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Programs are often bundled into a package with versions. However, versioning is a
concept that exists outside of the language semantics. This makes software evolution
a process that is vulnerable to issues, such as dependency hell, when dependencies
are updated with breaking changes. We propose a language called BatakJava, where
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Chapter 1

Introduction

As part of the software lifecycle, software go through version updates. Lehman men-
tioned continuing change as one of the laws of software evolution [16]. Through
updates, software maintainers may fix recently discovered bugs, optimize perfor-
mance, or provide new features for their downstream users. These improvements
are achieved by possibly adding new functions or classes into existing software. It
can also be achieved by modifying, fixing, or removing already defined functionali-
ties. The software update then produces a new version of the package, possibly with
different behavior. A version is then used to distinguish not only a whole software
product but also a programming unit before and after an update.

Yet, studies have shown that software updates often contain breaking changes.
Take the Java systems as an example. Most version updates in Maven repository are
shown to include breaking changes that do not allow a particular version to sub-
stitute all other existing versions [25]. It was also found that behavioral backward
incompatibilities are prevalent among Java software libraries [18].

Also, software reuse has become the norm for contemporary software develop-
ment. Software reuse is the process of creating software systems from existing soft-
ware rather than building from scratch [13]. Software reuse, including programming
languages’ libraries, has been found to provide significant positive effects on soft-
ware quality and productivity [17]. The extent of software reuse in Java is shown
to be common in almost all open source Java projects studied [9]. This is also evi-
dent with the increase of published jars in Maven’s Central repository that continues
every year1.

The combination between a constant software update and the prevalence of soft-
ware reuse leads to issues in maintaining updated dependencies. Updates of third-
party library dependencies are not regularly practiced in Java systems, especially
to fix vulnerabilities [14]. The heavy reliance of libraries results in complex inter-
dependency relationships (also called dependency hell) that may influence whether
dependencies are updated or not [14]. Existing techniques also have been observed
to be insufficient in dealing with library migration [5].

Programming languages principally only allow one version of software to be
used at a time. We argue that a single version of software is a coarse unit that leads
to extra efforts in maintaining dependencies. Suppose a programmer wants to up-
date their software to use an updated version of a library to use a particular feature
available in that version. The update might contain other changes that are not nec-
essarily needed. Such changes might break the other parts of the software or require
different versions of other dependencies.

Here, we propose programming with versions in the context of object-oriented pro-
gramming. In this concept, versions are not considered only meta-data existing
outside of the program, but an element of the context accessible by programmers.

1https://mvnrepository.com/repos/central

https://mvnrepository.com/repos/central
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By introducing the notion of version into the language semantics, each definition
made within the program is associated with a version identifier that can be statically
checked. Users can include multiple versions of the same dependency without the
need to rename them. We argue that it will allow more fine-grained control of de-
pendencies that may help programmers circumvent complex dependency’s issues.
With a more fine-grained control, programmers have the ability to avoid breaking
change in the upstream by selectively choosing which version of an implementation
they wish to use.

As proof-of-concept, we implemented a Java-based programming language Batak-
Java to illustrate this concept. Version numbers are included as an attribute of types,
explicitly annotatated on the package declaration. Through the annotation, the static
check incorporates version numbers, allowing the use of multiple versions of a pack-
age simultaneously. BatakJava is also equipped with a version inference system that
allows users to program without having to explicitly annotate version on each class
used within the program.
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Chapter 2

Background

2.1 Breaking Changes

The crux of the incompatibility that occurs during software evolution lies in breaking
changes. Figure 2.1 shows a simplified situation of a problematic dependency rela-
tion between software that involves breaking changes. (1) In the figure, an upstream
package provides some functionalities. These functionalities are used by both mid-
stream and downstream packages. (2) Afterward, the upstream package is updated
to a new version (version Y is more recent that X) with breaking changes. How-
ever, in this case, the midstream package does not adopt the update. (3) Conversely,
the downstream package attempts to adapt the new upstream package in its ver-
sion update. In most programming languages, depending on the kinds of upstream
package’s breaking changes, the new downstream package cannot be built.

An example of generic taxonomy of breaking changes proposed in [15] grouped
breaking changes into structural, behavioral, resourcing, and auxiliary. Program-
ming with versions focuses on two of these: structural and behavioral. [6] listed
the categories of API change in Java. We can correlate structural changes with API
binary compatibility and behavioral changes with API contract compatibility.

Structural changes involve the change in signature. Plenty of examples can be
found in Java. In the Google’s library Guava1, up to version 24.0, the class Graphs has
a static method equivalent(Graph,Graph) used to check the equivalence between
two Graphs. This method is then removed version 28.0 and users are expected to use
the method equals(Object) inherited from the Object.

On the level of ecosystems, the Apache Hive2 and Spark3 are both parts of the
Apache ecosystem, where Hive depends on Spark. Unfortunately, up until the time
of writing, both depend on a different version of Guava, where Spark depends on
version 14.0.1, while Hive depends on version 19.0. This can lead to both structural
or behavioral incompatibility.

To handle structural incompatibilities, the tool needs to provide the feature that
allows programmers to access the definition of the class before and after an update,
preferably inferring the correct definitions to use automatically for the users.

An example of behavioral change in Java can be found in the Android Platform
API. Up until version 18, the API provided the method set in class AlarmManager
which schedules the alarm at the specified time. Android Platform 19 changed the
behavior of set to not treat its argument as exact anymore, in its place a new method
setExact is introduced to perform that function.

In the case of behavioral incompatibilities, an update may keep the same signa-
ture even after the update. Therefore, to handle this issue, the tool cannot only allow

1https://github.com/google/guava
2https://github.com/apache/hive
3https://github.com/apache/spark

https://github.com/google/guava
https://github.com/apache/hive
https://github.com/apache/spark
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usage of multiple versions simultaneously but give the programmers a way to spec-
ify which behavior is intended, as behaviors generally cannot be checked statically.

2.2 LambdaVL

The core calculus LambdaVL [27] first introduced the notion of versions as a resource
attached to types.

Values, functions or literals, can take the form of versioned values that have dif-
ferent value depending on their version, although the base type cannot change by
version. An example of a versioned value is given as follows.

{ V3_20 = 20, V3_22 = 22 | V3_22 }

The above line denotes a versioned value that is available in the versions V3_20 and
V3_22, with value of 20 and 22 respectively. The version V3_22 after the vertical
line denotes the default value. Versioned functions can be built in LambdaVL in the
same manner.

LambdaVL provides the suspension operator ! that takes one expression and
suspends the evalution until the value is required. Given a versioned function g
and value u, both available in V3_20 and V3_22, the following program returns a
suspended computation that returns an integer value in V3_20 and V3_22.

let !f = g in
let !x = u in

!(f x)

There is also extraction expression [e.v] to extract value in the version v. For
example, the following program computes the application in the version V3_20.

let !f = g in
let !x = u in

!(f x).V3_20

Coeffect System

The calculus for LambdaVL is built on `RPCF [3], an extension of the simply-typed
lambda calculus that handles resources of types as coeffects.

The coeffect system is unfortunately not applicable for handling version in a
class-based object-oriented programming language such as Java. The coeffect sys-
tem requires a uniform type for a value across different versions. On the other hand,
a version update on a Java class can change any part of the signature of a class.
A version update may change a class’ field, constructor, and method types. These
kinds of changes cannot be handled by coeffects.
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FIGURE 2.1: Dependency relation involving breaking changes
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Chapter 3

Programming With Versions

We propose the concept of programming with versions to solve and avoid conflicts
among multiple versions of a dependency. We apply the idea of versions as a re-
source of types in the framework of object-oriented programming. We implemented
the concept in a language called BatakJava, a subset of Java with explicit version
annotations. Programs in BatakJava are compiled into Java and can use Java classes.

