
Generalized Layer Activation Mechanism
through Contexts and Subscribers

Tetsuo Kamina
Ritsumeikan University, Japan

kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology, Japan

aotani@is.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Abstract
Context-oriented programming (COP) languages modularize context-
dependent behaviors in multiple classes into layers. These lan-
guages have layer activation mechanisms so that the behaviors in
layers take effect on a particular unit of computation during a par-
ticular period of time. Existing COP languages have different layer
activation mechanisms, and each of them has its own advantages.
However, because these mechanisms interfere with each other in
terms of extent (time duration) and scope (a set of units of compu-
tations) of activation, it is not trivial to combine them into a single
language. We propose a generalized layer activation mechanism
based on contexts and subscribers to implement the different ac-
tivation mechanisms in existing COP languages in a single COP
language called ServalCJ. Contexts specify the extent of activation
through temporal logic terms, and subscribers specify the scope of
activation through operators provided by the language. We imple-
ment a compiler of ServalCJ, and demonstrate its expressiveness
by writing a couple of application programs.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages

Keywords Context-oriented programming; Language design and
implementation; ServalCJ

1. Introduction
A large number of software systems such as ubiquitous comput-
ing systems, adaptive user interfaces, and self-adaptive systems,
as well as the computations comprising them need the ability to
change their behavior with respect to their contexts. For example,
for some computations comprising a system, a specific state of the
system that affects those computations may be considered as a con-
text. For the system itself, a specific state of the external environ-
ment can be considered as a context. Dynamic changes in behavior
with respect to context changes result in complicated system struc-
tures and hard-to-predict behaviors with traditional programming
abstractions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODULARITY’15, March 16–19, 2015, Fort Collins, CO, USA.
Copyright c© 2015 ACM 978-1-4503-3249-1/15/03. . . $15.00.
http://dx.doi.org/10.1145/2724525.2724570

Context-oriented programming (COP) [16] addresses this diffi-
culty in that it can abstract behavior depending on the same con-
text as a module called a layer, and it provides layer activation
mechanisms so that the behavior in the layer takes effect on a par-
ticular unit of computation during a particular period of time. A
number of COP languages have been developed thus far, and they
have successfully modularized such context-dependent behavior
[5, 7, 11, 13, 18, 22, 27, 30].

However, existing COP languages have different layer activa-
tion mechanisms, making them rather use-case-specific languages.
These layer activation mechanisms were developed to specify con-
text changes such that they are triggered by internal state changes
in the program or external events, or are encoded in the application
frameworks. Programmers must select an appropriate mechanism
from them based on use cases. Furthermore, existing layer activa-
tion mechanisms are hard-wired into the language and hence do not
provide any means to extend themselves when they are combined
with other mechanisms provided by other languages. For exam-
ple, the per-control-flow activation in ContextJ [5] and JCop [7] is
strongly coupled with the current execution thread. Similarly, the
implicit activation mechanism in PyContext [30] cannot represent
per-instance layer activation.

This issue is exacerbated by the fact that different use cases may
coexist in the same application. Thus, there is a natural requirement
to generalize existing layer activation mechanisms into one single
mechanism.

This paper aims to propose a generalized model of layer acti-
vation mechanisms that covers all the existing COP languages, and
to develop a COP language based on that model.1 To do this, we
need to solve two problems. First, we need to provide a general
model to specify a context and the units of computation to which it
is applied. In general, a context can be defined as “everything that
exists outside the particular unit of computation on which we are
focused.” However, this definition is too vague when discussing a
model on which a particular COP language is based. Second, when
developing a generalized COP language, we need to unify existing
COP mechanisms, which may interfere with each other. Thus, we
need to resolve such interference in order to meet the programmer’s
expectations.

We tackle these problems by proposing a model based on two
concepts: contexts, which specify the extent (time duration) of layer
activation, and subscribers, which specify the scope (a set of units
of computations) of activation. These concepts reveal that the exist-
ing layer activation mechanisms can be uniformly explained using
a single model. Furthermore, we define the dynamic semantics of

1 This paper is an extended version of our previous work [20] that only
presented an idea of the language design. This paper proposes a model of a
generalized activation mechanism, simplifies the language design, presents
its implementation, and evaluates its performance.

layer activation in the model that meets the programmer’s expecta-
tions when different existing activation mechanisms coexist in the
same application. In this model, the interferences between existing
COP mechanisms are resolved by unifying per-instance and global
activations, as well as by deciding the order of active layers that are
activated synchronously as well as asynchronously.

Based on this model, we designed a language called ServalCJ.
A context in ServalCJ is defined as a term of simple temporal logic
with a call stack, which can represent the extent of layer activation
specified by all the existing layer activation mechanisms (as far as
we know). Each context can also be parametrized, which enables
us to easily specify the behavioral changes reactively triggered
by state changes in the system. A subscriber in ServalCJ is the
object on which we focus when considering the context. A set
of subscribers can also be global (i.e., all objects are implicitly
subscribed to a specific set of contexts when they are created). A
context group in ServalCJ specifies a combination of contexts and
subscribers.

The effectiveness of ServalCJ is demonstrated by writing a cou-
ple of application programs. The first example is a context-aware
program editor, where each construct in ServalCJ is explained. We
also present the case study of a maze-solving robot simulator to
study the usefulness of ServalCJ. This simulator has different layer
activation scenarios; some of them are supported by existing lan-
guages, but others are not. We show that these scenarios are uni-
formly represented by ServalCJ.

To study ServalCJ’s feasibility, we implemented a ServalCJ
compiler. This compiler translates ServalCJ programs into standard
Java bytecode, and thus, they can be run on standard Java virtual
machines. We evaluated the performance of method dispatch in
ServalCJ by comparing the time of method calls with and without
active layers in ServalCJ against that in plain Java. The results show
that our compiler does not impose a significant overhead on the
running application.

The rest of this paper is organized as follows. In Section 2, we
introduce an example of a context-aware program editor and review
existing COP mechanisms. In Section 3, we argue the necessity of
a generalized activation mechanism and explain the challenges of
achieving it. In Section 4, we present a model of a unified activa-
tion mechanism, and discuss the appropriate dynamic semantics of
the layer activation. In Section 5, ServalCJ, an instantiation of the
model discussed in Section 4, is proposed. In Section 6, we present
a case study of a maze-solving robot simulator, compare COP with
other implementation techniques, and compare ServalCJ with ex-
isting COP languages. In Section 7, we discuss the implementation
of the ServalCJ compiler and evaluate its performance. Section 8
discusses related work and, finally, Section 9 concludes this paper.

2. Existing COP Mechanisms
In this section, we use an example to explain the commonalities
and differences between the existing COP languages.

2.1 Example
CJEdit, first implemented by Appeltauer [6], is a program editor
that enhances the readability of programs by providing different
text formatting techniques for code and comments. The code part
is rendered in a typewriter format with syntax highlighting and the
comment part is rendered in a rich text format (RTF) that sup-
ports multiple fonts, text sizes, decorations, and alignments. Fur-
thermore, CJEdit provides different GUI components depending on
which part of the code or comments the programmer is editing. For
example, when the programmer is editing code, CJEdit displays an
outline view of the program so that he/she can easily determine
the structure of the program; when the programmer is editing com-

Figure 1. Relationship between layers and classes

ments, it displays tools and menus for changing text fonts, sizes,
and so on.

In this paper, we extend this program editor with a number
of features. First, the program editor is multi-tabbed so that the
programmer can open a number of files simultaneously. A tab
displaying an unsaved file shows a mark indicating that the file
has not been saved. If the programmer attempts to close a tab that
displays an unsaved file, a dialog stating that the programmer is
attempting to close an unsaved file is displayed. When the editor
is being used online, the files are stored on a repository over the
network; when no networks are available, an icon is displayed
indicating that the system is operating offline, and then the files
are stored on the local disk. Furthermore, we added the find-name
function to this program editor; we may search for the names of
variables, methods, and classes throughout the entire source code.
During the search, the the mouse cursor icon is changed and a new
widget that displays the status bar is added.

2.2 Overview of COP
In the above example, there are a number of behavioral variations
that depend on situations, such as the position of the cursor, ren-
dering of text regions, status of the opened file (saved or unsaved),
and availability of the networks. In the following sections, we refer
to such situations as contexts. A COP language provides a modu-
larization mechanism for implementing related context-dependent
behavior into one single layer and a layer activation mechanism for
dynamically composing and decomposing layers with the applica-
tion.

2.2.1 Layers
Figure 1 shows how the related context-dependent behavior is mod-
ularized into a layer using a class diagram. The diagram uses two
layers, EditingCode and EditingComments, to represent vari-
ations of behavior that are executable only when the cursor is
on code or comments, respectively. A layer in COP contains a
set of partial methods. In Figure 1, we represent a set of partial
methods as a class stereotyped as <<partial class>>. A par-
tial method is executable only when the enclosing layer is active,
i.e., the layer is composed with the application and changes the
behavior of the class to which it is applied (Figure 1). For ex-
ample, when the EditingCode layer is active, at the TextEdi-
tor.showWidgets() call, the showWidgets partial method de-
clared in EditingCode is called instead of the original method. In
fact, a partial method runs before or after the execution of the orig-
inal method when it has a before or after modifier, respectively.
If a partial method has no such modifiers, it is called an around
partial method and runs instead of the original method. Within an
around partial method, we can invoke a special proceed method
to execute the original method. As discussed in Sections 2.3 and
4.2, multiple layers can be active simultaneously, and in that case,

when proceed is invoked, the partial method in the layer with a
lower priority is executed.

