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into top-level objects’ fields with basic types. The top-level objects are then allocated
in the GPU memory in SOA (Structure of Arrays) data layout by DynaSOAr. We
evaluate Sanajeh with an N-Body simulation program.
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Chapter 1

Introduction

General-purpose computing on graphics processing units (GPGPU) is a method that
uses GPUs (graphics processing units) to perform computations that are usually per-
formed by CPUs (central processing units). Although a single core on a GPU oper-
ates at a lower frequency than a CPU does, by utilizing the computation power of
multiple GPU cores, programmers can gain high performance in parallel programs
in a more economical way.

However, GPGPU requires programmers to optimize the programs manually
in a low-level language. This makes GPGPU programs hard to develop, debug
and maintain. Object-oriented programming (OOP) is a widely used programming
paradigm that has high level of abstraction which can be helpful in improving these
issues but it was seem as inefficient in high-performance computing (HPC) since the
data layout it uses limited the efficiency of data access on GPU memory.

Nonetheless, recent work has shown that efficient OOP is feasible on GPUs when
following the Single-Method Multiple-Objects (SMMO) [12] programming model. In
the Single-Instruction Multiple-Data (SIMD) architectures, one instruction is run on
multiple data to apply parallelism while in SMMO architectures, one method is run
on all objects of a class. SMMO model allows programmers to write GPGPU pro-
grams in OOP style. The performance of many SMMO applications depends on
efficient memory (de)allocation.

A CUDA framework for SMMO applications is DynaSOAr [13]. DynaSOAr en-
ables users to write GPGPU programs in OOP style in C++/CUDA. It allocates
the data of objects on GPU memory dynamically and ensure whenever user cre-
ates/deletes objects the data is always stored in an SOA data layout, which is im-
portant for improving performance (section 2.1). However, programmers must ad-
here to a certain coding style (section 3.1) and follow certain coding conventions
when using DynaSOAr (section 3.2). Also, DynaSOAr are not optimized for pro-
grams with “nested object” (section 3.3.1) so that nested objects are difficult to be
implemented efficiently. (section 3.3)

In this dissertation, we propose a Domain-Specific Language (DSL) called Sana-
jeh. Sanajeh’s goal is to simplify and improves DynaSOAr, by a more easier syntax
and the support for nested object. Sanajeh is built on a high-level language Python,
while its low-level parts are based on DynaSOAr. Sanajeh provides API (section
5.1) for programmers to write SMMO applications with high performance in nor-
mal Python syntax. It frees programmers from bothering with memory allocation of
the data which resides on GPU, including nested object. Also, Sanajeh allows users
to use Python libraries in HPC programs. We evaluated Sanajeh’s with an N-Body
simulation (chapter 6).
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Chapter 2

Background

This chapter gives an overview of two kinds of data layout that used for storing
data on GPU memory (section 2.1), an introduction of N-Body simulation (section
2.2) and a mechanism for calling C++ functions from Python (section 2.3).

2.1 Data layout for data allocation on GPU memory

The performance of an OOP GPGPU program is highly related to what data layout
it applies for storing the objects on GPU memory since it decides whether data can
be loaded from GPU memory efficiently. We discuss two kinds of data layout in this
dissertation: Structure Of Arrays (SOA) and Array Of Structures (AOS)

In AOS, objects of a class are stored as contiguous blocks in the memory. Listing
2.1 shows an example of a C++ program which uses an AOS data layout for the
array bodies and figure 2.1 shows how data is loaded from the GPU memory in this
program.

LISTING 2.1: A C++ program with an array of objects (AOS)

class Body: {

private:
float pos_x;
float pos_y;
float vel_x;
float vel_y;
float force_x;
float force_y;
float mass;

}

Body bodies[1000]
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FIGURE 2.1: Data access in AOS data layout

Different from AOS, data is not stored contiguously in units of objects in SOA,
instead it is stored in units of fields. Same fields of different objects are stored to-
gether in one array on GPU memory. Listing 2.2 shows an implementation of using
SOA data layout in a same program with the program in Listing 2.1 and figure 2.2
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LISTING 2.2: A C++ program with arrays of fields (SOA)

float Body_pos_x[1000];
float Body_pos_y[1000];
float Body_vel x[1000];
float Body_vel_y[1000];
float Body_force_x[1000];
float Body_force_y[1000];
float Body_mass[1000];

shows the according data access example. As shown, for the array bodies above, it
is disassembled into seven different arrays by the fields of class Body.

pos_x[0]
pos_x[1]
pos_x[2]
pos_x|3]
pos_y[0]
pos_y[1]
pos_y[2]
pos_y[3]

_)
_)
_)
_)

FIGURE 2.2: Data access in SOA data layout

Although using SOA data layout makes programs less readable, it can speed up
HPC applications by several factors compared to a traditional AOS layout [1, 11, 14].
As shown in figure 2.1 and figure 2.2, data access in SOA is contiguous while data
access in AOS is stridden. Since current NVIDIA GPU can coalesce data loads in
contiguous 128-byte into one data load, fewer vector loads are required to cover all
data access of field pos_x in SOA than in AOS. This improves the performance of the
program since fewer loads means less consumption in access time.

2.2 N-Body simulation

N-Body is a 2D particle simulation. It simulates movements of a large number of
bodies. Each body has position, velocity and mass. Every iteration of the simulation
computes force between every two bodies according to Newton’s theory of gravity,
by advancing the simulation by a small period of time, the new velocity and position
of the bodies are updated accordingly.

2.3 Foreign Function Interface

Sanajeh is a DSL run in Python but since Python code cannot run on the GPU, the
core parts of Sanajeh code which run on the GPU are compiled into C++/CUDA.
These parts are then called from the other parts which are written in Python. A
mechanism is needed to build a bridge between the two different language.

Foreign Function Interface is a mechanism used to call functions written in an-
other language. Sanajeh uses CFFI [10], which is a Python library, to call C++ func-
tion from Python. We choose the “in-line”, “ABI mode” provided by the CFFI library.
Listing 2.3 shows a example of using CFFI. Declarations like function prototypes are
written in “C — likedeclarations”, and the path of the compiled shared library (in
Sanajeh, a “.so0” file) is written in “libpath”. By this, users can call C++ function
directly through “Iib. function_name”.