The concept will be introduced using a running example shown by Figure 3.1.
The example replaces the packages’ content shown in Figure 2.1 with concrete classes.
The upstream package contains the class Point, the midstream package contains de-
pends on the upstream package and provides additional utility methods to handle
Point, and the downstream package uses both the upstream and mid packages. The
example involves both structural and behavioral changes.

3.1 Example

3.1.1 Java

Listing 1 shows the class Point before and after update. The Figure 3.1 distinguishes
the before and after as version 1 and 2. It contains both structural and behavioral
changes. The constructor for the class changed from (float,float) to (float,int).
In addition, the role of the fields change from x-y axis to radius and angle. Behav-
iorally, the method body of distance(Point) adapts the change of fields by invok-
ing different methods. For brevity, the code will not include access modifier such as
public, etc.

// BEFORE UPDATE
package up;
class Point {

float x; float y;
Point(float x, float y) {

this.x = x; this.y = y; }
float getX() { return x; }
float getY() { return y; }
double distance(Point other) {

return java.lang.Math.sqrt(
/* uses getX()/getY() */ ); }

}

// AFTER UPDATE
package up;
class Point {

float r; int a;
Point(float r, int a) {

this.r = r; this.a = a; }
float getR() { return r; }
int getA() { return a; }
double distance(Point other) {

return java.lang.Math.sqrt(
/* uses getR()/getAngle() */ ); }

}

LISTING 1: The class Point in the upstream package
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The class PointEx and Utility in the midstream package are shown in Listing 2.
As shown in Figure 3.1, both these classes depend on the upstream package be-
fore update. The method rev() and equals(Point,Point), the methods getX() and
getY() that are only available before upstream’s update are invoked.

package mid;
import up.*;
class PointEx extends Point {

PointEx(float x, float y) {
super(x,y); }

Point rev() {
return new Point(getY(),getX()); }

}

package mid;
import up.*;
class Utility {

boolean equals(Point p1, Point p2) {
return (p1.getX() == p2.getX())
&& (p1.getY() == p2.getY());

}
}

LISTING 2: The classes in the midstream package

Lastly, the class Main is shown by Listing 3. Before update, the downstream
package uses the old implementation Point in the method before(). After update,
a new method after() is added where the object Point invokes getR() and also
distance (Point) from the new implementation. At the same time, in the method
before(), the class Main still uses the original Point through PointEx and Utility,
In Java, this can still be compiled by using the new Point, but it will fail during
runtime because it has two choose one particular version of Point. Selecting the old
Point will cause error in the method after(). while selecting the new Point will
cause error in the method before().

In this situation, Main’s programmers have several options. Option one is to
reverse its update of adding after() and wait until the midstream package adopts
the new upstream. Option two is to forcefully rename its dependencies using some
external tools.

// BEFORE UPDATE
package down;
import up.*; // upstream before update
import mid.*;
class Main {

void before() {
Point p1 = new Point(0,0);
PointEx e = new PointEx(0,1);
Point p2 = e.rev();
double d = p1.distance(p2);
boolean b = Utility.equals(p1,p2); }

}

// AFTER UPDATE
package down.*;

import up.*; // upstream after update
import mid.*;
public class Main {

void before() {
PointEx e1 = new PointEx(0,0);
PointEx e2 = new PointEx(0,1);
double d =

e1.rev().distance(e2.rev());
boolean b = Utility.equals(

e1.rev(),e2.rev()); }
void after() {

Point p1 = new Point(1,0);
Point p2 = new Point(1,90)
float f = p1.getR();
double d = p1.distance(p2); }

}

LISTING 3: The class Main in the downstream package

3.1.2 BatakJava

The code and compilation of the upstream package before update are shown by List-
ing 4. The first implementation of the upstream package is annotated with ver 1 on
its package declaration. During compilation, the version annotation will propagate
to each class declaration made within the package, attaching version onto each class.
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The compiler also finds the appropriate version selection for every BatakJava type
access in the program. In the BatakJava class Point, a version needs to be selected
for each instance of Point itself. But, in the current context there is only version
1 of the class Point, so all instances of Point are replaced by the version specific
class Point_ver_1. Compiling the class Point will result in two classes, Point and
Point_ver_1. The generated class Point is used to distinguish BatakJava from Java
classes, while Point_ver_1 is the class Point with the specific version attached to it.

// SURFACE LANGUAGE
package up ver 1;
class Point {

float x; float y;
Point(float x, float y) {

this.x = x; this.y = y; }
float getX() { return x; }
float getY() { return y; }
double distance(Point other) {

return java.lang.Math.sqrt(
/* uses getX()/getY() */ ); }

}
// COMPILATION RESULT
package up;

class Point {
boolean BATAKJAVACLASS; boolean VER_1;

}
class Point_ver_1 {

float x; float y;
Point_ver_1(float x, float y) {

this.x = x; this.y = y; }
float getX() { return x; }
float getY() { return y; }
double distance(Point_ver_1 other) {

return java.lang.Math.sqrt(
/* uses getX()/getY() */ ); }

}

LISTING 4: Compilation of the upstream package version 1

The code and compilation of the midstream package are shown by Listing 5. We
annotate the implementation of the package with ver 1, treating it as the first version.
The compilation of PointEx and Utility generate the class PointEx, PointEx_ver_1
and Utility, Utility_ver_1 respectively. The generated classes PointEx and Uti
litymark them as BatakJava classes, while PointEx_ver_1 and PointUtility_ver_1
are the version attached classes. Since there is only version 1 available for every in-
volved class, the compilation replaces all instances of Point, PointEx, and Utility
with Point_ver_1, PointEx_ver_1, and Utility_ver_1 respectively. Beside from
annotating the type access, methods that return BatakJava class are also annotated
with version, as shown by the method rev_ver_1 that returns the class Point_ver_1.

The code and compilation of the downstream package are shown by Listing 6.
The implementation of the package is also annotated with ver 1. The compila-
tion of Main generates the class Main and Main_ver_1. The generated class Main
marks the class as a BatakJava class and Test_ver_1 is the version attached class.
Similar as in the upstream and midstream package, the compilation replaces all
instances of Point, PointEx, and Utility with the only available version specific
classes Point_ver_1, PointEx_ver_1, and Utility_ver_1.

At this point, the program written in BatakJava works identical to the Java pro-
gram before the update, different only in the version annotation attached to each
type access.