2.2.2 Layer Activation
As mentioned above, a layer can dynamically be composed and de-
composed with the running application. These processes are called
layer activation and layer deactivation, respectively. Each COP
language provides different linguistic mechanisms to perform this
activation and deactivation, which are discussed in the following
section.

2.3 Different Mechanisms for Layer Activation
Whereas, for layers, most COP languages provide similar mecha-
nisms, for layer activation, existing COP languages provide a vari-
ety of different mechanisms. Each mechanism differs according to
its time period, trigger, and the computations affected by the layer
activation.

Per-control-flow activation. One method to activate layers is to
use a with-block that activates specified layers only within the
dynamic scope of the block [5, 7, 11]. For example, we can activate
the EditingComments layer, which defines behavioral variations
that are executable only when the user is editing comments, using
the with-block:

with (EditingComments) { showWidgets(); }

The trigger of the layer activation is the computation itself, and
its effect continues until the computation leaves the control flow
specified by the with-block. We note that each with-block is
implicitly coupled with the currently executing thread and only that
thread is affected by it.

Another feature of the per-control-flow activation is that, in this
model, a programmer likely to be aware of the activation order
of layers. For example, we can write the following nested with-
blocks:

with(EditingComments) {
with(RenderingCode) { format(..); }

}

This code activates both the EditingComments and Rendering-
Code layers, and the inner with-block supersedes the outer one.
Thus, if these layers define the same partial methods, the ones de-
fined in RenderingCode have priority: the before partial meth-
ods in RenderingCode are executed first, after partial methods
in RenderingCode are executed last, and around partial methods
in RenderingCode override those defined in other layers.

Imperative activation. Some COP languages provide imperative
activation that uses imperative operations to activate behavior that
indefinitely affects the rest of the execution [13, 14]. For example,
in Subjective-C [13], the activation and deactivation of a layer is
written as

[CONTEXT activateContextWithName: @"EditingCode"];
[CONTEXT deactivateContextWithName:

@"EditingComments"];

The first line activates the EditingCode layer, and the second line
deactivates the EditingComments layer. The activation continues
indefinitely, or until another imperative operation that explicitly de-
activates the layer is executed. In existing COP languages that sup-
port this mechanism, the effect of the activation is global; i.e., the
entire application is affected by the activation. In general, however,
we may consider another variation such that the effect is restricted
to within the execution thread.

Event-based activation. In this model, the trigger of layer acti-
vation is an event, and the activation continues until another event
that deactivates the layer is generated. Unlike an activation with an
imperative model, this activation can be per-instance and the event
receivers may differ from the event senders.

EventCJ [18] supports this model. In EventCJ, an event is
declaratively defined using AspectJ-like pointcut language:

event MoveOnCode(TextEditor e)
:after call(void TextEditor.onCsrPosChanged())
&& target(e) && if(e.isCursorOnCode())

:sendTo(e);

This event definition specifies that the MoveOnCode event is gen-
erated immediately after the onCsrPosChanged method call de-
clared in the TextEditor class and only if the isCursorOnCode
call on the receiver object of the former call returns true. The
sendTo clause specifies that this event is sent to only e, the re-
ceiver of the onCsrPosChanged call as specified by the target
pointcut. In other words, EventCJ supports per-instance layer acti-
vation. If the sendTo clause is omitted, the event is sent to the entire
application. Thus, EventCJ also supports global layer activation.

The layer switching upon event is declaratively specified using
the layer transition rule:

transition MoveOnCode:
EditingComments ? EditingComments -> EditingCode
| -> EditingCode;

This rule is interpreted as follows. When MoveOnCode is gener-
ated, if the EditingComments layer is active, it is deactivated and
EditingCode is activated; otherwise, no layers are deactivated and
EditingCode is activated.

One problem of per-instance activation in EventCJ is that it can
specify only instances that are accessible from the join-point where
the event is generated. If these instances cannot directly be obtained
from the join-point, we either need to specify a complex chain of
method calls or we need to provide a workaround to access the
receiver instances in the base program.

Implicit activation. In contrast to the above activation mecha-
nisms, where variations of context-dependent behavior are explic-
itly activated, in the implicit activation model, the trigger and time
period of an activation are implicitly specified by a condition. This
mechanism is supported by PyContext [30], where the activation
is specified by implementing the active method, which is implic-
itly evaluated when the layer activation is tested. We show this in
Java-like syntax as:

class TextEditor {
.. boolean isCursorOnCode() { .. } ..
layer EditingCode {
boolean active() {
return isCursorOnCode(); } ..

}
}

This code fragment illustrates the TextEditor class and Edit-
ingCode layer in the layer-in-class manner [4]. The EditingCode
layer implements the active method that is evaluated whenever,
for example, a method that consists of a set of partial methods is
called, and, if active returns true (i.e., if the isCursorOnCode
call returns true) the EditingCode layer becomes active.

In PyContext, only the currently executing thread is affected by
the implicit activation, as in the per-control-flow activation.

3. Problem Statements
In this section, we present the expressibility problem in existing
COP mechanisms as well as the interference problem that exists
between them.

3.1 Expressibility Problem
When we choose one COP language to implement context-dependent
behavior, we sometimes encounter difficulties, because each mech-
anism fits only specific cases of behavioral changes of the appli-
cation. For example, in the CJEdit example, if we choose the per-
control-flow model, it becomes difficult to implement event-driven
behavioral changes that are triggered, for example, by a change
in the position of the cursor. On the other hand, if we choose the
event-based model, it becomes difficult to implement the find-name
function, which recursively searches the name in the entire source
code, because the state transition model of the event-based activa-
tion cannot represent the call stack. Furthermore, the set of entities
affected by the layer activation also varies within the application.
For example, the arrangement of widgets and tools in the toolbar
and the behavior depending on the availability of the network are
applied to the entire application, while the status of the opened file
may vary for each tab.

We face similar problems in other context-aware applications.
For example, in a multi-tabbed Twitter client, each tab displays the
user’s timeline, which is updated after a followed person posts a
tweet. Each tab behaves differently with respect to contexts, such
as tab focus (focused or unfocused) and the contents displayed on
the timeline (all tweets from all followed accounts, tweets only
from a specific account, or all tweets that mach a search keyword).
The trigger of a context change can be not only an event, such as
clicking on a tab, but also implicitly defined through the content
of the timeline. The effect of behavior changes may also vary.
Each tab can dynamically change its behavior, and its effect is
restricted only to the instances contained within the tab. We may
also consider other cases, such as behavior changes with respect
to the battery status that may affect the entire application. Another
example is a pedestrian navigation system that changes its behavior
with respect to changes in situation, such as from an indoor to an
outdoor environment, which is triggered by an event. In addition, it
can change is behavior based on changes in computation, such as
“during map download,” which is activated only within the control-
flow.

We also argue that some COP mechanisms provide incomplete
abstractions. For example, EventCJ supports per-instance activa-
tion, where we can specify only instances accessible from the join-
point where the event was generated. Similarly, events in event-
based activation in EventCJ are only join-points, and thus EventCJ
does not provide any way to abstract the event sender.

3.2 Interference Problem
Some COP languages support multiple activation mechanisms and
thus support some combination of different behavioral change use
cases in the application. For example, EventCJ supports global
activation as well as per-instance activation so that the effect of the
behavioral change is exerted on the entire application. Similarly,
ContextJS [22] supports global activation as well as per-control-
flow activation as pre-defined activation mechanisms. Although
these languages enable us to uniformly represent different cases of
behavioral changes to some extent, the activations that they support
are still limited. For example, neither language supports implicit
activations.

A more serious problem with the existing approaches is that
an activation mechanism sometimes interferes with an activation
triggered by another mechanism. There are two interference prob-

lems: between global and per-instance activations and between syn-
chronous and asynchronous activations.

3.2.1 Global-per-Instance Interference
We explain the former interference problem using an example of
a mobile application written in EventCJ that uses both global and
per-instance activation mechanisms. Suppose that the layer Bat-
teryLow, which implements the “energy-saving mode” behavior
that uses less precise computation and fewer resources, is globally
active because the battery of the executing machine is running out.
Suppose also that activation on some instances is controlled in a
per-instance manner to enable the user to control the behavioral
changes on these instances manually. For example, the user may
require some objects to produce precise computation results dur-
ing just a few short periods of time even when the battery is on the
verge of running out.

In fact, EventCJ does not support such a situation, because
a global activation always cancels a per-instance deactivation. In
EventCJ, the active layers activated by global activation and those
activated by per-instance activation are stored in different arrays,
and the partial method dispatch uses both arrays. Thus, the layer
stored in the global activation array is effective even when it is re-
moved from the per-instance activation array. A similar problem
also occurs in ContextJS. Although this may be an implementa-
tion issue, this kind of interference would be likely to arise if the
different linguistic mechanisms were “piled up” into one single lan-
guage.