Gl WO N =

2.3. Foreign Function Interface

LISTING 2.3: Example of using CFFI, “in-line”. “ABI mode”

import cffi

ffi = cffi.FFI()
ffi.cdef("C-like_declarations")
lib = ffi.dlopen("libpath")

Such code for using CFFI is hidden by Sanajeh API (section 5.1).
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Chapter 3

Problem statement

DynaSOAr provides a choice for programmers to write OOP GPGPU programs, but
programmers must adhere to a certain coding style (section 3.1) and follow certain
coding conventions when using DynaSOAr (section 3.2). Also, DynaSOAr is ineffi-
cient for specific programs (section 3.3).

3.1 Distinguish device code and host code

In GPGPU programs, code is separated into two parts: Host code and Device code.
Host code runs on the host (CPU), includes code that invokes the GPU kernel, while
device code runs on the device (GPU).

In CUDA programs, users have to write “__device__” keywords before functions
to specify that these functions run on the GPU. Since DynaSOAr is a CUDA frame-
work, programmers must annotate functions and certain fields with such modifier.
Listing 3.1 shows an example of a part of the functions in an N-Body simulation.

LISTING 3.1: “__device__” keywords before function declarations in
an N-Body simulation.

__device__ void Body::apply_force(Body* other) ({
// Update “other ’.
if (other != this) {
float dx = pos_x_ — other—>pos_x_;
float dy = pos_y_ - other—>pos_y_;
float dist = sqrt(dx=dx + dy=dy);
float F = kGravityConstant * mass_ * other—->mass_
/ (dist = dist + kDampeningFactor);
other—>force_x_ += Fxdx / dist;
other—>force_y_ += Fxdy / dist;
J
)

__device__ void Body::update() {
vel_x_ += force_x_x*kDt / mass_;
vel_y_ += force_y_»kDt / mass_;
pos_x_ += vel_x_=kDt;
pos_y_ += vel_y_=kDt;

if (pos_x_ < -1 |l pos_x_ > 1) {
vel_x_ = —-vel_x_;

}

if (pos_y_ < -1 |l pos_y_ > 1) {
vel_y_ = -vel_y_;
}
}
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Such annotations can be annoying to programmers when there are a large num-
ber of device functions in the program. Even one miss of such keywords can cause
fatal errors.

3.2 Pre-declarations for fields

DynaSOAr requires user to pre-declare all the fields of a class that resides on the
device (we call these classes “device classes”) through a special syntax (Listing 3.2).

LISTING 3.2: Field pre-declarations (DynaSOAr) in an N-Body simu-

W N =

e N O Q1 =

lation
class Body:public AllocatorT ::Base {
public:
declare_field_types(Body, float, float, float, float, float, float,
float)
private:

Field <Body, 0> pos_x;
Field <Body, 1> pos_y;
Field <Body, 2> vel_x;
Field <Body, 3> vel_y;
Field <Body, 4> force_x;
Field <Body, 5> force_y;
Field <Body, 6> mass;

LISTING 3.3: Ordinary C++ field declarations (equiv. to Fig. 1)

OO OO Ul = WN =

[y

class Body ({

private:
float pos_x;
float pos_y;
float vel_x;
float vel_y;
float force_x;
float force_y;
float mass;

Such syntax is different from ordinary C++ (Listing 3.3). It is likely to make
mistake when declaring field and it types separately.

3.3 Inefficiency of nested objects

There are some specific programs that DynaSOAr cannot run efficiently. Programs
with nested object are among them. In this section we introduce what is “nested
object” (section 3.3.1), why we need “nested object” and discuss why it is inefficient
in DynaSOAr (section 3.3.3).

3.3.1 Definition of nested object

Definition 3.3.1 (Nested object) A nested object is an object that is exclusively stored in
another object. By exclusive, we mean the object is not shared by other objects.

Listing 3.4 shows a DynaSOAr sample program with nested object. It defines
a Vector class with fields x and y and uses fields with Vector type in class Body.
Object pos, vel and force are nested objects.
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3.3. Inefficiency of nested objects

LISTING 3.4: DynaSOATr program with nested object)

class Vector:public AllocatorT :: Base {
private:

float x;

float y;
}

class Body:public AllocatorT :: Base {
private:

Vector pos; //Vectorx pos
Vector vel; //Vector* wvel
Vector force; //Vectorx force
float mass;

3.3.2 Advantages of nested objects: code reuse

Program with nested object is easier to implement and extend. Use the code in List-
ing 3.4 as an example.

e Implement: When we use a Vector class, the similar behavior in pos, vel and

force can be defines together. High code reusability means easiness in imple-
mentation.

Extend: Suppose we need to modify the dimension from 2D to 3D, an exten-
sion on program with “nested object” will be easy since we just need to add
a z field in Vector class. But without “nested object”, we need to add pos_x,
pos_y and pos_z and modify all the code related in Body class.

3.3.3 Disadvantages of nested objects: inefficiency
There the following three ways in DynaSOATr to handle nested object:

* Pointer: If we use pointer for these nested object fields (as shown in the com-

ments in Listing 3.4), the space of these fields is allocated dynamically and
DynaSOAr cannot ensure that these space are arranged in SOA data layout
which obviously influences the performance.

Structure: DynaSOAr will allocate such fields in a Structure Of Arrays Of
Structures (SOAQOS) data layout. Figure 3.1 shows how data is accessed in
DynaSOAr in this data layout. Above is the data loaded and below is the data
needed. Although all pos pos fields are stored contiguously on the memory,
when the exact value of a field in pos field is accessed, the whole structure is
loaded from the memory. That means that if we access x and y once for each
sequentially, the whole structure is loaded twice. The extra load will be a waste
of resource.

Flattened fields: To flatten these fields is to avoid using objects as fields in
classes. Programmers needs to write programs like Listing 3.3. DynaSOAr
makes sure these fields are allocated on GPU memory in a most efficient data
layout but this restricts the level of abstraction of programs. This makes pro-
grams complex (more fields), redundant (x and y fields have similar behavior)
and unreusable (similar behavior in x and y fields need to be redefined for
different fields).
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pos[0]
pos(1]
pos[2]
pos[3]
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FIGURE 3.1: Data access for structured nested object

Since all these three choices are not ideal for handling nested object, for now
DynaSOAr can only run programs with nested object inefficiently.
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Chapter 4

Proposal

This chapter gives out the proposal of Sanajeh, explains how Sanajeh solves the prob-
lems in DynaSOAr which is explained in chapter 3. Solutions include an algorithm
for distinguishing host code and device code (section 4.1), an algorithm for process-
ing device code (section 4.2) and an algorithm for supporting nested object (section
4.3).