Next, the code and compilation of the updated upstream package that contain
breaking changes are shown by Listing 7. To separate the compilation result from
overwriting the older implementation (Point_ver_1), the package declaration is an-
notated differently with ver 2. The compilation will result in Point and Point_ver_2.
The generated class Point updates the older class’ field VER_1 into VER_2, annotating
it with the most recent version. All instances of Point in Point_ver_2 are replaced
by Point_ver_2 because in this case, the context is limited only to version 2 of the
class Point.
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package mid ver 1;
import up.*; // only ver.1 available
class PointEx extends Point {

PointEx(float x, float y) {
super(x,y); }

Point rev() {
return new Point(getY(),getX()); }

}
class Utility {

boolean equals(Point p1, Point p2) {
return (p1.getX() == p2.getX())
&& (p1.getY() == p2.getY());

}
}

// COMPILATION RESULT
package mid;
import up.*; // only ver.1 available

class PointEx {
boolean BATAKJAVACLASS; boolean VER_1;

}
class PointEx extends Point_ver_1 {

PointEx_ver_1(float x, float y) {
super(x,y); }

Point_ver_1 reverse_ver_1() {
return new Point_ver_1(
getX(), getY()); }

}
class Utility {

boolean BATAKJAVACLASS; boolean VER_1;
}
class Utility_ver_1 {

boolean equals(
Point_ver_1 p1, Point_ver_1 p2) {

return (p1.getX() == p2.getX())
&& (p1.getY() == p2.getY()); }

}

LISTING 5: Compilation of the midstream package version 1

package down ver 1;
import up.*; // only ver.1 available
import mid.*;
class Main {

void before() {
Point p1 = new Point(0,0);
PointEx e = new PointEx(0,1);
Point p2 = e.rev();
double d = p1.distance(p2);
boolean b = Utility.equals(a,c); }

}

// COMPILATION RESULT
package down;
import up.*; // only ver.1 available

import mid.*;
class Main {

boolean BATAKJAVACLASS; boolean VER_1;
}
class Main_ver_1 {

void before() {
Point_ver_1 p1 = new Point_ver_1(0,0);
PointEx_ver_1 e =

new PointEx_ver_1(0,1);
Point_ver_1 p2 = e.rev();
double d = p1.distance(p2);
boolean b = Utility_ver_1.equals(a,c);

}
}

LISTING 6: Compilation of the downstream package version 1

Lastly, the code and compilation of the updated downstream package are shown
by Listing 8. The key feature of BatakJava is allowing different implementations of
the same class to be used simultaneously, during compilation and runtime. In Batak-
Java, programmers are not expected to annotate the class with versions, therefore
every Point are left as is, while the versions are inferred later during compilation. In
this case, after compilation, p1 in after() is assigned ver_2 because it also invokes
getR(). At the same time, PointEx and Utility in before() work properly because
Point_ver_1 used by these classes are also available.
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package up ver 2;
class Point {

float r; int a;
Point(float r, int a) {

this.r = r; this.a = a; }
float getR() { return r; }
int getA() { return a; }
double distance(Point other) {

return java.lang.Math.sqrt(
/* uses getR(), getAngle() */ ); }

}

// COMPILATION RESULT
package up;
class Point {

boolean BATAKJAVACLASS; boolean VER_2;
}
class Point_ver_2 {

float r; int a;
Point_ver_2(float r, int a) {

this.r = r; this.a = a; }
float getR() { return r; }
int getA() { return a; }
double distance(Point_ver_2 other) {

return java.lang.Math.sqrt(
/* uses getR(), getAngle() */ ); }

}

LISTING 7: Compilation of the upstream package version 2

package down ver 2;
import up.*; // ver.1 and 2 available
import mid.*;
class Main {

void before() {
PointEx e1 = new PointEx(1,0);
PointEx e2 = new PointEx(0,0);
double d = e1.rev()

.distance(e2.rev());
boolean b = Utility.equals(

e1.rev(), e2.rev());
}
void after() {

Point p1 = new Point(1,0);
Point p2 = new Point(1,90);
float f = p1.getR();
double d = p1.distance(p2);

}
}

// COMPILATION RESULT
package down;
import up.*; // ver.1 and 2 available
import mid.*;
class Main {

boolean BATAKJAVACLASS; boolean VER_2;
}
public class Main_ver_2 {

void before() {
PointEx_ver_1 e1 =

new PointEx_ver_1(1,0);
PointEx_ver_1 e2 =

new PointEx_ver_1(0,0);
double d = e1.rev()

.distance(e2.rev());
boolean b = Utility_ver_1.equals(

e1.rev_ver_1(), e2.rev_ver_1());
}
void after() {

Point_ver_2 p1 =
new Point_ver_2(1,0);

Point_ver_2 p2 =
new Point_ver_2(1,90);

float f = p1.getR();
double d = p1.distance(p2);

}
}

LISTING 8: Compilation of the downstream package version 2
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FIGURE 3.1: An example of the dependency relation with concrete
classes
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Chapter 4

Implementation

4.1 Overview

FIGURE 4.1: Overview of BatakJava transpiler

The overview of BatakJava compiler is shown by Figure 4.1. The compiler is im-
plemented using ExtendJ [19], an extensible Java compiler. The compiler consists
of a name checker, constraint generator, and a transpiler. First, the compiler name
checks the given program together with the imported classes. Then, the program is
passed on to the constraint generator. The generated constraints are passed to a sep-
arate constraint solver ChocoSolver [24]. The constraint generator and solver make
up the version inference system of the compiler. Lastly, the program is compiled into
Java using the solutions obtained from the solver.

The main feature of BatakJava is allowing the use of multiple versions of a class
simultaneously in the same program. Programmers are not demanded to specify a
version for each instance of class appearing in their programs, because BatakJava
compilation infers the appropriate version for each class.

Class modification in the newer version is not restricted in any way. A newer
version of a class may add new fields, constructors, or methods. It can also modify
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older fields, constructors, or methods by modifying their behaviors or signatures.
There is also no restriction to remove older fields, constructors, or methods.

The implementation of the compiler can be found in https://www.github.com/
ansharlubis/batakjava.

4.2 Syntax

The syntax of BatakJava is a subset of Java with several extensions. BatakJava ex-
tends Java’s package and import declarations. On the other hand, it puts limitations
on class body declarations and local variable declarations.

In the current implementation, versions only apply to class declarations. Other
classes such as abstract classes, interfaces, and exception classes are not supported
in BatakJava.

4.2.1 Extensions

Package Declaration

Package declarations in BatakJava require explicit versioning. A .batakjava file that
does not specify version number in the package declaration will result in compile
error. The grammar for package declarations replaces Java’s grammar.

PackageDeclaration:
package PackageName ver IntegerLiteral ;

The other non-terminals and terminals, such as PackageName and IntegerLiteral fol-
low the Java Language Specification [8]. The version annotation is still limited to
integer number, starting from 1.

An example of a package declaration in BatakJava is shown below.

package up ver 1;

The above snippet denotes that the declarations made within the following compi-
lation unit would belong to the version 1 of package up. This versioning will be
applied to the class declared within the compilation unit, allowing the system to
generate the Java code properly.

Import Declaration

BatakJava changes the import declarations of Java. Java allows two types of im-
port declarations, single-type-import declarations and type-import-on-demand declara-
tions. The former imports a single type and the latter imports all the public types
of a named package as needed. However, BatakJava limits import declarations to
type-import-on-demand declarations.

To explain the reason, let’s reexamine the Figure 2.1 where Point version 1 and 2
are available. Suppose that we declare the following single-type-import declaration.

import up.Point;

https://www.github.com/ansharlubis/batakjava
https://www.github.com/ansharlubis/batakjava
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During the compilation, the class Point within the program will eventually be tran-
spiled into either Point_ver_1 or Point_ver_2. This means that the compilation will
have to compile the import declaration as well, to make sure that the resulting Java
code be compiled by a Java compiler. Yet, by only allowing type-import-on-demand
declarations, the import declarations can be left untouched.

In addition to the usual import declarations, BatakJava also provides the syntax
to allow programmers to specify which version of the imported packages they wish
to prioritize. This is provided because a program in BatakJava may involve multi-
ple versions of packages simultaneously. BatakJava replaces Java’s rule for import
declarations. The grammar is given below.