3.2.2 Synchronous-Asynchronous Interference
Another type of interference occurs when we unify activation
mechanisms from different languages. In the per-control-flow
model, the order of active layers is explicit for the programmer:
the inner-most layer always precedes the others. Although in other
models, such an order is not explicit for the programmer, the order
of active layers is also well-defined to make the execution result
universal. For example, in EventCJ, the most recently activated
layer always precedes the others [3]. This semantics of EventCJ
conflicts with that of the per-control-flow model in ContextJ. For
example, in the following with-block, the programmer expects
the text block stored in textBlock to be formatted with syntax
highlighting.

SyntaxHighlighter sh = ..
with(EditingCode) {
with(RenderingCode) {
// forcing text to be formatted with
// syntax highlighting
sh.format(text); } }

However, the event-based layer activation may not meet this ex-
pectation, because an event activating EditingComments may be
generated after the activation of EditingCode and before the call
of format, causing the syntax highlighting to be switched off.

The source of this conflict is the mixing of the synchronous
layer activation, where the trigger is the computation itself, and
the asynchronous layer activation, where the trigger is the exter-
nal event. If the layer activation is synchronous with the execution
of the application described in the base program, the programmer is
aware of the execution point when the specified layer becomes ac-
tive. On the other hand, we cannot foresee when the layer activation
that is asynchronously triggered by events will occur.

4. Model of Generalized Layer Activation
To address the aforementioned problems, we propose a generalized
model of the existing COP mechanisms and provide the semantics
of layer activation to uniformly define the activation order.

Figure 2. Unified model of existing COP mechanisms

4.1 Contexts and Subscribers
To develop the generalized activation model, we coordinate the dif-
ferent layer activation mechanisms in the existing COP languages
using the following two concepts: context, which specifies the time
and duration of the layer activation and subscribers, which specifies
which computations the activation affects. A number of layer acti-
vations represented by contexts affect a specific set of subscribers.
We combine a set of contexts with a set of subscribers and call this
combination a context group. When an object subscribes to a con-
text group, method dispatch on the object includes the partial meth-
ods in the active layers with respect to the context group. In other
words, when we activate a layer with respect to a context group,
all the objects subscribing to that group will start searching par-
tial methods in that layer upon method dispatch. For example, the
contexts specifying from when to when the cursor is on code and
comments, respectively, affect the entire application with respect to
the behavior of the toolbar and menubar, and thus they are grouped
into one single context group. The context specifying when the file
opened in a tab is unsaved affects only a limited subset of instances
in the application, and thus they are grouped into another context
group.

We illustrate this model in Figure 2 using a UML instance
diagram. In this diagram, the instance cjedit of the context
group CJEditGroup specifies contexts for activating Editing-
Code, which implements the code-editing functions, and Edit-
ingComments, which implements the comment-editing functions.
All instances in the entire application subscribe to this context
group. These contexts are parametrized; in cjedit, this parameter
is bound to editor, an instance of TextEditor. When the state of
editor changes, the layer activation on all the subscribed instances
also changes. Similarly, the instance tabGroup1 of the TabGroup
context group specifies the contexts for activating FileUnsaved,
which implements the behavior relating to unsaved files. Only an
instance tab1 of Tab subscribes to that context group. The context
specified in TabGroup is also parametrized, and this parameter is
bound to f1, an instance of FileHandler.

We further illustrate the dynamic semantics of this model us-
ing the UML sequence diagram in Figure 3. When the instance
f1 of FileHandler changes its state according to outside oper-
ations such as the “save” and “edit” commands, it also notifies
these changes to the instance tabGroup1 of the context group Tab-
Group, which refers to f1. If no instances subscribe to tagGroup1,
these notifications do not trigger any layer activation. After an in-
stance of Tab, namely tab1, subscribes to tabGroup1, it imme-
diately activates FileUnsaved on tab1 if f1 is not saved after
editing. After this subscription, the notifications from f1 triggered

Figure 3. Dynamic subscription and layer activation

Table 1. Existing COP languages categorized in our model
Global Thread Instance

Control-flow ContextJ, Context-
PyContext Erlang[27]

Imperative Subjective-C ContextErlang
Event-based EventCJ EventCJ
Implicit Flute[9] PyContext

by the state changes on f1 trigger the activation and deactivation of
FileUnsaved on tab1.

We show that each existing COP language falls into one spe-
cific case of this model, as illustrated in Table 1. In this table,
the methods that specify contexts are categorized into four vari-
ants, per-control-flow, imperative, event-based, and implicit, corre-
sponding to each layer activation model discussed in Section 2.3.
In this table, the methods that specify subscribers are also catego-
rized into three variants: global (specifying all instances in the ap-
plication), thread (specifying the currently executing thread), and
instance (specifying a limited set of instances). Each cell repre-
sents the COP languages that support the specific combination of
these methods. In addition to the languages discussed in the previ-
ous section, we also list the COP languages mentioned in Section 9.
For example, EventCJ supports event-based specifications of con-
texts that are applicable both to all instances in the application and
a limited set of instances. Some cells indicate that no existing COP
languages support such a combination. For example, the implicit
activation for a limited set of instances is not supported by any ex-
isting COP languages.

4.2 Model of Activation Order
The synchronous-asynchronous interference explained in Section
3.2 implies that we need to separately manage the synchronous and
asynchronous layer activation. To meet the programmer’s expecta-
tion, in our model the synchronous layer activation always precedes
the asynchronous one. More precisely, the semantics of layer acti-
vation in our model is defined as follows.

First, we define synchronous and asynchronous layer activation:

• Layer activation is synchronous if and only if its context is
specified as a control-flow and it is statically known that its
subscribers contain the thread that will execute the control-flow.
For example, the global and the per-thread activation with the
per-control-flow model are considered synchronous.

• Layer activation that is not synchronous is asynchronous.

We then define the order of active layers as follows.2 Let L̄S =
L1, · · · , Ln be a sequence of layers that are synchronously acti-
vated, and let L̄A = L′

1, · · · , L′
n be a sequence of layers that are

asynchronously activated. We assume that there are no duplicate
layers in a sequence of activated layers. We define the function act-
Sync that takes a concatenation of sequences of activated layers
L̄A; L̄S and a layer L and returns a new concatenation of sequences
of activated layers:

actSync(L̄A; L̄S , L) = (L̄A \ L); (L̄S \ L)L

This function models the synchronous layer activation. If L is
not contained in both L̄A and L̄S , it is added at the head of the
sequence L̄S , indicating that L has the highest priority. Otherwise,
L is removed from the original position and moved to the head of
the sequence L̄S .

Similarly, the asynchronous layer activation is modeled by the
actAsync function:

actAsync(L̄A; L̄S , L) =

(L̄A \ L)L; L̄S if L 6∈ L̄S
L̄A; L̄S if L ∈ L̄S

If L is not contained in both L̄A and L̄S , it is added at the head of the
sequence L̄A, indicating that L has a higher priority than all layers
in L̄A, but a lower priority than all layers in L̄S . If L is contained in
L̄A, it is moved to the head of L̄A. If L is contained in L̄S , the order
of active layers does not change, because this case indicates that L
already been active with a higher priority than the layers in L̄A.

We define the function deact to model the layer deactivation:

deact(L̄A; L̄S , L) = (L̄A \ L); (L̄S \ L)

The above functions are used when we describe the operational
semantics shown in Appendix A. For example, actSync is always
used when the with-block is applied, and actAsync is always used
when the event-based activation is applied. The order of active lay-
ers L̄A; L̄S is used when dispatching a partial method. The search
for the partial method starts from the right-most layer of L̄S and
proceeds to to the left-most layer of L̄A. If no partial methods are
found, the original method is dispatched.

To address the global-per-instance interference, every activation
is performed in a per-instance manner. This means that, when a
layer becomes globally active, that layer is added to the active
layers for all the instances that have that layer. This mechanism
ensures that a global activation does not interfere with per-instance
ones, but at the cost of activating the layer for all these instances.

For example, in the piece of code in Section 3.2, the layers acti-
vated by with-blocks are pushed to list L̄S , and the layer activated
by an event is pushed to list L̄A. Thus, the resulting order of the
active layers becomes

EditingComments;EditingCode,RenderingCode

Thus, the priority of the EditingCode layer is higher than that of
the EditingComments layer, ensuring that the syntax highlighting
is always applied when the sh.format(textBlock) method call
is executed.

5. COP Language with Contexts and Subscribers
We designed the COP language ServalCJ to be an instance of the
generalized activation model discussed in Section 4. It provides the
following linguistic constructs: activate declaration, which speci-
fies when the layer is active in terms of contexts that identify the

2 As illustrated in Section 3.2.2, we believe that this ordering is preferable
in many cases. However, we also acknowledge that it is preferable for pro-
grammers to configure the ordering policy in particular cases. This config-
uration mechanism is reserved for future work. The operational semantics
discussed in Appendix A does not change if this ordering is changed.

1 contextgroup EachTabGroup(FileHandler f) {
2 subscriberTypes: Pane, FileHandler;
3 activate FileUnsaved if(!f.isSaved());
4 }

Figure 4. Context group declaration for CJEdit specifying the
layer activation for each tab

extent of layer activation, and context group declaration, which
modularizes these declarations and specifies the set of subscribers
where they are applied. In ServalCJ, a subscriber is the object on
which we focus when considering the context.