4.1 Analgorithm for distinguishing host code and device code

Device code and host code are written together by users, while the former runs on
the GPU and the latter runs on the CPU. Sanajeh’s goal is to avoid writing extra
keywords like described in section 3.1 to annotation whether code runs on the GPU
or the CPU.

Listing 4.1 shows a part of a Sanajeh program. Body is a class whose objects are
created on the GPU, this means every function of class Body is a device function.
run_bodies is a function invokes the functions in class Body, but it is a host function
itself that runs on the CPU.

Since there is no syntax to distinguish host functions and device functions in
class, we proposed an algorithm, CallGraphAnalyzer (section 5.2), to detect all de-
vice code and mark them. CallGraphAnalyzer only requires the declaration of de-
vice classes. It will track all device code through the calling relationships between
functions and the using of variables.

4.2 An algorithm for processing device code

Python code cannot run on the GPU directly, therefore we have to compile Python
device code into C++/CUDA code. During the compilation, we collect the informa-
tion of classes and its fields so there is no need for users to pre-declare all of the field
types (section 3.2). We propose an algorithm, Py2Cpp (section 5.4), to process Python
device code and generate C++/CUDA code. The C++/CUDA code generated are
then compiled into a shared library using the Nvidia CUDA Compiler (NVCC), and
called in host code through FFI (section 2.3)

Listing 4.2 and Listing 4.3 show the compiled code of the device code in Listing
4.1. Noticed function run_bodies is not compiled since it is a host function. In the
compiled code, the syntax needs for pre-declaration and the keywords for annota-
tion of device functions are generated automatically.
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12 Chapter 4. Proposal

LISTING 4.1: A part of a Sanajeh program

class Body () :
pos_x: float
pos_y: float
vel_x: float
vel_y: float
force_x: float
force_y: float
mass: float

def compute_force(self):
self.force_x = 0.0
self.force_y = 0.0
DeviceAllocator.device_do(Body, Body.apply_force, self)

def apply_force(self, other: Body):
if other is not self:

dx: float = self.pos_x — other.pos_x

dy: float = self.pos_y — other.pos_y

dist: float = math.sqrt(dx = dx + dy = dy)

f: float = kGravityConstant * self.mass * other.mass / (dist =
dist + kDampeningFactor)

other.force_x += f = dx / dist

other.force_y += f + dy / dist

def body_update(self):
self.vel_x += self.force_x = kDt / self.mass
self.vel_y += self.force_y = kDt / self.mass
self .pos_x += self.vel_x = kDt
self .pos_y += self.vel_y = kDt
if self.pos_x < -1 or self.pos_x > 1:
self .vel x = —self.vel _x
if self.pos_y < -1 or self.pos_y > 1:
self .vel_y = —self.vel_y

def run_bodies():
for x in range(itr):
PyAllocator. parallel_do (Body, Body.compute_force)
PyAllocator . parallel_do (Body, Body.body_update)

LISTING 4.2: Compiled header file of the program in Listing 4.1

class Body : public AllocatorT :: Base {

public:

declare_field_types(Body, float, float, float, float, float, float
, float)

private:
Field <Body, 0> pos_x;
Field <Body, 1> pos_y;
Field <Body, 2> vel_x;
Field <Body, 3> vel_y;
Field <Body, 4> force_x;
Field <Body, 5> force_y;
Field <Body, 6> mass;

public:
__device__ void compute_force();
__device__ void apply_force(Body* other);
__device__ void body_update() ;
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LISTING 4.3: Compiled source file of the program in Listing 4.1

__device__ void Body::compute_force () {

this—>force_x = 0.0;

this —>force_y = 0.0;

device_allocator —>template device_do<Body>(&Body:: apply_force, this);
}

__device__ void Body::apply_force(Body* other) {
if (other != this) ({
float dx = this->pos_x - other->pos_x;
float dy = this—>pos_y — other—>pos_y;
float dist = sqrt((dx * dx) + (dy = dy));

float f = ((kGravityConstant = this->mass) * other->mass) / ((dist

+ dist) + kDampeningFactor);
other—>force_x += (f * dx) / dist;
other—>force_y += (f * dy) / dist;

}

__device__ void Body::body_update() {

this—>vel_x += (this—>force_x % kDt) / this->mass;

this—>vel_y += (this->force_y = kDt) / this->mass;

this —>pos_x += this->vel_x = kDt;

this —>pos_y += this—>vel_y = kDt;

if (this—>pos_x < -1 || this—>pos_x > 1) {
this—>vel_x = —-this->vel_x;

}

if (this—>pos_y < -1 || this—>pos_y > 1) {
this —>vel_y = —this—>vel_y;

}




14 Chapter 4. Proposal

4.3 An algorithm for supporting nested object

To support programs with nested object which is inefficient in DynaSOATr (section
3.3), we propose an algorithm, FieldExpander (section 5.3), to automatically expand
these fields to ones with basic types and to inline all functions related to these objects.

Listing 4.4 is a program similar to the one in Listing 4.1 but uses nested object. In
Body class, Vector class type is used for field pos, vel and force. The functions in
Vector class are called in Body class, for example in compute_force function, minus
function is called in line 44 to compute the displacement vector between two points.
Our goal is to dissemble pos, vel and force into pos_x, vel_x, force_x, pos_y, vel_y
and force_y, inline all Vector class’s member function in class Body and finally gen-
erate code close to the code in Listing 4.1.
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LISTING 4.4: Use nested object in the program in Listing 4.1

class Vector:
x: float
y: float

def __init__(self, x_, y_):
self .x = x

self .y = y_

def add(self , other: Vector) —> Vector:
self.x += other.x
self.y += other.y
return self

def minus(self, other: Vector) —> Vector:
return Vector(self.x — other.x, self.y - other.y)

def multiply(self, multiplier: float) —> Vector:
return Vector(self.x *= multiplier, self.y x= multiplier)

def divide(self, divisor: float) —> Vector:
return Vector(self.x / divisor, self.y / divisor)