ImportDeclaration:
TypeImportOnDemandDeclaration
TypeImportOnDemandDeclarationWithVersion

TypeImportOnDemandDeclaration:
import Name . * ;

TypeImportOnDemandDeclarationWithVersion:
import Name . * prioritizes ver IntegerLiteral ;

Supposing that the class Point belongs to the package up.*, an example of an
import declaration with version priority in BatakJava is shown below.

import up.* prioritizes ver 1;

class Test {
static void main(String[] args) { Point p = new Point(0,0); }

}

The annotation prioritizes ver 1 in the above snippet implies that if possible, the
programmer prefers that the object new Point(0,0) is instantiated with version 2 of
the class Point. This is applicable when multiple solutions for version inference are
obtained. In this way, programmers still have control over the version of imported
packages used within the compilation unit. The mechanism of prioritizes will be
explained in detail in Section 4.5.

Type Instances

BatakJava allows users to specify version for each type instance made within pro-
gram. This is done using the annotation #n, where n denotes a version number. An
example is shown below.

Point#1 p = new Point#1(0,0);

The object instantiation new Point#1(0,0) denotes instantiation for class Point ver-
sion 1, similarly the type instance Point1 on the left hand side denotes the class
Point version 1.
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4.2.2 Limitations

Member Declaration

BatakJava limits the possible member declarations made inside a class body decla-
ration, in which nested class or interface declarations are not allowed. The rule for
member declaration in BatakJava is shown below.

MemberDecl:
MethodOrFieldDecl
void Identifier VoidMethodDeclaratorRest
Identifier ConstructorDeclaratorRest

Local Variable Declaration

In Java, local variable declarations are allowed to declare one or more local variable
names, such as shown below.

Point p1, p2;

However, due to the fact that in BatakJava, both p1 and p2 may have different
versions, to simplify compilation, local variable declarations can only contain one
variable declarator. The local variable declaration rule in BatakJava is shown below.

LocalVariableDeclaration:
Type VariableDeclarator

Therefore, in BatakJava, the above example would have to be separated into two
different variable declarations.

Point p1; Point p2;

4.3 Name Checking

Name checks are performed on type declarations, type instance, and import declara-
tions with versions. In BatakJava, static name check for method and field accessibilty
are performed during version inference phase.

4.3.1 Type Declaration and Access

This checks whether there is any duplicate type declaration made within the pro-
gram and that each declared type access points to a type declaration that can be
found within the program. The check is done to ensure that the constraint genera-
tion does not attempt to generate constraints for problematic types.

4.3.2 Import Declaration

This checks whether there is any duplicate import declaration with different versions
as priority.
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4.4 Version Inference

The inference aims to find the correct version assignment for each BatakJava expres-
sion declared inside the program so that the whole program passes Java’s type check
after being transpiled using the version assignment. A program consists of multiple
compilation units and a compilation unit can consist of multiple class declarations.
Therefore, the constraints are not generated and inferred per class declaration, but
generated from all to be compiled class declarations and joined together to be in-
ferred. We took the idea from [20] that introduced approach to infer types in untyped
object-oriented programs with inheritance.

4.4.1 Variable Assignment

Solving version for each class instance inside the program requires the compiler to
also account for the type of each expression as it may differ depending on the as-
signed version, because BatakJava allows a newer version of a class to change the
type of a field and the return types of a method. Listing 9 shows an update involv-
ing field and method’s return type changes.

Listing 9 shows an update involving breaking changes. The update changes the
field and method’s return type. Listing 10 shows a package using both version 1
and 2 of up. If the inference only accounts for accessible versions, the inference will
decide that both version 1 and 2 are applicable to the variable p, when in fact the type
changes. To handle this, we also generate constraints that ensure the type between
the variable i and p.getA() are equal.

package up ver 1;
public class DifPoint {

public int a;
public DifPoint(int a) {

this.a = a; }
public int getA() { return a; }

}

package up ver 2;
public class DifPoint {

public float a;
public DifPoint(float a) {

this.a = a; }
public float getA() { return a; }

}

LISTING 9: Update with a different signature

package down ver 2;
import up.*;
public class DifMain {

public static void main(String[] args) {
DifPoint p = new DifPoint(0);
int i = p.getA();

}
}

LISTING 10: Using multiple versions with different signatures

To do so, expressions in the program are assigned two fresh variables, a version
variable Vn and a type variable Tn, where n is a natural number that starts from 0.
As an example, the variable assignment for Listing 10 is shown by Listing 11. In this
example, fresh variables are assigned to the type instances, String[] of the argu-
ment args, DifPoint of the variable declaration DifPoint p, DifPoint of the object
instantiation new DifPoint(0), and int of the variable declaration int i. Variables
are also assigned to method invocation, getA() on p. Version and type variable of
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method access such as getA() refer to the method’s return type. For the local vari-
able p, it would refer to the type DifPoint in the local variable declaration DifPoint
p = .. for its version and type variable.

LISTING 11: An example of variable assignment

From here on, we will use the notation Vvar(e) and Tvar(e) to refer to an expres-
sion e’s version and type variable, respectively.

4.4.2 Constraint

A constraint C can be:

1. A version constraint Vvar(e)
.
= n, where the version variable of expression e is

mapped to the version number n.

2. A type constraint Tvar(e)
.
= T, where the type variable of expression e is mapped

to the type T.

3. A conjunction constraint C1 ∧ C2, denoting the constraint C1 and C2.

4. A disjunction constraint C1 ∨ C2, denoting the constraint C1 or C2.

5. An unknown constraint, generated in cases where no applicable candidate map-
ping can be found for an expression. If an unknown constraint is generated, it
can be understood that the expression is not typable.

Types to Constraints

Constraints for type instances are always generated in a pair of version and type
constraints joined together as a conjunction constraint. When the inference found
a BatakJava class with multiple possible candidate versions, it will generate a dis-
junction constraint consisting of several conjunction constraints that represent each
possible candidate version.

As an example, the type instance int will generate the following constraint Vvar
(int) .

= 0 ∧ Tvar(int)
.
= int. Given two versions exist (1 and 2), a type instance of a

BatakJava class such as Point will generate the following constraint. (Vvar(Point)
.
=

1∧ Tvar(Point)
.
= Point) ∨ (Tvar(Point)

.
= 2∧ Tvar(Point)

.
= Point).

To simplify explanation, in the context of constraint generation, we will use the
following notations. cstr(e) is the constraint generated from e. Given a class t,
ver(t) returns the set of version the class t is available in.
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Constraints to Types

For some expressions, generating constraints require building new constraints based
on other expressions’ constraints. Take the expression e.m(). The constraints gener-
ated by the method invocation m() will depend on the type of e which is understood
here as the type mapped in the constraints generated by e.

To help explain the constraint generation, we use the following notation. Γ(e) re-
turns the set of version and type pair mapping for the expression e in the constraint
cstr(e). As an example, given the constraint (Vvar(Point)

.
= 1 ∧ Tvar(Point)

.
=

Point) ∨ (Tvar(Point)
.
= 2 ∧ Tvar(Point)

.
= Point), we can find the candidate types

for the type instance Point through Γ(Point). In this case, it would return {(1,
Point), (2, Point)}.

4.4.3 Constraint Generation

Literals

Literals that generate constraints include integer, floating point, character, string,
and boolean literal. Given a literal e of base type T, the expression would generate
the following constraint.

cstr(e) = (Vvar(e)
.
= 0) ∧ (Tvar(e)

.
= T)

Type Instances

A type instance is any mention of a class or type name inside the program. Con-
straints are generated from the following type instances.