ServalCJ is a layer-based COP language that provides a modu-
larization mechanism for context-dependent behavior using layers.
ServalCJ supports the class-in-layer syntax of layer declarations as
well as the layer-in-class syntax [4], where we can define a set of
partial methods and activate/deactivate blocks. This paper fo-
cuses on how layer activation is specified by ServalCJ; how layers
are declared in ServalCJ is outside the scope of this paper.

We formalize the dynamic semantics of ServalCJ in Appendix
A. While the formal model provides semantics based on primitive
linguistic constructs, ServalCJ provides a more convenient syntax.

5.1 Context Group Declarations
In ServalCJ, a context group is declared using a context group
declaration. A context group groups related specifications of layer
activation into one module, and can be instantiated. Each instance
of context group contains subscribers, that is, a set of instances
where the specified layer activation is applied. A context group
can also declare parameters that can be referred to from the layer
activation specification.

Figure 4 shows an example of layer activation for CJEdit that
specifies the layer activation for each tab. Line 1 specifies the
name of the context group and its parameter. We can replace this
parameter with an argument when this context group is instantiated.
A context group is instantiated using the standard new expression
(we can also declaratively specify when the instance of context
group is created using the AspectJ pointcut and advice mechanism.
For simplicity, we do not use this mechanism in this paper):

FileHandler file = new FileHandler(..);
EachTabGroup etg = new EachTabGroup(file);
etg.subscribe(file);
Pane pane = new Pane();
etg.subscribe(pane);

An object can dynamically subscribe to the instance of a context
group, becoming one of the subscribers of that context group. This
subscription is performed by calling the subscribe method on the
instance of context group. For example, in the above code fragment,
instances of FileHandler and Pane subscribe to etg, which is
an instance of EachTabGroup. The current version of ServalCJ
requires that each context group declares the types of instances
that can subscribe to it, as specified by line 2 of Figure 4. We can
also declaratively specify which instance subscribes to this context
group when using the AspectJ pointcut and advice mechanism.
This flexible subscription mechanism addresses the problem of per-
instance activation in EventCJ, where any receivers of an event
must be accessible from the specified join-point.

Line 3 of Figure 4 declares when the layer FileUnsaved is
active, which occurs whenever the isSaved method call on f
results in false. We discuss the specification of layer activation
further in Section 5.2.

1 global contextgroup CJEditGroup(TextEditor e) {
2 activate EditingCode if(e.isCursorOnCode());
3 activate EditingComments
4 if(e.isCursorOnComments());
5 }

Figure 5. Example of a global context group

Global context groups. In the aforementioned example, we ex-
plicitly specified which instances subscribe to the context group.
In ServalCJ, we can also declare a context group that affects all
instances in the application, called a global context group.

Figure 5 shows an example of a global context group declara-
tion. To make the context group global, we need to provide the
modifier global. A global context group does not contain any
specifications for subscribers. Instead, every object is implicitly
considered to have subscribed to the global context group. As for
other context groups, we can create an instance of the global con-
text group; it becomes effective only after the instance creation.
The context group CJEditGroup in Figure 5 declares two layer ac-
tivation rules: (1) the layer EditingCode is active whenever the
isCursorOnCode method call on editor results in true and (2)
the layer EditingComments is active whenever the isCursorOn-
Comments method call on editor results in true.

5.2 Declaring Layer Activation
In ServalCJ, we define when the layer is active by specifying the
name of the layer and a Boolean term, meaning that, when this term
is true, the layer is active. This specification is performed using an
activate declaration, which has the syntax

activate LayerName Context ;

This declaration starts with the keyword activate followed by the
name of the layer. We next specify a context, which has a boolean
type in Java.

In particular, in ServalCJ, a context is declared using a tem-
poral logic term with call stacks. This term consists of if expres-
sions that specify the condition under which the context is active,
from-to expressions that specify the from-event and to-event that
activate and deactivate the context, respectively, cflow expressions
that specify the control flows where that context is active, named
contexts that are contexts identified by their names, and composite
contexts that are contexts combined by using logical-OR, logical-
AND, and NOT expressions. We further discuss each of these in
the following sections.

Conditional expressions. The first way to specify layer activa-
tion is to use a conditional (if) expression that corresponds to the
implicit activation discussed in Section 2.3. To support implicit ac-
tivation, ServalCJ provides the if expressions that specify the con-
dition under which the context is active. We have already provided
an example in Figure 4, which contains the activate declaration

activate FileUnsaved if(!f.isSaved());

Within the if expressions, we can use any Boolean-type Java ex-
pressions. We note that ServalCJ can represent implicit activation
that is applied per-instance. In Figure 4, we can create a differ-
ent instance of EachTabGroup for each tab that contains distinct
instances of Pane and FileHandler. Each instance of EachTab-
Group refers to a distinct instance of FileHandler through the
variable f, which is referred to from the if expression. Thus, we
can control the activation of layers for each tab independently.

From-to expressions. A from-to expression specifies the events
that activate and deactivate the context. This expression makes it

1 class TextEditor {
2 event MoveOnCode;
3 event MoveOnComments;
4 void onCursorPositionChanged() {
5 if (isCursorOnCode()) { MoveOnCode(); }
6 else if(isCursorOnComments()) {
7 MoveOnComments(); }
8 }
9 }

Figure 6. Publishing events in ServalCJ

possible to represent event-based layer activation. An event in Ser-
valCJ is declared as a member of a class and fired like a method
invocation. For example, in Figure 6, two events, MoveOnCode and
MoveOnComments, are declared in the class TextEditor. These
events are fired during the execution of onCursorPosition-
Changed and if the isCursorOnCode (isCursorOnComments,
resp.) call results in true. We can also declare an event using the
AspectJ pointcut language.

Using these events, we can specify when the EditingCode
layer becomes active and inactive by

activate EditingCode
from MoveOnCode to MoveOnComments;

This declaration specifies a from-event that activates EditingCode
and a to-event that deactivates the layer. Here, the EditingCode
layer becomes active whenever the event MoveOnCode is fired and
becomes inactive whenever the event MoveOnComments is fired.

As in the case of implicit activation, we can specify the sender
of the event by referring to the parameter of the enclosing context
group:

contextgroup CJEditGroup(TextEditor editor) {
activate EditingCode
from editor.MoveOnCode
to editor.MoveOnComments;

}

This activate declaration specifies that EditingCode becomes ac-
tive when MoveOnCode is fired and inactive when MoveOnCom-
ments is fired only when these events are fired by editor. It should
be noted that we cannot specify an event sender in EventCJ.

Cflow expressions. A cflow expression specifies a control-flow
under which the layer is active. This expression makes it possible
to represent the per-control-flow layer activation. An example of a
cflow expression is

activate SearchingName
in cflow(call(void FileHandler.find(*)));

This context declaration specifies that the SearchingName layer is
active only under the control flow specified by the cflow expres-
sion, which is the entire execution of the find method declared
in the FileHandler class. It should be noted that cflow expres-
sions are not a particular case of from-to expressions, because we
cannot represent a control-flow using a from-to expression when
the control-flow under the specified method call contains the same
method call as specified in the cflow expression.

Per-thread activation. The with-block-based COP languages,
such as ContextJ, activate layers in a per-thread manner. We note
that most useful cases of ContextJ are easily encoded by the com-
bination of a global context group and the cflow activation intro-
duced in Section 5.2. To restrict the effect of layer activation to
the currently executing thread, we may introduce another modifier,

perthread, that states that the set of subscribers consists of all
subscribers when they are accessed from the thread executing the
control flow:

global contextgroup AContextGroup(..) {
perthread activate ALayer in cflow(..);

}

The perthread modifier does not produce any effects when it is
used with other expressions.

Named contexts. The same contexts are sometimes used in the
different activate declarations. To enhance the reuse of contexts,
ServalCJ provides a named context, which is a mechanism that
provides a name to a context to make it possible to refer to it
from several activate declarations. A named context in ServalCJ
is declared using the syntax

context ContextName is Context ;

This declaration starts with the keyword context followed by the
name and specification of the context. The syntax of the context is
the same as that specified in activate declarations. The name of the
context is used in activate declarations, and it should be enclosed
within the when clause. For example, the context group declaration

contextgroup Highlighter(SyntaxHighlighter sh) {
context RenderCode is
if(sh.getBlock().isCodeBlock());

activate Highlighting when RenderCode;
}

is identical to the declaration

contextgroup Highlighter(SyntaxHighlighter sh) {
activate Highlighting
if(sh.getBlock().isCodeBlock());

}

ServalCJ also provides a way to compose contexts to represent
a more complex layer activation. This composition was originally
known as composite layers [19]. To compose contexts, we can use
the logical operators || (logical-OR), && (logical-AND), and !
(NOT).

6. Case Study
The program editor example described above shows how different
COP mechanisms coexist in the same application, justifying our
design of a generalized layer activation mechanism in ServalCJ.