# Distance from origin
def dist_origin(self) —> float:
return math.sqrt(self.x = self.x + self.y = self.y)

def to_zero(self) —> Vector:
self.x = 0.0
self.y = 0.0
return self

class Body:
pos: Vector
vel: Vector
force: Vector
mass: float

def compute_force(self):
self . force.to_zero ()
DeviceAllocator.device_do(Body, Body.apply_force, self)

def apply_force(self, other: Body):
if other is not self:
d: Vector = self.pos.minus(other.pos)
dist: float = d.dist_origin ()

f: float = kGravityConstant » self.mass * other.mass / (dist =

dist + kDampeningFactor)
other.force.add(d. multiply (f).divide (dist))

def body_update(self):
self.vel.add(self.force.multiply (kDt).divide (self.mass))
self .pos.add(self.vel.multiply (kDt))

if self.pos.x < -1 or self.pos.x > 1:
self.vel.x = —self.vel.x

if self.pos.y < -1 or self.pos.y > 1:
self.vel.y = —self.vel.y
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Chapter 5

Implementation

This chapter explained the implementation datails of Sanajeh, includes the introduc-
tion of Sanajeh’s API (section 5.1), a program for detecting device code (section 5.2),
a program for expanding nested object (section 5.3) and a compiler for compiling
Python device code into C++/CUDA code (section 5.4).

5.1

Sanajeh’s API

Sanajeh provides API for device code and host code separately.

5.1.1 Device API

Device code is not run by the Python interpreter, instead they are compiled into
according C++/CUDA code by Py2Cpp. Therefore, API for device code is only used
for recognizing purpose. The current API for device code is shown below:

device_do(cls, func, *args): Run function func on all objects of class cls
sequentially with the arguments *args. Here func has to be a function declared
in the device classes.

array_size(arr, s): Define the size s of an array arr. arr has to be a Python
list that contains elements with the same type. Sanajeh computes the total
size of the arr by the size of each element and array size s and then allocates
it on GPU memory. Listing 5.1 shows a using example. cells is a Python list
contains objects with type Cell. array_size is called to define the size of cells
is 1000. Sanajeh then allocates memory of 1000 Cell objects on GPU memory.

new(cls, *args): Create an object dynamically with type cls by calling the
constructor function with arguments *args .

destroy(obj): Free the memory of obj on the device.

Random API: Random API is provided for random number generation, for ex-
ample the rand_init function and the rand_uniform function. Corresponding
to the cuRAND library.

Math API: Math API is provided for Math computation, for example the sqrt
function. Corresponding to the CUDA Math APL

LISTING 5.1: An example of using array_size

cells: List[Cell]
DeviceAllocator.array_size(cells , 1000)
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5.1.2 Host API

Host code is executed by the Python interpreter. Sanajeh provides the following host
API:

e initialize(): Load the above shared library to Python FFI module.

* device_class(*clss): Specify the device classes through variadic arguments
*Cclss.

® parallel_do(cls, func, *args): Run function func on all objects of class
cls parallelly with the arguments of func. Here func has to be a function de-
clared in the device classes. Notice that there is no parallel_do API in device
API (section 5.1.1), since device code is executed in units of one thread and
parallelism cannot be applied further more.

® parallel_new(cls, object_num): Create objects of a class cls on device mem-
ory with the number object_num.

® do_all(cls, func): Run function func on copies of all objects of class cls
sequentially. Here func is a function which receives an object as an argument.
The object is a copy of an object of class c1s. Functions like print can be used
in func.

5.2 CallGraphAnalyzer

CallGraphAnalyzer is designed to free users of Sanajeh from explicitly specifying all
host code and device code. It uses the abstract syntax tree (AST) of Python source
code as input, tracks calling relationships between functions and using of variables,
then creates a CallGraph data structure (section 5.2.2). After user specifies the device
classes, by analyzing the CallGraph, all device code will be marked.

5.2.1 Definition of Sanajeh’s device code
We define the device code of Sanajeh as belwo.

Definition 5.2.1 (Device code) Code for declaring classes whose objects are created on the
GPU and code invoked in device code is device code.

5.2.2 CallGraph data structure

CallGraph is a data structure which has three kinds of nodes: ClassNode, FunctionNode
and VariableNode:

® ClassNode: Represents a class. There are four sets in this node, each stores
functions declared in that class, functions called in that class, variables de-
clared in that class and variable used in that class. Each element in these sets
is stored as either FunctionNode or VariableNode. Sanajeh does not support
nested class.

* FunctionNode: Represents a function. Similar to ClassNode, FunctionNode has
sets to stores variables declared and used in the function. Sanajeh does not
support nested functions too.
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* VariableNode: Represents a variable. Name and type of the variable is stored
in VariableNode. Notice a global variable cannot be used both in device and
host code.

5.2.3 Marking of device data

After the CallGraph structure is created, devices code will be marked by tracking the
declaration, calling and using relationships between the nodes. CallGraphAnalyzer
first marks all device class ClassNodes and all FunctionNodes and VariableNodes in
them as device nodes. Then all nodes used in device nodes are marked recursively
until every device node has no unmarked nodes.

5.3 FieldExpander

FieldExpander is a program used to expand nested object into dissembled fields.
Its input is Python device code with nested object and output is also Python device
code but without nested object. We add an underscore between the nested object’s
name and its fields to create new fields. For example, for a pos field with Vector
type, while Vector has field x and y, then the new fields will be pos_x and pos_y.

It is simple to rewrite the names of the fields but there are challenges when inlin-
ing all Vector class functions. We divide the inlining process into 3 steps and imple-
ment three programs for each.Normailzer for normolizing nested expressions (sec-
tion 5.3.1), Inliner for inlining non-nested functions (section 5.3.2) and Eliminator
for elminating all nested object and creating generate new fields according to the
object’s fields (section 5.3.3). Each of these three is implemented as a child class
of ast.NodeTransformer, which is provided by the ast Python library. Listing 5.2
shows an input example and Listing 5.4 is the target output for it, using the defini-
tion in Listing 5.3.