In case of base types and Java classes, the version number assigned is always 0.
Given a type instance T, it will generate the following constraint.

cstr(T) = (Vvar(T)
.
= 0) ∧ (Tvar(T)

.
= T)

In case of BatakJava classes, the type instances will generate disjunction con-
straint based on its accessible versions. Given a type instance T with type t and
ver(t) = {v1, .., vn}, it will generate the following constraint.

cstr(T) = (Vvar(T)
.
= v1) ∧ (Tvar(T)

.
= t) ∨ . . . ∨ (Vvar(T)

.
= vn) ∧ (Tvar(T)

.
= t)

Since name check has been performed before this to confirm the accessibility of each
type and class, a type instance will never generate an unknown constraint.

A super instance will generate constraints based on the enclosing class declara-
tion’s superclass.

Example (1). The type instance int will generate

cstr(int) = (Vvar(int)
.
= 0) ∧ (Tvar(int)

.
= int)

Example (2). As another example, the type instance Point, where ver(Point) =
{1, 2}, will generate the following constraint.

cstr(Point) =
(
(Vvar(Point)

.
= 1) ∧ (Tvar(Point)

.
= Point)

)
∨

(Vvar(Point)
.
= 2) ∧ (Tvar(Point)

.
= Point)
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Object Instantiation

Suppose we have an object instantiation new C(a1,...,aj). The compiler searches
for applicable constructors among Γ(C). Each possible constructor is then checked
against the given arguments a1, . . . , aj. Constraints are generated based on the ap-
plicable constructor and arguments.

Example. Consider the object instantation new DifPoint(0) in Listing 10. First,
the type instance DifPoint will generate the following constraint cstr(DifPoint).

cstr(DifPoint) =
(
(Vvar(DifPoint)

.
= 1) ∧ (Tvar(DifPoint)

.
= DifPoint)

)
∨(

(Vvar(DifPoint)
.
= 2) ∧ (Tvar(DifPoint)

.
= DifPoint)

)
The compiler then search for applicable constructors in each possible type for Dif
Point. Referring back to Listing 9, the constructor’s signature is (int) and (float)
in version 1 and 2, respectively.

Next the given argument 0 generates the following constraint.

cstr(0) = (Vvar(0)
.
= 0) ∧ (Tvar(0)

.
= int)

This denotes that the possible type for 0 is int. Since int is a subtype for both int
and float, both constructors are applicable.

Therefore, this object instantatiation will generate the following constraint.

cstr(new DifPoint(0)) =(
(Vvar(DifPoint)

.
= 1) ∧ (Tvar(DifPoint)

.
= DifPoint)

∧ (Vvar(0)
.
= 0) ∧ (Tvar(0)

.
= int)

)
∨(

(Vvar(DifPoint)
.
= 2) ∧ (Tvar(DifPoint)

.
= DifPoint)

∧ (Vvar(0)
.
= 0) ∧ (Tvar(0)

.
= int)

)
∨

Super Constructor Access

A super constructor access super(a1,...,aj) made inside a class declaration class
T extends U generates constraint in a similar manner as object instantation, where
the instantiated type C is replaced by the superclass type instance U.

Example. Consider the super constructor super(x,y) in the class PointEx in
Listing 5. The enclosing class PointEx extends the class Point, which is available in
version 1 and 2 (Listing 4, 7). The constructor’s signature for Point is (float,float)
and (float,int) in version 1 and 2, respectively. Given that the arguments x and
y are both of type float, the constraint can only be built using the constructor in
Point version 1. Therefore, this super constructor access will generate the following
constraint.

cstr(super(x,y)) =(
(Vvar(Point1)

.
= 1) ∧ (Tvar(Point1)

.
= Point)

∧ (Vvar(x)
.
= 0) ∧ (Tvar(x)

.
= f loat)

∧ (Vvar(y)
.
= 0) ∧ (Tvar(y)

.
= f loat)

)
Where Point denotes the superclass on the class header class PointEx extends
Point1.
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Method Invocation

The constraint generation for method invocation depends on whether the access is
qualified or not. A qualified method invocation occurs after a "." token, such as
the method invocation getA() on new Point(0,0).getA(). On the other hand, a
non-qualified method invocation does not occur after a "." token, such as getX() in
Listing 5.

Non-qualified. In case of the non-qualified method invocation m(a1,...,aj),
the constraint generation depends on the enclosing class declaration. Let’s suppose
that the enclosing class declaration class T extends U belongs to version n.

The compiler searches for applicable methods in the enclosing class declaration
T, then traces up to the ancestor classes. If an ancestor class S happens to be a Batak-
Java class with multiple versions, the compiler branches the search to each version
of the ancestor class S. Constraints are then generated based on the applicable con-
structors and the enclosing classes where they belong to. If no applicable method is
found, then an unknown constraint is generated, prompting the compiler to stop.

Qualified. In case of the method invocation e.m(a1,..,aj), the constraint gen-
eration for m(a1,...,aj) depends on cstr(e). The qualifier expression e can be an
object instantiation, another method invocation, a field access, or a super access.

The compiler searches for applicable methods in the classes belonging to Γ(e),
also tracing the search up to the ancestor classes.

Example (1). Consider the qualified method invocation p.getA() in Listing 10.
The constraints generated by the receiver object p are as follow.

cstr(p) =
(
(Vvar(p)

.
= 1) ∧ (Tvar(p)

.
= DifPoint)

(Vvar(p)
.
= 2) ∧ (Tvar(p)

.
= DifPoint)

)
Then, we search for applicable method declarations in both DifPoint ver.1 and

2. We find getA() with signature () -> int and () -> float in ver.1 and 2, respec-
tively. Given that there are no arguments to check, both methods are considered
applicable. Hence, the following constraints are added to cstr(p.getA()).(

(Vvar(p)
.
= 1) ∧ (Tvar(p)

.
= DifPoint)

∧ (Vvar(getA())
.
= 0) ∧ (Tvar(getA())

.
= int)

)
∨(

(Vvar(p)
.
= 2) ∧ (Tvar(p)

.
= DifPoint)

∧ (Vvar(getA()
.
= 0) ∧ (Tvar(getA())

.
= f loat)

)
Note that following the return type for each version, Tvar(getA()) is mapped to int
in ver.1 and float in ver.2.

The search continues to DifPoint’s ancestor class, which is Object. Here, the
method getA() is not found, thus no additional constraints are added to cstr(p.
getA()). Additionally, since the search has reached Object, the search for applicable
methods ends. It means that cstr(p.getA()) is equal to the constraints above.

Example (2). Consider the non-qualified method invocation getX() in Listing 5.
First, the applicable method is searched in the enclosing class declaration PointEx,

where no method candidate can be found. Next, it searches for applicable methods
in the superclass Point. Due to the fact that Point is a BatakJava class, then the
search branches to both available versions of Point. The applicable method getX()
with signature () -> float is then found in Point ver.1. The following constraint
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is added to the cstr(getX()).

(Vvar(getX())
.
= 0) ∧ (Tvar(p)

.
= f loat) ∧

(Vvar(Point)
.
= 2) ∧ (Tvar(Point)

.
= Point)

Here, Point denotes the superclass instance in class PointEx extends Point.
From both Point ver.1 and 2, the method search continues to the superclass of

each class, both happen to be Object. In class Object, no applicable method is found
and the search ends.

Field and Variable Access

The constraint generation for field and variable access also depends on whether the
access is qualified or not. Unlike method invocation’s constraint generation how-
ever, once an applicable field or variable is found, be it in the enclosing method
body, class declaration, or the superclass, the search stops and does not attempt to
find any other applicable fields any further.

