Iterative Stencil Computations in Ruby on GPUs

Matthias Springer Peter Wauligmann Hidehiko Masuhara
Department of Mathematical and Computing Science, Tokyo Institute of Technology

What is Ikra?
• RubyGem for array-based GPU computing
• Compiles Ruby code to C++/CUDA program
• Current focus: Iterative scientific computations
• Parallel map, reduce, stencil, new
• Data types inside parallel/host sections:
 primitive (int, float, bool, nil), array (read only), zipped,
 object (partial support, incl. method calls),
 union type (combination of above ones)

Design Decisions
• Modularity: Build complex programs from multiple
 parallel sections using object-oriented programming
• Kernel Fusion: Combine parallel sections into single
 GPU kernel, delay execution to the latest possible point
• Host Section: Avoid switching between Ruby
 interpreter and generated C++ program

Ikra API: Example
result = Ikra.host_section do
 arr = Array.pnew(10) do |i| i + 1 end
 while arr.preduce(10) < 100
 arr = arr.pmap do |i| i + 2 end
 end
 puts "Result is #{result.to_a}"
end

Symbolic exec. in Ruby interpreter: returns a command
(contains all information for code generation + execution)

Code Generation
• C++ type for polymorphic expressions: union type struct
 struct union_t {
 union { int *; /* ... */ void *pointer; } data;
 int class_id;
 }
• Method call with polymorphic receivers: switch stmt.
• Parallel section: Data structure for command data
• Kernel launch: Generated only for run, [1], end of section
• Future work: Data sharing between multiple parallel
 sections (avoid redundant comput.), escape analysis to
 detect if it is safe to reuse the same memory location

Kernel Fusion in Loops via Symb. Execution

a1 = Arr.pnew(...)
while (a2 = φ(a1, a3); a2.preduce[0] < 100)
 a2 = a2.pmap do ... end
end

Code Generation: High-level overview with
kernel launches only

https://prg-titech.github.io/ikra-ruby/