LISTING 5.2: A sample expression in program with nested object

self.vel.add(self.force.multiply (kDt).divide(self.mass))

LISTING 5.3: Definition of Vector class

class Vector:

def __init__(self, x_: float, y_: float):
self .x: float X

self.y: float y:

def add(self , other: Vector) —> Vector:
self.x += other.x
self.y += other.y
return self
return self

def multiply(self, multiplier: float) —> Vector:
return Vector(self.x x= multiplier, self.y = multiplier)

def divide(self, divisor: float) —> Vector:
return Vector(self.x / divisor, self.y / divisor)

LISTING 5.4: Target output of the code in Listing 5.2

self.vel_x += self.force_x % kDt / self.mass
self .vel_y += self.force_y » kDt / self.mass
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5.3.1 Normalizer

Normalizer normalizes nested expressions so that we call easily inline each call ex-
pressions later. Normalizer processes call nodes in all of the AST nodes and follows
the following rules:

1. If the argument node of the current call node is nested, visit it, since they are
always be evaluated first.

2. If the argument node of the current call node is not nested but an expression,
refer its type from the annotation of the function called in the argument node
and create an annotate assign node that assigns the whole expression to a new
variable with the type referred. Then visit the callee of current node and after
visiting replace the callee with a new AST Name node which represents the
new created variable.

3. If the argument node of the current call node is a variable, and current node
calls another node, create an annotate assign node that assigns the expression
of current call node to a new variable and annotate it with the return type of
the callee of current call node. Replace current node with a new AST Name
node which represents the new created variable. Then visit the next call node.

4. If the argument node of the current call node is a variable, and current node
does not call another node, return the call node itself.

Listing 5.5 and Listing 5.6 show the processing procedure of Normalizer on the code
in Listing 5.2. At first self.force.multiply(kDt) is replaced by __auto_v0 then
__auto_v0.divide(self.mass) is replaced by __auto_v1.

LISTING 5.5: Process the first call node in the argument node

__auto_v0: Vector = self.force.multiply (kDt)
self.vel.add(__auto_v0.divide(self.mass))

LISTING 5.6: Normalizer Output

__auto_v0: Vector = self.force.multiply (kDt)
__auto_vl: Vector = auto_v0.divide(self.mass)

self.vel.add(__auto_v1)

Finally all call nodes are not nested and all arguments in call nodes are variables.

5.3.2 Inliner

Inliner inlines all function calls from nested objects. It processes call nodes. It just re-
places the variable name nodes in the function implementation with the name nodes
of the arguments, then replaces the function calling with the rewritten function im-
plementation. Listing 5.7 shows the result of inliner on processing the code in Listing
5.6.

LISTING 5.7: Inliner Output

__auto_v0: Vector Vector ((self.force.x = kDt), (self.force.y * kDt))

__auto_vl: Vector Vector ((__auto_v0.x / self.mass), (__auto_v0.y / self.
mass) )
self.vel.x += __auto_vl.x

self .vel.y += __auto_vl.y
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5.3.3 Eliminator

Eliminator eliminates all objects with the types which nested objects has used. Not
only nested objects is eliminated but also part of the new created variables is elim-
inated, since some function calls may return types which nested objects has used.
Eliminator also rewrites reference to the fields of nested objects. Eliminator pro-
cesses all kinds of AST nodes under the following rules:

1. For an annotation assign node, if it annotates the variable with a type which
nested object has used, replace this node with multiple annotation nodes that
assigns each field of the nested object to the according values with according
types in the value node itself.

2. For an attribute node, if its value represents a nested object, then replace this
node with a name node. The name node’s id is the old value connects the old
attribute with an underscore.

For example, Listing 5.8 shows the output of Eliminator using the code in List-
ing 5.7 as input. The annotation assignment of __auto_vo is replaced by the as-
signments of __auto_vo_x and __auto_vo_y, using the values self.force_x * kDt
and self.force_y * kDt which are passed as arguments in the constructor func-
tions and are used for initializing the x and y fields of __auto_vo. The reference to
self.vel.xis also changed to self.vel_x, since vel is a nested object and has been
dissembled into vel_x and vel_y.

LISTING 5.8: Eliminator Output

(self.force_x = kDt)
(self.force_y = kDt)
(__auto_v0_x / self.mass)
(__auto_v0_y / self.mass)

__auto_vO0_x: float
__auto_v0_y: float
__auto_vl_x: float
__auto_vl_y: float

self.vel_x += __auto_vl_x
self .vel_y += __auto_vl_y
54 Py2Cpp

Py2Cpp is a compiler which compiles Python device code to C++/CUDA code. It
uses the check result of CallGraphAnalyzer (section 5.2) to transform the Python
AST of device code to C++ AST code (section 5.4.1). Then C++ code will be builded
from C++ AST (section 5.4.2)

5.4.1 Transform Python AST to C++ AST

The transform uses the Python ast library. The library provides is designed follow-
ing Visitor Pattern. There is a visitor function for every kind of node in the AST.
Behavior when visiting the node is defined in it. Py2Cpp checks the mark results of
CallGraphAnalyzer when visiting class, function and variable nodes. If the related
CallGraph node of a Python AST node is marked as device, all child node of that
node will be transformed into C++ AST nodes. Finally, a C++ AST of all device code
is constructed.

Data type is an important issue during the transformation. Type annotations are
supported from Python 3.6. Although Python runtime does not enforce function
and variable type annotations, since type information is important for memory allo-
cation, Sanajeh requires users to explicitly write type hints for device data. There is
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LISTING 5.9: Function for calling parallel_new on class Body

extern "C" int parallel_new_Body(int object_num) {
allocator_handle —>parallel_new <Body>(object_num) ;
return 0;

a type converter in Py2Cpp. For now, it only supports bool, int and float data types
and the array type of these types.

5.4.2 Build C++ code

After C++ AST is generated, C++ code will be generated from the C++ AST. We
generate two files from C++ AST, one is “.h” header file and another is “.cu” source
file. The “__device_ ” keyword and other syntax will be add during this process.
Other syntax includes:

* Pre-declarations of fields: Pre-declarations of fields are generated from class
AST nodes in C++ AST. Sanajeh collects field information from all of the nodes
for annotate assignments under class nodes and generates code in Listing 3.2
automatically.

¢ code for API callings: API calling in DynaSOAr uses C++ templates to pass ar-
gument like class and function. Although Python has mechanism to pass class
and function as an argument, templates cannot be called through FFI (section
2.3) except for functions. We generate a function for each class. The function
includes C++ template, which is used to call DynaSOAr API. For example,
Listing 5.9 shows this the function for calling parallel_new on class Body.