To provide more evidence illustrating such situation, we con-
ducted another case study to implement a maze-solving simula-
tor.3 This application simulates how a line-tracing robot solves a
maze. The following code skeleton illustrates how the robot per-
forms maze-solving.4

void run() {
while (!isGoal()) {
followSegment();
printPath();
turn();
simplify();

}
}

3 The source code of this simulator is available at https://github.com/
ServalCJ/mazesimulator.git.
4 This case study is inspired by the real maze-solving Pololu 3pi
Robot (http://www.pololu.com/product/975). The simulator’s be-
havior follows the sample program provided by the 3pi Robot distribution.

(a) Simulator solving a maze.
The red lines represent the
traced path.

(b) Simulator in debug mode.
The green lines overwrite the
red lines and represent the op-
timized path. The textbox dis-
plays the text-based notation
of the optimized path.

Figure 7. The maze-solving simulator. The lines indicate paths
within the maze. The black circle represents the goal.

The followSegment method performs line-tracing until the robot
reaches an intersection, a corner, or a dead-end (in the following,
we call them intersections for simplicity). The robot detects an in-
tersection using sensors. The printPath method prints some de-
bugging information on the LCD attached to the robot. The turn
method selects one path from the outgoing paths at an intersection
by applying a specific rule (e.g., the left-hand rule selects the left-
most path), and controls the motors to make the robot turn accord-
ingly. The simplify method calculates the (possibly) optimized
path from the starting point to the current intersection by eliminat-
ing the dead-ends. The robot repeats these behaviors until it reaches
the goal. After solving the maze, the robot can run the optimized
path from the starting point to the goal by simply following the path
calculated by simplify.

If the maze contains loops, the robot also needs to remember all
the visited intersections and/or segments (by a segment, we mean a
path from one intersection to one of the neighbors) to detect such
loops. There are several algorithms to solve mazes; some can only
solve mazes that contain no loops, while others can solve more
general mazes with loops.

The simulator emulates the behavior of a maze-solving robot.
In this simulator, the maze is modeled as a graph where each node
representing an intersection provides its coordinates to indicate its
position. The instance robot of Robot emulates maze-solving on
this model, e.g., the followSegment method simply updates the
current position of the robot according to the destination of the
edge that models the segment. The simulator provides three algo-
rithms to solve the maze: the left-hand rule, right-hand rule, and
Trémaux’s algorithm.5 The selection of these algorithms changes
the behavior of turn and possibly that of simplify.

For the user, this simulator provides a number of functionalities:
editing a maze, simulating how the robot solves the maze, and sim-
ulating how the robot follows the optimized path after solving the
maze. These functionalities are exclusive; i.e., when we are editing
a maze, we cannot run any simulations for solving the maze or fol-
lowing the optimized path. These functionalities are switched when
the user finishes editing the maze (or loads a pre-edited maze) and
when the robot finishes solving the maze. The simulator provides
GUI tools such as a menubar and menu buttons that are automat-
ically switched when the functionalities are switched. During the
maze-solving, the visited intersections and segments are colored to
visualize the traced path (Figure 7(a)). Furthermore, while the robot
is solving the maze, the user can select a debug mode that displays

5 Among them, only the last algorithm can solve mazes with loops.

layer SolvingMaze {
class Robot {
public void run() {

/* maze solving behavior */
}

}
class View {
public void setMenuBar() { .. }
public void setButtons() { .. }

}
}
layer RunningMaze {

class Robot {
public void run() {

/* running the optimized path */
}

}
class View {
public void setMenuBar() { .. }
public void setButtons() { .. }

}
}

Figure 8. Example layers in the maze-solving simulator

the currently calculated optimized path by printing the text repre-
senting the optimized path and changing the color of intersections
and segments in the optimized path (Figure 7(b)).

We implemented this simulator using ServalCJ, and a number
of layers were defined to implement context-dependent behavior:

• EditingMaze provides GUI tools for editing the maze such as
inserting segments and intersections, saving the maze to a file,
opening a maze from a file, and finishing editing the maze.

• SolvingMaze provides GUI tools for starting the simulation,
solving the maze, stopping the simulation, switching to debug
mode, and selecting the algorithm for solving the maze (the
default is the left-hand rule).

• RunningMaze provides GUI tools for starting the simulation,
following the optimized path and stopping the simulation.

• RightHandRule solves the maze using the right-hand rule.
• Tremaux solves the maze using Trémaux’s algorithm.
• Debugging provides the textbox where the text representing the

currently calculated optimized path is printed.
• UnderDebugging changes the color of segments and intersec-

tions in the maze only if they are in the optimized path and the
debug mode is selected.

Note that the debugging feature is divided into two layers, Debug-
ging and UnderDebugging, because, as explained below, they are
applied in slightly different situations.

These layers change the behavior of multiple classes. For ex-
ample, SolvingMaze and RunningMaze change the appearance of
GUI components and the behavior of the simulator. The simulator
is executed in a different thread from the GUI components, and the
behavior of the run method is switched when the active layer is
changed (Figure 8).

To specify layer activation, we implemented two context groups;
the first one manages layer activations that are applied globally, and
the other manages layer activations that are applied only to specific
instances.

Figure 9 shows the context group for managing globally acti-
vated layers. It specifies activate declarations for five layers. The

1 global contextgroup MazeUI() {
2 activate EditingMaze
3 from startEditor to startSolver;
4 activate SolvingMaze from startSolver to solved;
5 activate RunningMaze
6 from solved to neverMatchingEvent;
7 activate Debugging
8 from startDebug to endDebug;
9 context Print is

10 in cflow(call(void Simulator.print()));
11 activate UnderDebugging
12 when Debugging && when Print;
13 }

Figure 9. Context group for globally activating layers

1 contextgroup Algorithm(Robot robot) {
2 activate RightHandRule
3 if(robot.isRightHandRule());
4 activate Tremaux if(robot.isTremaux());
5 }

Figure 10. Context group applicable to the robot instance

activations for the former four layers are controlled by the from-to
expressions. The events that activate and deactivate layers corre-
spond to the GUI events generated by the operations taken by the
user. The UnderDebugging layer is a composite layer; it is active
only when the Debugging layer is active and the additional con-
dition specified by the named context Print holds. The Under-
Debugging layer changes how the color of visited segments and
intersections is set:

layer UnderDebugging {
class Edge { // segments
public void setTraced() {
proceed();
color = Color.GREEN; //the default is RED
src.setTraced();
dst.setTraced();

}
}
class Node { // intersections
public void setTraced() {
proceed();
color = Color.GREEN;

}
}

}

First, this behavior is applicable only when the application is in
the debug mode. Second, this behavior is applicable only to the in-
tersections and segments in the shortest path. Thus, UnderDebug-
ging is activated only under the control flow where the shortest
path is printed (which also calls the setTraced methods on Edge
and Node). We apply the cflow expression in this case.

Figure 10 shows the context group for managing activations that
are applicable to a specific robot instance. Although there exists
only one single robot instance in this application, we apply the
per-instance activation in this case for future extensibility (e.g.,
supporting multiple robots that execute different algorithms). In
this case, we apply the conditional (if) expressions instead of the
from-to expressions to specify activate declarations. We do this
because, in the base program, the value indicating the algorithm is

set to the robot instance when the user selects the algorithm, which
is useful for judging which layer should be activated. We note that
the program structure of the base program may affect the decision
taken by the programmer to select the activation mechanism.

Discussion We first discuss the appropriateness of applying COP
to implement this simulator.6 First, the variations of context-
dependent behavior mentioned in this simulator crosscut multi-
ple classes and are modularized by corresponding layers in COP.
For example, layers SolvingMaze and RunningMaze change the
behavior in both the simulator and GUI components. Debugging
also changes the appearance of the GUI (showing or hiding the
textbox that prints the shortest path) and the behavior of the simu-
lator (whether the shortest path stored in the simulator instance is
printed). UnderDebugging changes the color of intersections and
segments. The algorithms applied to the simulator instance also
change the appearance of the GUI components (e.g., the currently
selected algorithm is disabled for selection in the menu). Thus, it is
appropriate to use layers to implement these behavioral variations.

Second, COP supports disciplined changes of context-dependent
behavior. We may apply meta-programming techniques to imple-
ment dynamic changes of behavioral variations. In such techniques,
however, it is difficult to mechanize reasoning about some proper-
ties among these variations. For example, in this simulator, the vari-
ations of behavior implemented in EditingMaze, SolvingMaze,
and RunningMaze should be exclusive. The algorithms executed
by the simulator are also exclusive. The behavior implemented in
UnderDebugging should be applicable only when the system is in
the debug mode. It is difficult for meta-programming to mechani-
cally check such properties. By using COP, on the other hand, we
may easily generate a state transition model from the event-driven
layer switching to perform model checking [18]. The exclusiveness
of algorithms can be checked by only checking the exclusiveness
of the simulator states that affect the value of the expressions used
in the if expressions (such as the value of the isRightHandRule
call). The dependency between UnderDebugging and Debugging
is immediately obtained from the context specification of the acti-
vate declaration.

Finally, COP supports modularization of the specification that
determines when the behavior changes occur. If we apply other ap-
proaches to implement such behavior changes (such as the state
design pattern), the behavior changes may be hard-wired and scat-
tered into the base program. Using the declarative specification of
layer switching in COP languages such as JCop [7] and EventCJ
[18], such behavior changes are separately specified. Although the
examples shown in this paper are written by using the imperative
events for brevity, ServalCJ also supports declarative events using
AspectJ-like pointcut language.

