers \(\Lambda\) are supposed to be a subset of layers actually activated when the expression is evaluated at run time. We only show the typing rules for method invocation, partial method invocation, \(\text{ensure}\) and \(\text{without}\).

The rule \(\text{T-Invk}\) is for method invocation. The auxiliary function \(\text{mbtype}\) searches the method \(m\) in \(C\) under the set of active layers \(\Lambda\), and returns a pair, written \(\mathcal{C} \rightarrow C_0, \) of argument types \(\mathcal{C}\) and a return type \(C_0\). Note that this rule ensures that all layers in transitive closure of \(\text{act}\) for \(\Lambda\) are active in the arguments for \(\text{mbtype}\). The rule \(\text{T-Proceed}
Layer activation that is implicitly performed when the layer that depends on that layer becomes active is proposed in the setting of composite layers [5, 16]. In [5], an extension of ContextL [6] with layer composition operators that are as expressive as compositions in feature diagrams [17] (such as and-composition and or-composition). At each layer activation point, it calculates the set of depended layers and activates them. If that set is ambiguous, it suspends the execution until when the user resolves this ambiguity. In [16], the similar mechanism is discussed in the setting of event-based layer transition [14]. FECJ [15] formalizes the operational semantics of composite layers, but does not provide method introduced by layers and its type system.

The dependency between layers can also be specified in some COP languages such as Subjective-C [7] and Ambience [8]. In these languages, such dependency is checked at runtime.

5. REFERENCES

[12] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core calculus for Java.