¢ code for callback: In Sanajeh’s API (section 5.1), there is a do_all function.
This function receives a Python function, say PF, while PF receives a Python
object as a parameter. The constructor function of the class, say CF, will be
included together with PF in such a lambda expression:

lambda{*args} : PF(CF({xargs}))

{*args} is the fields of the device class. This lambda expression lexp is passed
to C++ as a callback function. In c++, there is a do_all function for every class
that receives lexp and passes it to another function _do using DynaSOAr APIL
In _do function, all fields of the class are passed to lexp. As a result, lexp is
called multiple times in C++ territory until copies of all device objects are cre-
ated by CF and passed to F. Finally, the fields of those copy objects are accessed
in F. Example code for _do and do_all is shown in Listing 5.10. Py2Cpp collects
the information of fields of device classes then generates such code automati-
cally.




'S

N o

5.4. Py2Cpp 23

LISTING 5.10: _do and do_all function of class Body

void Body::_do(void (+1)(float, float, float, float, float, float, float))
{
1 (this —>pos_x, this->pos_y, this->vel_x, this->vel_y, this—>
force_x, this->force_y, this->mass);

}

extern "C" int Body_do_all(void (+1)(float, float, float, float, float,
float, float)){
allocator_handle —>template device_do<Body>(&Body::_do, 1);
return O;
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Chapter 6

Case study

This chapter explained the case study of evaluating Sanajeh. We use an N-Body
simulation as an sample program. We evaluate two factors: the complexity of a
program (section 6.1) and the efficiency of running nested object programs. (section
6.2).

6.1 Complexity of program

Since we can only write OOP GPGPU programs in either Sanajeh or DynaSOAr, we
do not take other languages into consideration. We implement N-Body programs
similarly in Sanajeh and DynaSOAr, both in OOP style with and without nested
object. Each has a single class Body. Listing 4.1, Listing 4.2 and Listing 4.3 show
the part of our implementation in Sanajeh and DynaSOAr. Figure 6.1 shows the
total number of words needed for a N-Body simulation program in Sanajeh and
DynaSOAr.

800

700 W Sanajeh (flat objects)

600

B Sanajeh (nested
objects)

500

400

679
343 364
B DynaSOAr (flat objects)
300 262
200 B DynaSOAr (nested
objects)

100

0

Total word count in a N-Body simulation
program

FIGURE 6.1: Total word count in a N-Body simulation program
(lower is better)

As shown, in Sanajeh there are few words needed for declaring functions and
fields of class Body. Sanajeh uses 262 words with flat objects and uses 343 words with
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nested objects, while DynaSOATr uses 364 words with flat objects and uses 679 words
with nested objects. Sanajeh needs less words than DynaSOAr not only because it
simplifies the field declaration and omits keywords of defining device functions,
but also because it uses Python rather than C++. Previous research has shown that
Python takes half as much time as writing a same program than C++ and the result
program is also half as long [9]. Also, the reason why programs with nested objects
are using more words can be considered as the more words using in declaring the
class of nested objects.

6.2 Efficiency in running programs with nested objects

For a program with nested objects, we evaluate the performance in three different
processing methods. The first one is manually flattening all nested objects, which
means fields of all objects have only types with basic types. This has the best perfor-
mance since all objects can be allocated in SOA data layout by DynaSOAr on GPU
memory. The second one is using FieldExpander (section 5.3), which is the algo-
rithm Sanajeh uses for processing nested objects. By FieldExpander, nested objects
are flattened automatically, and this should have same performance with the first
method in ideal case. The third one is remaining all nested objects unflattened. We
only take those programs that implements nested object in a structure data layout
into consideration since using pointer means data is allocated dynamically by the
default CUDA allocator, not DynaSOATr (described in section 3.3.3). In this case the
performance relies on the CUDA allocator, which has worse performance than Dy-
naSOAr [13].

We run 100 iterations and measure the average execution time of one iteration in
each. In each iteration program computes the force between every two bodies and
updates the position of all bodies according to the force and a constant period. We
use a NVIDIA TITAN Xp GPU with 12 GB device memory and an OS of Ubuntu
18.04.4. For the compilation of device code, we use NVCC (-O3) with CUDA Toolkit
10.1 and for the execution of host code we use Python 3.7.4. Figure 6.2 shows the
result.

We take the manually flattened program as reference and compute the ratio of
the other two to it. As shown, the automatically flattened program has nearly the
same performance with the manually flattened program while the unflattened pro-
gram takes more time for execution. As the objects number becomes large, the ratio
of the execution time of unflattened program to manually flattened becomes large.
This means there is more performance loss when using unflattened nested objects
compared to the origin one which has no nested objects. It is conceivable that Sana-
jeh can process program with nested object efficiently.
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Execution time ratio
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FIGURE 6.2: The ratio of average execution time for one iteration in

running a N-Body simulation program in Sanajeh (lower is better)
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Chapter 7

Related works

There have been high-level DSLs for GPGPU programming. Such as SPOC [2],
which uses stream processing with OCaml, and Ikra [5], which is a data-parallel
extension to Ruby. In Python, Klockner et al. designed PyCUDA and PyOpenCL [4],
two Python libraries for GPU computing based on CUDA. They are designed for ex-
perienced CUDA users and require users to write code in CUDA syntax as a string.
This is not friendly to a Python programmer who does not understand C++/CUDA
syntax. Another library for GPU computing is called CUPY [6]. Its syntax is close to
NumPy [7], a widely-used Python library for data computing. It provides the same
functionality as NumPy but executes on a GPU.

Although the above libraries have good performance in most of the cases in
GPGPU programming by Python, they are not designed and optimized for OOP.
In Python, a list of objects is stored as an Array of Structures (AOS) [3, 8]. Previous
works [1, 11, 14] have shown that switching to a Structure of Arrays (SOA) data lay-
out can speed up HPC applications by several factors compared to a traditional AOS
layout. Therefore, traditional Python implementation of a list of objects is not a good
choice for GPU programs. Our work supports objects including nested object used
in GPGPU programs. We use DynaSOAr [13] as memory allocator, which allocates
memory dynamically with SoA performance characteristics.






31

Chapter 8

Conclusion

OOP style has been regarded as inefficient to be applied in GPGPU programs, which
take performance into consideration. DynaSOAr has proved that OOP programs can
also achieve competitive performance under a model called SMMO. Programs with
nested object are common use cases of OOP but It is either inefficient or hard to
write GPGPU programs with nested object in DynaSOAr. programmers must also
adhere to a certain coding style and follow certain coding conventions when using
DynaSOAL, including the pre-declarations of fields and the annotations for device
code.