We further compare ServalCJ with existing COP languages. The
case study showed that different activation mechanisms are used
in the same application. As discussed in Section 2.3, no existing
COP languages can support such a variety of activation mecha-
nisms. There are no existing COP languages that support all the
event-based, per-control-flow, and implicit activation mechanisms,
while ServalCJ supports all of them (the imperative activation in
Subjective-C can also be represented by the from-to expression
where the until clause specifies an event that will never happen).
Furthermore, the case study shows how several combinations be-
tween activation mechanisms and sets of subscribers can be used
in the same application. In particular, the combination of global
and per-control-flow activation as well as that of per-instance and
implicit activation are used in the application. As summarized in
Table 1, existing COP languages do not solely support these com-
binations. Even combining these languages, where we can apply

6 The same discussion is also applicable to the program editor example.

workarounds to represent such combinations, does not provide a
sufficient solution. For example, when combining Subjective-C and
ContextJ, the imperative activation can be used to globally activate
and deactivate some layer L at the beginning and end of a with-
block, respectively. In this workaround, it is the programmer’s re-
sponsibility not to forget the deactivation of L. The errors caused by
forgetting this deactivation can be avoided in ServalCJ by declar-
ing a cflow in a global context group. Furthermore, ServalCJ pro-
vides a more expressive mechanism for representing per-instance
and event-based activation than existing languages: in ServalCJ,
there are no limitations for objects to dynamically subscribe to the
context group, and we can specify the sender of the event.

7. Implementation
The compiler of ServalCJ is built on top of the AspectBench Com-
piler (abc) [8] by extending the front-end. The compiler eventually
generates bytecode executable on the standard Java virtual machine
by first translating a ServalCJ program into an AspectJ program,
and then by letting the AspectJ compiler generate bytecode.7

7.1 Overview of Translation
The translation processes separately manipulate the following four
constructs: partial and base methods, conditional layer activation,
global layer activation, and events. The main differences between
ServalCJ the EventCJ compiler are the implementations of layer
activation using conditional expressions and the global layer acti-
vation.

We first explain how layers are translated. The translation is
similar to what performed in the EventCJ compiler [18]. A layer is
translated into an inner class, and each partial method in that layer
is translated into a method in that inner class. The body of the base
method for that partial method is translated to the code that first
obtains the list of instances of active layers (i.e., instances of those
inner classes) and then calls the instance method at the tail position
of the list. The proceed call is translated to the code that calls the
method on the instance at the preceding position of the list. Every
class that is extended by partial methods will have a new field, lm,
in order to store a list of active layers.

The conditional expressions are evaluated just before the call of
a partial method. Precisely, the ServalCJ compiler inserts checking
code at the beginning of the layered method. The checking code
(1) tests whether the instance executing the method subscribes to
some context groups; and (2) collects a list of context groups where
the instance subscribes, and for each context group, evaluates a
conditional expression (associated with that context group). If any
of the conditions hold and if the corresponding layer is not active,
the code activates the layer. On the other hand, if they do not hold
and if the corresponding layer is active, the code deactivates it.

ServalCJ implements global layer activation using the per-
instance layer activation mechanism. It places globally active layers
in the list of active layers in every instance. To do so, the runtime
manages a list of all instances in a program.8 When a global layer
is activated, that layer is added to the lm field of every instance in
the list. The runtime also manages a list of globally activated layers
(which corresponds to the global active layers L that appear in the
reduction relation in Appendix A). This is used as an initial value
of the list of active layers for a newly created instance.

Events in ServalCJ are translated into pointcuts in AspectJ. As
in EventCJ, for each join point, the compiler inserts the advice code

7 The source code of the compiler is available at https://github.com/
ServalCJ/pl.git. Per-thread activation is currently not implemented.
8 Precisely, only instances that have globally activated layers are added to
the list to reduce the performance degradation.

Figure 11. Execution time of a method call in ServalCJ and Java
(shorter is better). We ran the benchmarks 10 times; the range of
error was approximately 0.007% – 1%.

updating the lm field of each subscriber and the list of globally ac-
tivated layers to perform layer activation and deactivation. Cflow
expressions are also implemented in a similar manner, except that,
in this case the advice code counts the number of method calls to
appropriately handle the recursive calls. For the layer activations
that are composed with multiple contexts by the && and || opera-
tors, the compiler resolves which layers should be active on each
join-point specified by the pointcuts.

7.2 Microbenchmarks
In this section, we evaluate the performance of method dispatching
in ServalCJ by comparing the duration of method calls with and
without active layers in ServalCJ with the duration of method calls
in plain Java. To evaluate the overhead that is always imposed on
the compiled program, we conducted a number of experiments. The
first experiment was performed in order to verify that ServalCJ
does not seriously degrade the execution performance when we
do not use the ServalCJ specific features that impose additional
overheads. The objective of the second experiment was to measure
the overhead of layered method calls with implicit activation and
global activation.

For the benchmark, we used JGFMethodBench in the Java
Grande Forum Benchmark Suite [10] version 2. We extended this
benchmark in order to evaluate the layered method. For example,
each target method in the program was extended using an around
partial method that contained only the proceed call. All experi-
ments were performed on the Oracle Java HotSpot VM 1.7.0 65
running on an Intel Core i5-4440 (4 cores, 3.10 GHz) with Linux
kernel version 2.6.32. It should be noted that, to prohibit the JIT
compiler from eliminating the entire target method call (this elim-
ination prohibits us from measuring the overhead with respect to
method calls), we used the client VM instead of the server VM in
the benchmark.

Figure 11 summarizes the method dispatch time in Java and
ServalCJ without active layers. The benchmark program measured
the execution time of eight types of method calls. The labels “same”
and “other” indicate that the caller and callee methods belong to the
same or another instance/class, respectively. “Instance” indicates
that the method is an instance method, and “class” indicates that it
is a class method. “Synchronized” and “ofAbstract” indicate that
the method is either synchronized or abstract, respectively. In the
ServalCJ version, we defined a layer with a partial method for the
instance methods that is inactive during the measurement. We did

Figure 12. Execution time of a method call in ServalCJ when
increasing the number of active layers. We ran the benchmarks 10
times; the range of error was approximately 0.04% – 0.1%.

Figure 13. Execution time of a global activation in ServalCJ when
increasing the number of target instances. We ran the benchmarks
10 times; the range of error was approximately 0.01% – 0.08%.

not provide any partial methods for the class methods, because
currently ServalCJ does not support this.

The figure shows that, when no layers are active, the perfor-
mance of method calls in ServalCJ is comparable with that in plain
Java if implicit activation is not used. The primary reason for this
is that in this case, ServalCJ does not impose any overhead on the
program except that which is incurred when it checks the number of
currently active layers. The method call is approximately two times
slower if we use implicit activation; this overhead is also compara-
ble with other COP languages.

Figure 12 shows the results of measuring the method dispatch
time in ServalCJ with 1 to 15 active layers. In this experiment,
we defined 15 identical layers, each of which declared an around
partial method that contained only one single proceed call for the
“same:instance” method. We can see that each additional active
layer adds roughly a constant amount of time to the execution time
of a call. This result is similar to the performances of EventCJ [18]
and ContextJ [5].

Finally, we show the execution time of global activation. As ex-
plained above, the global activation manipulates all instances of
classes that have layers controlled by the global context group,
which means that the number of such instances affects the execu-
tion time of the global activation. The execution time of global acti-
vation is measured in a way similar to that used in the JGFMethod-
Bench to measure the execution time of a method call. We repeat-
edly generated an event that activates a layer and an event that deac-
tivates the layer within a loop (we assume that both layer activation
and deactivation take the same time). We repeated this experiment
while changing the number of target instances.

Figure 13 shows the results. We can observe that each additional
target instance adds a constant amount of time to the execution time

of an activation. In the case of a large number of target instances,
the layer activation may take more than 1 ms. This overhead will
not produce a severe problem if the number of instances with layers
is not very large, or if the layer activation does not occur frequently.
We consider that most COP applications meet these conditions; for
example, the environment or a user’s current task does not change
frequently within a very short period of time.

7.3 Performance Evaluation with a Maze-Solving Simulator
We evaluated performance impact of ServalCJ on a real applica-
tion by estimating the amount of overhead generated in the maze-
solving robot simulator. As the microbenchmark results in the pre-
vious section show, the amount of overhead depends on several pa-
rameters such as the number of active layers. We therefore mea-
sured those parameters in the application and applied them to the
microbenchmark results.

First, we measured the number of active layers, which turned
out to be at most four. As illustrated in Section 6, there are seven
layers. Among them, EditingMaze, SolvingMaze and Running-
Maze are exclusive, and among the other four, RightHandRule and
Tremaux are exclusive. Thus, the number of active layers is four
when the debugging mode is selected (the Debugging layer con-
tains a control-flow that activates UnderDebugging).

We then estimated the number of subscribers for global activa-
tion. As illustrated in Figure 9, the context group MazeUI is de-
clared as global. This context group has five activate declarations.
Among them, UnderDebugging changes the behavior of instances
of classes Edge (segment) and Node (intersection), and the other
four activate declarations change the behavior of Robot and View
(Figure 8). While each instance of the latter two classes are sin-
gletons, the number of instances of the former two classes depends
on the size of the maze. When we used the maze-solving robot
in our classroom, the number of Edge and Node instances for the
most complicated maze were 43 and 39, respectively. Thus, the to-
tal number of the subscribers for global activation was 84 (includ-
ing two singleton instances). According to the microbenchmarks,
the overhead of each global layer (de)activation in this case should
be less than 3.0 µsec.