Non-qualified. In case of the access f, we first search for a corresponding local
variable declaration. If a local variable declaration T f; or T f = e; is found, then
cstr(f) is generated from T.

If no local variable declaration is found, then we search for an applicable field
declaration in the enclosing class declaration. If a field declaration T f; or T f = e; is
found, then a cstr(f) is generated from T.

Again, if no applicable field is found in the enclosing class declaration, we re-
cursively search for an applicable field in the ancestor class. If the ancestor class is
a class with multiple versions, we search the field in each version of the ancestor
class. If the field is found in a specific version ancestor class, then the cstr(f) will
also include a constraint on the ancestor class.

Qualified. Constraint generation for e.f is identical to method invocations, only
that unlike method invocations, we do not need to generate constraints for argu-
ments.

Example. Suppose we add a field access p1.r into the class Main in Listing 8.
The compiler searches for an applicable field in each candidate type in Γ(p1) =
{(1, Point), (2, Point)}. Going through both Point ver.1 and 2, we find that the field
r is only available in ver.2. Therefore, this type access generates the following con-
straints.

cstr(a1.r) = (Vvar(p1)
.
= 2) ∧ (Tvar(p1)

.
= Point) ∧

(Vvar(r)
.
= 0) ∧ (Tvar(r)

.
= float)

Local Variable Declaration

Suppose that the declaration type is T and the variable is initialized by e. The con-
straints generated are the pairings of the declaration type T and expression e that
fulfill the subtyping relation.

Example (1). Take the variable declaration s, where s is Point1 p = new Point2(0,
0) (Listing 4, 7). The subscripts are used here to distinguish between the declaration
type and the object instantiation.
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Here, we have

Γ(new Point2(0,0)) = {(1, Point), (2, Point)}
Γ(Point1) = {(1, Point), (2, Point)}

Given that subtyping relation is reflexive and that different versions of a class do
not have any subtyping relation between them, we obtain the following constraints.

cstr(s) =
(
(Vvar(Point1)

.
= 1) ∧ (Tvar(Point1)

.
= Point) ∧

(Bvar(new Point2(0,0))
.
= 1) ∧ (Tvar(new Point2(0,0))

.
= Point)

)
∨(

(Vvar(Point1)
.
= 2) ∧ (Tvar(Point1)

.
= Point) ∧

(Vvar(new Point2(0,0))
.
= 2) ∧ (Tvar(new Point2(0,0))

.
= Point)

)
Example (2). Suppose that the declaration s is Point1 p = new PointEx(0,0).
Here, we have

Γ(new PointEx(0)) = {(1, PointEx)}
Γ(Point1) = {(1, Point), (2, Point)}

There is one option for the left hand side, the class PointEx ver.1. Although we
know that PointEx ver.1 is a subclass of Point, given that the superclass for PointEx
ver.1 is not yet determined, constraints for both possibilites are generated. Also, the
superclass instance in PointEx’s class header is also included in the constraints.

Suppose PointEx’s class header is class PointEx extends Point2 {...}, the
variable declaration will generate the following constraints.

cstr(s) =
(
(Vvar(Point1)

.
= 1) ∧ (Tvar(Point1)

.
= Point) ∧

(Vvar(PointEx)
.
= 1) ∧ (Tvar(new PointEx(0,0)) .

= PointEx) ∧
(Vvar(Point2)

.
= 1) ∧ (Tvar(Point2)

.
= Point)

)
∨(

(Vvar(Point1)
.
= 2) ∧ (Tvar(Point1)

.
= Point) ∧

(Vvar(PointEx)
.
= 1) ∧ (Tvar(new PointEx(0,0)) .

= PointEx) ∧
(Vvar(Point2)

.
= 2) ∧ (Tvar(Point2)

.
= Point)

)
Return Statement

A return statement returns control to the invoker of a method. Constraint is gener-
ated from the return statement contained in a method declaration’s body.

Constraint generation for return statement works similarly as a variable decla-
ration, but instead of the declaration type, we check subtyping relation between the
return statement’s expression against the enclosing method’s return type.

4.4.4 Constraint Solving

Given the constraints C1, . . . , Cn generated from the expressions and statements in
the program, if any of the constraints is an empty constraint, the compilation will
fail. If none of the constraints is an empty constraint, each constraint is converted
into the class Constraint provided by ChocoSolver and joined together by conjunc-
tion. Next, the converted constraints are passed into the library’s solver.
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The solver returns a set of solution. A solution A is a mapping from version
variables to version numbers and type variables to fully qualified type names.

A = [V1
.
= v1, T1

.
= t1, . . . , Vn

.
= vn, Tn

.
= tn]

Since the solution is a mapping, for each Vi and Ti, A(Vi) = vi and A(Ti) = ti.
Example. Listing 12 shows the class DifMain with an added method. The figure

highlights the version and type variables with variations, which are V1/T1, V2/T2,
V8/T8, and V9/T9. The other variables not mentioned are mapped to primitive types
or Java classes, so their version variables are mapped to 0.

package down ver 2;
import up.*;
public class DifMain {

public boolean isZeroAngle(DifPoint p) {
return p.getA() == 0;

}
public static void main(String[] args) {

DifPoint p = new DifPoint(0);
int i = p.getA();

}
}

LISTING 12: Class DifMain with an added method

The solver returns two solutions A1 and A2 shown below.

A1 = [V1
.
= 2, T1

.
= DifPoint, V2

.
= 0, T2

.
= float,

V8
.
= 1, T2

.
= DifPoint, V9

.
= 1, T9

.
= DifPoint, . . .]

A2 = [V1
.
= 1, T1

.
= DifPoint, V2

.
= 0, T2

.
= int,

V8
.
= 1, T2

.
= DifPoint, V9

.
= 1, T9

.
= DifPoint, . . .]

We can confirm how each solution is applicable. The relation expression p.getA()
== 0f works with both implementation of the getA(). In version 1, it returns int,
so in solution A2 we have V1

.
= 1 and T2

.
= int. In version 2, the method getA()

returns float, therefore in solution A1, we have V1
.
= 2 and T2

.
= float. Differently,

int i = p.getA(); has an identical solution in both solutions. This is because the
declaration can only hold if getA() returns an int, which is only available in version
1. Hence, the set consists of two solutions.
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4.5 Code Generation

4.5.1 Preparation

To explain the code generation, we need to introduce several notations.
Given the solution A = [V1

.
= v1, T1

.
= t1, . . . , Vn

.
= vn, Tn

.
= tn]. vdom(A) =

{V1, . . . , Vn} denotes the set of version variables and tdom(A) = {T1, . . . , Tn} de-
notes the set of type variables in the domain of the solution.

Given two solutions A1 and A2, the solution A1 is larger than A2 if for each
Vi ∈ vdom(A1), A1(Vi) ≥ A2(Vi) and A1(Ti) = A2(Ti). A larger solution can be
understood as the solution that maps each class to a type with the same or newer
(larger) version number.

4.5.2 Transpilation

The transpilation for a class T in version n produces two classes, an overview class
T marking it as a BatakJava class and a versioned class T_ver_n attached with the
version number n.

Overview Class

An overview class is necessary to distinguish between a BatakJava and Java class.
By distinguishing between two, the compiler can properly generate constraints.

Listing 13 shows the structure of an overview class. The package declaration
contains the package name. The class header keeps the class name and superclass.
The body of the class contains two fields. The field BATAKJAVACLASS marks the class
as a BatakJava class and the field VER_n marks the largest version the class is defined
in.