We designed and implemented a DSL for GPGPU programming with Python
objects called Sanajeh to improve these issues in DynaSOAr. Sanajeh frees users
from expressly annotate whether code runs on the GPU or the CPU under an al-
gorithm, CallGraphAnalyzer, which automatically distinguishes host code and de-
vice code. Sanajeh provides an algorithm, Py2Cpp, which compiles Python code into
C++/CUDA code, to liberate GPGPU programmers from following the conventions
in DynaSOAr and enable users to program GPGPU programs in normal Python
style. Sanajeh does not lose performance when processing programs with nested
object under an algorithm, Fieldtransformer, which automatically expands nested
object to ones with basic types and inlines all functions related to these objects in
device code.

We evaluated Sanajeh by comparing Sanajeh and DynaSOAr on the complexity
of a similar program and by comparing the efficiency of using three different meth-
ods of dealing with a program with nested objects in Sanajeh. It shows that Sanajeh
program is easier to write than DynaSOAr and Sanajeh can process programs with
nested objects efficiently.
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Appendix A

Sanajeh sample program (N-Body)

A.1 Device code in Sanajeh

A.11 Code before expanding nested-objects

LISTING A.1: Device code of a N-Body simulation in Sanajeh

from __future__ import annotations

import math
from sanajeh import DeviceAllocator

kSeed: int = 45 # device

kMaxMass: float = 1000.0 # device

kDt: float = 0.01 # device
kGravityConstant: float = 4e-6 # device
kDampeningFactor: float = 0.05 # device

class Vector:

def __init__(self, x_: float, y_: float):
self.x: float = x_
self.y: float = y_

def add(self, other: Vector) —> Vector:
self .x += other.x
self.y += other.y
return self

def plus(self, other: Vector) —> Vector:
return Vector(self.x + other.x, self.y + other.y)

def subtract(self, other: Vector) —> Vector:
self .x —= other.x
self.y —= other.y
return self

def minus(self, other: Vector) —> Vector:
return Vector(self.x — other.x, self.y - other.y)

def scale(self, ratio: float) —> Vector:
self .x #= ratio
self.y += ratio
return self

def multiply(self, multiplier: float) —> Vector:
return Vector(self.x * multiplier, self.y x= multiplier)

def divide_by(self, divisor: float) —> Vector:
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self.x /= divisor
self.y /= divisor
return self

def divide(self, divisor: float) —-> Vector:
return Vector(self.x / divisor, self.y / divisor)

# Distance from origin
def dist_origin(self) —> float:
return math.sqrt(self.x * self.x + self.y » self.y)

def to_zero(self) —> Vector:
self.x = 0.0
self.y = 0.0
return self

class Body:

pos: Vector
vel: Vector
force: Vector
mass: float

def __init__(self, px: float, py: float, vx: float, vy: float, fx:
float , fy: float, m: float):
self .pos = Vector(px, py)
self .vel = Vector(vx, vy)
self.force = Vector(fx, fy)
self .mass = m

def Body(self, idx: int):

DeviceAllocator.rand_init (kSeed, idx, 0)

self .pos = Vector(2.0 * DeviceAllocator.rand_uniform () - 1.0,
2.0 = DeviceAllocator.rand_uniform () - 1.0)

self.vel = Vector (0.0, 0.0)

self.force = Vector (0.0, 0.0)

self .mass = (DeviceAllocator.rand_uniform() / 2.0 + 0.5) =

kMaxMass

def compute_force(self):
self.force.to_zero ()
DeviceAllocator.device_do(Body, Body.apply_force, self)

def apply_force(self, other: Body):
if other is not self:

d: Vector = self.pos.minus(other.pos)
dist: float = d.dist_origin ()
f: float = kGravityConstant * self.mass » other.mass / (dist =

dist + kDampeningFactor)
other . force.add(d. multiply (f).divide (dist))

def body_update(self):
self.vel.add(self.force.multiply (kDt).divide (self.mass))
# self.vel.add(self.force.scale(kDt).divide_by(self.mass))
self .pos.add(self.vel.multiply (kDt))
# self.pos.add(self.vel.scale(kDt))

if self.pos.x < -1 or self.pos.x > 1:
self.vel.x = —self.vel.x

if self.pos.y < -1 or self.pos.y > 1:
self .vel.y = —self.vel.y
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def kernel_initialize_bodies():
DeviceAllocator.device_class (Body)

def _update():

DeviceAllocator . parallel_do (Body, Body.compute_force)

DeviceAllocator . parallel_do (Body, Body.body_update)

A.1.2 Code after expanding nested-objects

LISTING A.2: Device code of a N-Body simulation in Sanajeh (after

expanding nested-object)

from __future__ import annotations

import math

from sanajeh import DeviceAllocator

kSeed: int = 45

kMaxMass: float = 1000.0

kDt: float = 0.01

kGravityConstant: float

4e-06

kDampeningFactor: float = 0.05

class Body () :
pos_x: float
pos_y: float
vel_x: float
vel_y: float
force_x: float
force_y: float
mass: float

def __init__(self, px: float, py: float, vx: float, vy: float, fx:

float , fy: float, m: float):
self .pos_x = px

self .pos_y = py

self.vel_x = vx

self .vel_y = vy
self.force_x = fx
self.force_y = fy

self .mass = m

def Body(self, idx: int):
DeviceAllocator.rand_init (kSeed, idx, 0)

self.pos_x

((2.0 % DeviceAllocator.rand_uniform()) - 1.0)

self .pos_y = ((2.0 % DeviceAllocator.rand_uniform()) - 1.0)
self .vel_x = 0.0

self.vel_y = 0.0

self.force_x = 0.0

self . force_y = 0.0

self .mass = (((DeviceAllocator.rand_uniform() / 2.0) + 0.5)
kMaxMass)

def compute_force(self):

self.force_
self.force_

X

y

= 0.0
= 0.0

DeviceAllocator.device_do(Body, Body.apply_force, self)

def apply_force(self, other: Body):
if (other is not self):
d_x: float = (self.pos_x — other.pos_x)
d_y: float = (self.pos_y - other.pos_y)