To determine the actual overhead of global activation in the
maze-solving simulator, we measured the total execution time of
global activation using a profiler. We conducted this experiment be-
cause, even though we believe that layer (de)activation does not oc-
cur very often, the simulator example provides a worse case where
the UnderDebugging layer is periodically activated within the loop
statement when solving the maze. Our experiment (de)activated
five layers in Figure 9; we consider that the overhead is dominated
by the cost of (de)activation of UnderDebugging, which is period-
ically (de)activated.9 To measure the worst case, this profiling was
performed in a setting where the Debugging layer was always ac-
tive, implying that the activation and deactivation of UnderDebug-
ging always occurred when refreshing the display. Since each layer
activation code was compiled into an advice of AspectJ, we mea-
sured the execution time of each method compiled from those ad-
vices. We used the profiler included in Oracle NetBeans IDE 8.01.
The total execution time of global layer activation was approxi-
mately 25.7 ms, while the total execution time of the application
was 5,870 ms (both are CPU time). The overhead was thus 0.4%,
which should be acceptable in most cases.

8. Related Work
COP related mechanisms. ContextJS [22] supports user-definable
activation mechanisms by using the meta-programming features in

9 By “overhead,” we mean the overhead against the mechanism where the
global activation time is constant with respect to the number of instances.

JavaScript. This is sufficiently powerful to realize any style of layer
activation. However, it is almost impossible to reason about it me-
chanically, as that constitutes meta-programming. Because of its
ability to dynamically change behavior, context-aware applications
are occasionally error-prone, and providing control of layer activa-
tion to the programmer may easily lead to poor application design.
Thus, it is preferable to support a more disciplined layer activation
mechanism implemented in the programming language.

There are a couple of linguistic mechanisms similar to condi-
tionals in ServalCJ. In LEAD/LEAD++ [1, 2], a method consists
of a number of implementations with a condition, and only the im-
plementation where this condition holds is selected for execution.
The condition is changed with respect to the states of the so-called
metaobjects, and the programmer can change these states. Tanter et
al. proposed context-aware aspects [28], that is, aspects whose be-
haviors depend on contexts. This concept is realized as a framework
where a context is defined as a pointcut. This is similar to AspectJ’s
if pointcut, but it is also able to restrict the past contexts. Contexts
are composable, because they are realized as pointcuts.

Context traits [15] mix the mechanism of trait composition
with COP. Context traits take a different approach from that of
layer-based COP in that the order of layers is resolved by the
programmer. They provide primitive layer activation mechanisms,
and only global activation is supported.

Related mechanisms beyond COP. There are also language
mechanisms beyond COP such as aspect-oriented programming
(AOP) and event-based programming mechanisms. In general,
there are two major differences between them: (1) while COP puts
emphasis on changing the behavior of multiple modules at once,
many of the other mechanisms are basically intended to change
behavior of each module and (2) while COP separates context
changes from the execution of behavior that depends on contexts,
the other mechanisms focus on the control of the execution points
where such behavior is executed. We further discuss similarities
and differences between our approach and each of the related mech-
anisms as follows.

A ServalCJ’s event is equivalent to a join-point in AOP. In this
sense, ServalCJ’s layer activation mechanism is similar to typical
AspectJ pointcuts [21], as it provides declarative events using a
pointcut language. However, ServalCJ’s events can also be con-
ditional. Although layer activation using a conditional expression
can be encoded in an AspectJ pointcut like “call(* *.*(..))
&& if(..),” it may lead to significant performance degradation.

EventJava [12] is an extension of Java that integrates events
with methods. In EventJava, events are broadcast as in the case of
global layer activation in ServalCJ. Dynamic subscription of event
receivers in event-based languages was proposed in Ptolemy [26].
ServalCJ integrates such event-based mechanisms with dynamic
activation of layers in COP. However, a more complex mechanism
of event composition such as that proposed in [23, 24] is currently
not supported by the event model in ServalCJ.

Method slots [31] unify event-based programming and AOP by
extending the “slots” in Self [29] to hold multiple function closures
for each method slot. We can dynamically add function closures
to each method slot. Unlike COP mechanisms, this addition is
performed in a per-method manner.

To represent context-dependent behavior, other approaches can
be taken by representing contexts as objects that are explicitly (or
indirectly through dependency injections like Scala’s cake pattern
[25]) passed on a method. Even though the obliviousness of the
layer activation in our approach may make it difficult to predict
the base program behavior, it has its own advantage in that it
can modularize the dynamic changes of behavior. The reasoning
about properties among context-dependent behaviors described in
the discussion part of Section 6 may alleviate this disadvantage.

9. Conclusions
This paper summarized the differences and commonalities of exist-
ing COP languages, and proposed a unified model of COP mech-
anisms and a new COP language, ServalCJ, that is based on this
model. The model represents contexts that specify the duration for
which the layer activation continues and a set of subscribers that
specifies which targets the activation affects. The order of active
layers is defined so that synchronous layer activation always has
a priority that is higher than that of asynchronous layer activa-
tion. ServalCJ implements this model by providing context groups
within which we can define layer activation based on contexts. Ser-
valCJ covers all the use cases that can be implemented by existing
COP mechanisms as well as some other cases that the existing COP
mechanisms do not address. The feasibility of our approach was
validated through the implementation of a ServalCJ compiler and
its performance evaluation.

References
[1] Noriki Amano and Takuo Watanabe. LEAD: a linguistic approach

to dynamic adaptability for practical applications. In Proceedings of
the IFIP TC2 WG2.4 Working Conference on Systems implementation
2000 : languages, methods and tools, pages 277–290, 1998.

[2] Noriki Amano and Takuo Watanabe. LEAD++: an object-oriented
language based on a reflective model for dynamic software adaptation.
In Technology of Object-Oriented Languages and Systems (TOOLS
31), pages 41–50, 1999.

[3] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko Masuhara. Feather-
weight EventCJ: a core calculus for a context-oriented language with
event-based per-instance layer transition. In COP’11, 2011.

[4] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and
Michael Perscheid. A comparison of context-oriented programming
languages. In COP’09, pages 1–6, 2009.

[5] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko
Masuhara. ContextJ: Context-oriented programming with Java. Com-
puter Software, 28(1):272–292, 2011.

[6] Malte Appeltauer, Robert Hirschfeld, and Hidehiko Masuhara. Im-
proving the development of context-dependent Java application with
ContextJ. In COP’09, 2009.

[7] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael
Haupt, and Kazunori Kawauchi. Event-specific software composition
in context-oriented programming. In Proceedings of the International
Conference on Software Composition 2010 (SC’10), volume 6144 of
LNCS, pages 50–65, 2010.

[8] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. abc: an extensible
AspectJ compiler. In AOSD’05, pages 87–98, 2005.

[9] Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, An-
doni Lombide Carreton, and Wolfgang De Meuter. Interruptible
context-dependent executions: A fresh look at programming context-
aware applications. In Onward! 2012, pages 67–84, 2012.

[10] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A.
Davey. A methodology for benchmarking Java Grande Applications.
In Proceedings of ACM 1999 Java Grande Conference, pages 81–88,
1999.

[11] Pascal Costanza and Robert Hirschfeld. Language constructs for
context-oriented programming – an overview of ContextL. In Dy-
namic Language Symposium (DLS) ’05, pages 1–10, 2005.

[12] Patrick Eugster and K.R. Jayaran. EventJava: An extension of Java
for event correlation. In ECOOP’09, volume 5653 of LNCS, pages
570–594, 2009.

[13] Sebastián González, Micolás Cardozo, Kim Mens, Alfredo Cádiz,
Jean-Christophe Libbrecht, and Julien Goffaux. Subjective-C: Bring-
ing context to mobile platform programming. In SLE’11, volume 6563
of LNCS, pages 246–265, 2011.

[14] Sebastián González, Kim Mens, and Alfredo Cádiz. Context-oriented
programming with the ambient object systems. Journal of Universal
Computer Science, 14(20):3307–3332, 2008.

[15] Sebastián González, Kim Mens, Marious Colacioiu, and Walter Caz-
zola. Context traits: Dynamic behaviour adaptation through run-time
trait recomposition. In AOSD’13, pages 209–220, 2013.

[16] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3):125–151,
2008.

[17] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko Masuhara. Con-
textFJ: a minimal core calculus for context-oriented programming. In
FOAL’11, pages 19–23, 2011.

[18] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ:
a context-oriented programming language with declarative event-
based context transition. In AOSD ’11, pages 253–264, 2011.

[19] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. Introduc-
ing composite layers in EventCJ. IPSJ Transactions on Programming,
6(1):1–8, 2013.

[20] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. A unified
context activation mechanism. In COP’13, 2013.

[21] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Grisword. An overview of AspectJ. In
ECOOP’01, pages 327–353, 2001.

[22] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer
composition in ContextJS. Science of Computer Programming,
76(12):1194–1209, 2011.