Example. The overview class of DifMain (Listing 12) is shown by Listing 14.
Version annotaiton is removed from the package declaration. Additionally, since the
class DifMain compiled belongs to version 2 of the package, the field VER_2 is also
added.

package pkg.name;
public class T extends U {

public boolean BATAKJAVACLASS;
public boolean VER_n;

}

LISTING 13: Structure of an overview class

package down;
public class DifMain {

public boolean BATAKJAVACLASS;
public boolean VER_2;

}

LISTING 14: Overview class of DifMain

Versioned Class

A versioned class is generated from the solutions obtained from the inference.
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Example. Consider the class DifMain in Listing 12. We will show the code gen-
eration for this class. Note that the solutions for this program is as follows.

A1 = [V1
.
= 2, T1

.
= DifPoint, V2

.
= 0, T2

.
= float,

V8
.
= 1, T2

.
= DifPoint, V9

.
= 1, T9

.
= DifPoint, . . .]

A2 = [V1
.
= 1, T1

.
= DifPoint, V2

.
= 0, T2

.
= int,

V8
.
= 1, T2

.
= DifPoint, V9

.
= 1, T9

.
= DifPoint, . . .]

The transpilation removes the version annotation from the package declaration,
while import declarations do not change.

package down;
import up.*;

Then, next the transpilation attaches the version number of the package declara-
tion to the class header.

public class DifMain_ver_2 { ... }

Afterwards, the transpilation works on each class body declaration based on the
given solutions. In this example, we have two method declarations. Consider the
first method boolean isZeroAngle(DifPoint p). To transpile method declarations,
we need to filter the inference solutions based on the method’s signature and return
type. Consider the argument DifPoint p whose version/type variable are V1/T1. In
the two given solutions, V1 is mapped to a different version number, to version 1
in A2 and version 2 in A1. In this case, two methods will be generated, using each
solution.

public boolean isZeroAngle(DifPoint_ver_1 p) {...}
public boolean isZeroAngle(DifPoint_ver_2 p) {...}

The first and second method are generated from A1 and A2 respectively. Then, the
method body for each method is simply generated by attaching version according to
solution used. In the current example, the method body does not declare or return
any BatakJava class so there is no change. Therefore, the transpilation of the method
will generate these two methods.

public boolean isZeroAngle(DifPoint_ver_1 p) {
return p.getA() == 0f;

}
public boolean isZeroAngle(DifPoint_ver_2 p) {

return p.getA() == 0f;
}

Next, the transpilation for the other method void main(String[] args). In both
given solutions, the version and type variable of the method’s arguments and return
type remain the same, meaning that only one method can be generated. To choose
between the two solutions, the current implementation chooses the larger solution.
Between the solutions A1 and A2, A2 ≥ A1, so we choose this solution to transpile
the method main(String[]). The class DifPoint in the variable declaration has the
version/type variable V8/T8 and the object instantiation new DifPoint(0) has the
version/type variable V9/V9 The result of the transpilation is as follows.
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public static void main(String[] args) {
DifPoint_ver_1 p = new DifPoint_ver_1(0);
int var2 = p.getA();

}

Joining everything, the transpilation of the compilation unit containing the class
DifMain is shown by Listing 15.

package down;
import up.*;
public class DifMain_ver_2 {

public boolean isZeroAngle(DifPoint_ver_1 p) {
return p.getA() == 0f;

}
public boolean isZeroAngle(DifPoint_ver_2 p) {

return p.getA() == 0f;
}
public static void main(String[] args) {

DifPoint_ver_1 p = new DifPoint_ver_1(0);
int var2 = p.getA();

}
}

LISTING 15: Transpilation of DifMain
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Chapter 5

Case Study

5.1 DocuSign Version Conflict

We base this case on a closed issue posted on the issue page of DocuSign1. A
programmer was working on developing an application using Dropwizard, a Java
framework. This framework uses many libraries, amongst them is Jackson2, a Java
library commonly used to handle JSON. At the time of the issue, the framework
uses Jackson version 2.6.3. During development, the programmer attempted to add
another dependency, the library DocuSign3, a Java client library used to handle e-
signature. Unfortunately, DocuSign was using an older version of Jackson, version
2.4.2. This caused a java.lang.NoSuchMethodError, when the framework Drop-
wizard attempted to call the method JsonParser.isExpectedStartObjectToken(),
because this method was introduced from version 2.5. During runtime, the older
version 2.4.2 of Jackson used by DocuSign appeared to have shadowed the later ver-
sion used by Dropwizard.

The original issue was later solved by having DocuSign’s developers update
their Jackson’s. Before that, DocuSign’s dependents are bound to use the older Jack-
son’ dependency before DocuSign was updated.

We simulate the same dependency relation and attempt to solve this issue with-
out having to fiddle with DocuSign’s dependency on Jackson. Figure 5.1 shows the
simplified dependency relation between Jackson, DocuSign, and the application.

FIGURE 5.1: Version conflict involving DocuSign

1https://github.com/docusign/docusign-java-client/issues/22
2https://github.com/fasterxml
3https://www.docusign.com/

 https://github.com/docusign/docusign-java-client/issues/22
https://github.com/fasterxml
https://www.docusign.com/
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Here, we introduce two packages inside the library Jackson, com.fasterxml.
jackson.core containing the class JsonParser and com.fasterxml.jackson.data
bind containing the class ObjectMapper. The different between before and after up-
date in the class JsonParser lies in the new method isExpectedStartObjectToken()
introduced in the new version. In the class ObjectMapper, the difference lies with the
method setFilters(Object) removed in the new version. In Figure 5.1, the before
and after update are labeled by version 1 and 2.

// BEFORE UPDATE
package com.fasterxml.jackson

.core ver 1;
public class JsonParser {

public JsonParser() {}
}

// AFTER UPDATE
package com.fasterxml.jackson

.core ver 2;
public class JsonParser {

public JsonParser() {}
public boolean

isExpectedStartObjectToken()
{ return true; }

}

LISTING 16: The class JsonParser before and after update

// BEFORE UPDATE
package com.fasterxml.jackson

.databind ver 1;
public class ObjectMapper {

public ObjectMapper() {}
public void setFilters(Object obj) {}

}

// AFTER UPDATE
package com.fasterxml.jackson

.databind ver 2;
public class ObjectMapper {

public ObjectMapper() {}
}

LISTING 17: The class ObjectMapper before and after update

In Docusign, the class ApiClient uses ObjectMapper in its implementation, as
shown in Listing 18. As previously shown in Figure 5.1, this class depends on the
library Jackson before update.

package com.docusign.esign.client ver 1;
import com.fasterxml.jackson.databind.*;
public class ApiClient {

private ObjectMapper mapper;
public ApiClient() {

this.mapper = new ObjectMapper();
this.mapper.setFilters(new Object());

}
}

LISTING 18: The class ApiClient in DocuSign

The class App in the application is shown by Listing 19. Before the update,
the class only uses the class JsonParser from the library Jackson. Here, the ob-
ject invokes the method isExpectedStartObjectToken() defined in Jackson after
update. At this stage, in Java, App compiles and runs without issue. After the up-
date, the class also uses the ApiClient that depends on the older version of Jackson.
In Java, App after update can be compiled by including the new Jackson and Do-
cuSign. However, it is impossible to have the compiled program running. If we
include the new Jackson and DocuSign, the runtime will fail to find the method
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setFilters(Object) necessary in DocuSign. If we include the old Jackson and Do-
cuSign, the runtime failure mentioned in the issue will occur, where the method
isExpectedStartObjectToken() cannot be found.