*
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dist: float = math.sqrt (((d_x = d_x) + (d_y = d_y)))

f: float = (((kGravityConstant * self.mass) * other.mass) / ((

dist * dist) + kDampeningFactor))
__auto_v0_x: float = (d_x = f)
__auto_v0_y: float = (d_y = f)
__auto_vl_x: float = (__auto_vO0_x / dist)
__auto_vl_y: float = (__auto_vO_y / dist)
other.force_x += __auto_v1l_x
other.force_y += __auto_vl_y

def body_update(self):
__auto_v0_x: float = (self.force_x = kDt)
__auto_v0_y: float (self.force_y = kDt)
__auto_vl_x: float = (__auto_v0_x / self.mass)
__auto_vl_y: float = (__auto_vO_y / self.mass)
self.vel_x += __auto_vl_x
self .vel_y += __auto_vl_y
__auto_v2_x: float = (self.vel_x = kDt)
__auto_v2_y: float = (self.vel_y = kDt)

self .pos_x += __auto_v2_x

self .pos_y += __auto_v2_y

if ((self.pos_x < (= 1)) or (self.pos_x > 1)):
self.vel_x = (- self.vel_x)

if ((self.pos_y < (- 1)) or (self.pos_y > 1)):
self .vel_y = (- self.vel_y)

def kernel_initialize_bodies ():
DeviceAllocator.device_class (Body)

def _update():
DeviceAllocator. parallel_do (Body, Body.compute_force)
DeviceAllocator . parallel_do (Body, Body.body_update)

A.2 Translated device code in Sanajeh

LISTING A.3: Sanajeh host code (N-Body)

#include "sanajeh_device_code.h"

AllocatorHandle<AllocatorT >* allocator_handle;
__device__ AllocatorT* device_allocator;

__device__ Body::Body(float px, float py, float vx, float vy, float fx,

float fy, float m) {
this —>pos_x = px;
this —>pos_y = py;
this—>vel_x = vx;
this—>vel_y = vy;
this —>force_x = fx;
this —>force_y = fy;
this —>mass = m;

}

__device__ Body::Body(int idx) {
curandState rand_state;
curand_init (kSeed, idx, 0, &rand_state);
this —>pos_x = (2.0 * curand_uniform(&rand_state)) -
this —>pos_y = (2.0 * curand_uniform(&rand_state)) -
this —>vel_x 0.0;
this—>vel_y = 0.0;

1.0
1.0

7

7
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this —>force_x = 0.0;

this —>force_y = 0.0;

this —>mass = ((curand_uniform(&rand_state) / 2.0) + 0.5) =
kMaxMass ;

__device__ void Body::compute_force () {
this —>force_x = 0.0;
this —>force_y = 0.0;
device_allocator —>template device_do<Body>(&Body:: apply_force,
this);
}
__device__ void Body::apply_force(Body* other) {
if (other != this) {
float d_x = this-—>pos_x - other->pos_x;
float d_y = this-—>pos_y - other—>pos_y;
float dist = sqrt((d_x = d_x) + (d_y = d_y));
float f = ((kGravityConstant * this->mass) * other->mass)
/ ((dist = dist) + kDampeningFactor);
float __auto_v0O_x = d_x = f;
float __auto_vO_y = d_y = f;

float __auto_vl_x = __auto_v0_x / dist;
float __auto_vl_y = __auto_vO_y / dist;
other—->force_x += __auto_vl_x;
other—>force_y += __auto_vl_y;

__device__ void Body::body_update() {
float __auto_v0_x = this->force_x =% kDt;
float __auto_vO_y = this->force_y = kDt;
float __auto_vl_x = __auto_v0_x / this->mass;
float __auto_vl_y = __auto_vO_y / this->mass;
this —>vel_x += __auto_vl_x;
this—>vel_y += __auto_vl_y;
float __auto_v2_x = this->vel_x % kDt;

float __auto_v2_y = this->vel_y =* kDt;

this —>pos_x += __auto_v2_x;

this ->pos_y += __auto_v2_y;

if (this—>pos_x < -1 |l this—>pos_x > 1) {
this —>vel_x = —this-—>vel_x;

}
if (this—>pos_y < -1 |l this—>pos_y > 1) {
this —>vel_y = —this—>vel_y;
}
}

void Body::_do(void (+pf)(float, float, float, float, float, float, float)
)
pf(this—>pos_x, this—>pos_y, this—>vel x, this—>vel_y, this—>
force_x , this->force_y, this->mass);

}

extern "C" int Body_do_all(void (*pf)(float, float, float, float, float,
float, float)){
allocator_handle —>template device_do<Body>(&Body::_do, pf);
return 0;

}

extern "C" int Body_Body_compute_force () {
allocator_handle —>parallel_do <Body, &Body::compute_force>();
return 0;
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}

extern "C" int Body_Body_body_update () {
allocator_handle —>parallel_do <Body, &Body::body_update>();
return 0;

}

extern "C" int parallel_new_Body(int object_num) {
allocator_handle —>parallel_new <Body>(object_num) ;
return 0;

}

extern "C" int AllocatorInitialize () {
allocator_handle = new AllocatorHandle<AllocatorT >(/*
unified_memory= */ true);
AllocatorTx dev_ptr = allocator_handle->device_pointer();
cudaMemcpyToSymbol(device_allocator , &dev_ptr, sizeof(AllocatorT=)
, 0, cudaMemcpyHostToDevice) ;
return 0;

A.3 Host code in Sanajeh

LISTING A.4: Sanajeh host code (N-Body)

from sanajeh import PyAllocator

from device_code.sanajeh_device_code_py import Body
import pygame

import sys

screen_width = 300

screen_height = 300

pygame. init ()

screen = pygame.display.set_mode ((screen_width, screen_height))
pygame. display . flip ()

# Load shared library and initialize device classes on GPU
PyAllocator.initialize ()

# Create objects on device

obn = int(sys.argv|[1])

itr = int(sys.argv[2])
PyAllocator.parallel_new (Body, obn)

def render(b):
px = int((b.pos_x + 1) = 150)
py = int((b.pos_y + 1) = 150)
pygame.draw. circle (screen, (255, 255, 255), (px, py), 2)

def clear_screen():
screen. fill ((0, 0, 0))

# Compute on device

for x in range(itr):
PyAllocator. parallel_do (Body, Body.compute_force)
PyAllocator. parallel_do (Body, Body.body_update)
PyAllocator.do_all (Body, render)

pygame. display . flip ()
clear_screen ()
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