[23] Somayeh Malakuti and Mehmet Aksit. Event modules: modularizing
domain-specific crosscutting RV concerns. TAOSD.

[24] Somayeh Malakuti and Mehmet Aksit. Evolution of composition
filters to event composition. In SAC’12, pages 1850–1857, 2012.

[25] Martin Odersky and Matthias Zenger. Scalable component abstrac-
tions. In OOPSLA’05, pages 41–57, 2005.

[26] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP’08, pages 155–179, 2008.

[27] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. ContextEr-
lang: Introducing context-oriented programming in the actor model.
In AOSD’12, 2012.

[28] Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel.
Context-aware aspects. In SC 2006, volume 4089 of LNCS, pages
227–242, 2006.

[29] David Ungar and Randall B. Smith. Self: The power of simplicity. In
OOPSLA’87, pages 227–241, 1987.

[30] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-
oriented programming: beyond layers. In ICDL ’07: Proceedings of
the 2007 International Conference on Dynamic languages, pages 143–
156, 2007.

[31] Yung Yu Zhuang and Shigeru Chiba. Method slots: Supporting meth-
ods, events, and advices by a single language construct. In AOSD’13,
pages 197–208, 2013.

A. Formal Model of Layer Activation
We define the formal semantics of layer activation by combining
two COP calculi, FECJ [3], which provides per-instance and asyn-
chronous activation, and ContextFJ [17], which provides global and
synchronous activation.

A.1 Syntax.
The abstract syntax is shown as follows:

CL ::= class C / C { C f; K M } (classes)
K ::= (constructors)

C(C f){ super(f); this.f = f; }
M ::= C m(C x){ return e; } (methods)

e, d ::= x | eˆ̀
.f | eˆ̀

.m(e
ˆ̀
) | new C(e) (expressions)

| proceed(e) | with L e
| v | v<C,L,L>.m(v) | {e}

t ::= ↑ L |↓ L (activation rules)
` ::= ι | γ (event labels)
p ::= v 7→ new C(v)<L> (partial stores)
µ ::= p (stores)
st ::= ε | st� L (stack)

Let metavariable C ranges over class names; L ranges over
layer names; f ranges over field names; m ranges over method
names; ` ranges over labels; ι ranges over instance labels; γ ranges
over global labels; v and w range over values; and x ranges over
variables, which include a special variable this. Overlines de-
note sequences: e.g., f stands for a possibly empty sequence
f1, · · · , fn. We also abbreviate a sequence of pairs by writing
“C f” for “C1 f1, · · · , Cn fn,” where n denotes the length of C
and f. Similarly, we write “C f;” as shorthand for the sequence of
declarations “C1 f1;. . .Cn fn;” and “this.f=f;” as shorthand
for “this.f1=f1;. . .;this.fn=fn;”. We use commas and semi-
colons for concatenations. We abbreviate a concatenation LA; LS
of asynchronously activated layers LA and synchronously activated
layers LS simply as a sequence of layers L when such distinction
is not important. It is assumed that sequences of field declarations,
parameter names, layer names, and method declarations contain no
duplicate names. We also use a hat to denote an optional element,
i.e., ˆ̀ denotes that there is either a label ` or no labels. An empty
element is denoted by ε, which is usually omitted.

The runtime expression {e} appears only as a subterm of with
under reduction. The runtime expression new C(v)<C,L

′
,L>.m(e),

where L
′ is assumed to be a prefix of L, means that m is going to

be invoked on new C(v). The annotation <C,L
′
,L> indicates the

cursor where method lookup should start.
A label attached to an expression denotes an event receiver that

simplifies the asynchronous layer activation; i.e., the expression eι

represents that an event (that activates some layer) is received by
e. Similarly, eγ represents that an event, which globally activates
some layer, is sent by e. A synchronous layer activation is modeled
by a with expression. Even though this calculus does not support
all linguistic features provided by ServalCJ (for example, it cannot
represent with applied to only specific instances), it explains how
the interference problems shown in Section 3.2 are resolved.

A value v is a location. A store µ is a sequence of pairs of a
location and an object. This pair is of the form v 7→ new C(v)<L>,
which is read “an object new C(v)<L> is stored at location v.” A
stack st remembers a sequence of layers L before the reduction of
with starts so that the computation can restore that sequence after
finishes the reduction of with.

Unlike the existing COP languages, the calculus does not pro-
vide syntax for layers. Partial methods are registered in a partial
method table PT , which maps a triple C, L, and m of class, layer,
and method names, respectively, to a method definition. The cal-
culus also provides an activation rule table TT that maps a label to
an activation rule that is either an activation ↑ L (activating L) or a
deactivation ↓ L (deactivating L).

Intuitively, activate declarations described in Section 5.2, from-
to expressions in particular, correspond to the activation rules in
TT . Asynchronous layer activation corresponds to the layer activa-

tion triggered by either conditionals or from-to expressions. Syn-
chronous layer activation corresponds to the layer activation trig-
gered by cflow. A value with label v` corresponds to a subscriber
in ServalCJ, and the global label γ illustrates the behavior of the
global context group.

A program (CT,PT, TT, e) consists of a class table CT (that
maps a class name to a class definition), a partial method table PT ,
an activation rule table TT , and a well-formed expression e that
corresponds to the body of the main method. We assume CT , PT ,
and TT to be fixed and to satisfy the following sanity conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).

2. Object 6∈ dom(CT).

3. For every class name C (except Object) appearing anywhere in
CT , we have C ∈ dom(CT);

4. There are no cycles in the transitive closure of / (extends).

5. PT(m, C, L) = ... m(...){...} for any (m, C, L) ∈ dom(PT).

6. TT(`) = t for every label ` that appears in e, CT , and PT .

A.2 Operational Semantics
The operational semantics is given by a reduction relation of the
form e | µ | L | st −→ e′ | µ′ | L′ | st′, which is read “expression
e under a store µ, global active layers L, and a stack st reduces to
e′ under µ′, L′, and st′.” We assume that neither µ nor µ′ contain
duplicate names. We only show the rules relevant to discussing the
order of active layers. For the other rules, the reader may consult
[3].

The following rule represents the reduction that occurs when a
value v receives an event denoted by label ι.

TT(ι) =↑ L µ(v) = new C(v)<L
′
>

actAsync(L
′
, L) = L

′′
µ′ = (v 7→ new C(v)<L

′′
>, µ)

vι | µ | L | st −→ v | µ′ | L | st

This rule obtains the corresponding layer activation rule stored in
TT , and calculates the order of active layers by applying actAsync.
Note that we only explain the case for layer activation for simplic-
ity. The layer deactivation case is obtained by replacing ↑ with ↓
and actAsync with deact. The store µ is updated by inserting the
address of the instance with new active layers.

Similarly, the following rule represents the reduction that occurs
when a value v sends a global event denoted by label γ.

TT(γ) =↑ L actAsync(µ, L) = µ′

actAsync(L, L) = L
′ actAsync(st, L) = st′

vγ | µ | L | st −→ v | µ′ | L′ | st′

In this rule, we overload the definition of actAsync; when it is
applied to µ, for each sequence of active layers Li in the range of µ
is updated by applying actAsync(Li, L). We also overload actAsync
to be applied to a stack st in the similar way. The sequence of global
active layers L is also updated. Again, we only show the case for
layer activation.

The following rule explains the reduction of an instance cre-
ation. It should be noted that the global active layers LA, which are
asynchronously activated, are prospectively activated for the new
instance.

w 6∈ dom(µ)

new C(v) | µ | LA; LS | st −→
w | (w 7→ new C(v)<LA>, µ) | LA; LS | st

The following rules illustrate synchronous layer activation.

actSync(L, L) = L
′

with L e | µ | L | st −→ {e} | µ′ | L′ | st� L

The actSync function ensures that layer L is active during the
evaluation of body e, which is reduced to the runtime expression
{e}. Stack st is updated so that it can pop L, the globally activated
layers before the evaluation of with, when the evaluation of the
body is finished. The reduction rules for this runtime expression
are given as follows:

e | µ | L | st −→ e′ | µ′ | L′ | st′

{e} | µ | L | st −→ {e′} | µ′ | L′ | st′

{v} | µ | L | st� L
′ −→ v | µ | L′ | st

These reduction rules ensure that the synchronous layer activa-
tion always precedes the asynchronous ones, and a with expres-
sion does not affects the order of asynchronously activated layers

outside. It should be noted that each instance new C(v)<L> has
only asynchronously activated layers. Thus, in the method lookup
we need to include layers that are globally and synchronously acti-
vated in the search sequence, as shown in the following reduction
rules for method invocation:

µ(v0) = new C(w)<L
′′
A> L = L

′′
A; LS

v0<C,L,L>.m(v) | µ | LA; LS | st −→ e | µ′ | L′
A; L

′
S | st′

v0.m(v) | µ | LA; LS | st −→ e | µ′ | L′
A; L

′
S | st′

mbody(m, C, L
′′
, L

′
) = x.e in C′, · · ·

v<C′,L
′′
,L

′
>.m(w) | µ | L | st −→ [v/this, w/x, · · ·]w | µ | L | st

The cursor for the method lookup is set to be a concatenation of
asynchronously activated layers per-instance L

′′
A and globally and

synchronously activated layers LS .