// BEFORE UPDATE
package com.application ver 1;
import com.fasterxml.jackson.core.*;
public class App {

public static void main(String[] args) {
JsonParser parser = new JsonParser();
boolean b =

parser.isExpectedStartObjectToken();
}

}

// AFTER UPDATE
package com.application ver 2;
import com.fasterxml.jackson.core.*;
import com.docusign.esign.client.*;
public class App {

public static void main(String[] args) {
JsonParser parser = new JsonParser();
boolean b =

parser.isExpectedStartObjectToken();

ApiClient client = new ApiClient();
}

}

LISTING 19: The class App before and after update

The listings we have shown so far are written in BatakJava. When written in
BatakJava, the same issue does not occur. The compilation of ApiClient and version
2 of App are shown in Listing 20. As can be seen, the the version of ObjectMapper
in ApiClient is fixed to version 1, while the class of JsonParser in App is fixed to
version 2, allowing both methods to be used as long as both versions of Jackson are
included during runtime.

package com.docusign.esign.client;
import com.fasterxml.jackson.databind.*;
public class ApiClient_ver_1 {

private ObjectMapper_ver_1 mapper;
public ApiClient_ver_1() {

this.mapper = new ObjectMapper_ver_1();
this.mapper.setFilters(new Object());

}
}

package com.application;
import com.fasterxml.jackson.core.*;
import com.docusign.esign.client;
public class App_ver_2 {

public static void main(String[] args) {
JsonParser_ver_2 parser = new JsonParser_ver_2();
boolean b = parser.isExpectedStartObjectToken();

ApiClient_ver_1 client = new ApiClient_ver_1();
}

}

LISTING 20: The compiled class ApiClient and App
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Related Work

6.1 Semantic Versioning

[23] proposed semantic versioning. The idea is to give meaning to the version num-
ber used to identify software. It imposes rules on how version numbers should be
written. The triple version number major.minor.patch each represents a different
kind of update. Major for backward incompatible, minor for backward compatible,
and patch for fixes. This approach has started to be more widely adopted by devel-
opers, however, it only gives an outline for developers to describe their programs to
downstream developers. However, even with that outline [25] found in their Maven
repository study of libraries which follow semantic versioning guidelines that break-
ing changes are common, even in non-major release.

[15] argued that the semantic versioning rules which are collapsed into three inte-
gers rely heavily on the subjectivity of the developers. A more pragmatic manifesto
and developer tools are important for developers. The concept of semantic version-
ing itself may be found to be broken as kinds of upgrades are inexpressible with the
triple of integer.

6.2 Package Management Tools

Programmers generally rely on package management tools to help manage their var-
ious dependencies. These tools usually interact and replace files from outside of the
language semantics. To some extent. some programming languages’ package man-
agers are powerful enough to help programmers circumvent some of the existing
dependency’s issue. But, as they only interact from the outside, there are limits to
what a package manager can do.

Package managers attempt to alleviate some of the issues involved with com-
plicated dependencies. For example, JavaScript’s npm helps its users to resolve
overlapping direct and transitive dependencies by nesting transitive dependencies
separately1. Rust’s cargo and npm also provide a renaming feature that allows pro-
grammers to use multiple versions of the same dependency side-by-side in the same
project2,3. However, the renaming only works on the local level and does not apply
to transitive dependencies. The above two package managers also have come to
support semantic versioning.

1http://npm.github.io/npm-like-im-5/npm3/dependency-resolution.html
2https://doc.rust-lang.org/cargo/
3https://docs.npmjs.com/cli/

http://npm.github.io/npm-like-im-5/npm3/dependency-resolution.html
https://doc.rust-lang.org/cargo/
https://docs.npmjs.com/cli/


6.3. Programming Paradigm 31

Another tool is provided by Maven’s shade plugin for Java. This plugin allows
users to rename dependencies and include them in the resulting jar, usually called
an uber-jar4.

6.3 Programming Paradigm

From the perspective of programming language design, several ideas have been pro-
posed to cope with software evolution and variations.

Context-oriented Programming

Context-oriented programming [10] focuses on modularizing behavioral variations
of an object. The behavior of an object, such as dispatched methods, is adapted
dynamically following the runtime context. This paradigm treats context explicitly.
The concept of context covers wide-ranging attributes that may be spatial or tempo-
ral or even based on hardware or software. The concept has been implemented as
extensions to Java, Squeak/Smalltalk, and Common Lisp. LambdaVL can be con-
sidered to follow the same paradigm, where versions are treated as contexts.

Variational Programming

Variational programming [4] allows variations to be explicitly supported in pro-
grams. Examples of variations include code variation, such as in software product
lines, and alternative privacy policies. Values in variational programming include
choices, made up of left and right alternative. The paradigm also supports pattern
matching on choices.

Family Polymorphism

If we consider classes of different versions, we may interpret them as a family of
classes as introduced by family polymorphism [7, 11]. This can be done by encoding
program dependencies (i.e. through import) and class updates with inheritance.
However, the approach is restricted to the fact that updates cannot remove fields,
methods, or classes.

6.4 Software Product Line

A software product line [21] consists of a set of similar software products that rely on
a common code base. Ensuring all product variants satisfy a given property effi-
ciently requires analyzing the variations, instead of every single product. Several
implementation techniques have been introduced over the years, such as feature-
oriented and delta-oriented programming [28]. Software product lines techniques
do not support reconfiguring an object behavior during runtime.

Feature-oriented programming [22] introduce features. Features can be seen as
abstract subclasses or mixins. Using fea†ures, objects can be created by selecting
the desired features, hence allowing more flexibility of object creations and promote
code reuse. [2] introduced the Feature Featherweight Java, a calculus for feature-
oriented programming and stepwise refinement, where each feature can introduce a
new class or refine already defined classes with different behaviors.

4https://maven.apache.org/plugins/maven-shade-plugin/

https://maven.apache.org/plugins/maven-shade-plugin/
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Similar to feature-oriented programming, delta-oriented programming [26] al-
lows the creation of programs through the composition of a core and a set of delta
modules. The core module is composed of an implementation of the common parts,
while the delta modules provide changes to the core module. The main difference
with feature-oriented programming is that delta-oriented programming does not
only allow refinement of class’ behaviors but also allows removing code.

In contrast to software product lines, dynamic software product lines [1] inte-
grates the concept of software product lines and adaptive systems to products to be
reconfigured during runtime.

The concept of software product lines is also applicable to producing domain-
specific languages (DSLs), also called the language product lines. Several frame-
works that implement this idea include MontiCore [12] and FeatureIDE [29].
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Conclusion

Software goes through continual changes that most often than not, contain breaking
changes. In contemporary software development that is highly reliant on third-party
software, changes in the upstream providers often cause inadvertent problems for
downstream users. Downstream users suffering from dependency hell due to these
changes then are forced spend much effort to handle migrations. Unfortunately,
programming languages do not provide a mechanism that may help alleviate these
issues.

We propose BatakJava, a subset of Java that considers versions as an attribute of
a class. With this capability, a program can simultaneously use multiple versions of
the same class, allowing us to avoid conflicting dependencies and problems result-
ing from structural or behavioral breaking changes. The examples and case study in
this thesis showed the application of BatakJava in simplified real-world programs.
The capability offered by BatakJava allows programmers to write programs beyond
the bounds of conventional programming languages. In our approach, the versions
of a program are variations that can be used according to need.

More research is needed to improve this concept. From the viewpoint of design,
there are still many points to explore. The first important issue is that the current
compilation scheme creates many code clones. In the current design, if we create a
new version of a class even with no change from the previous version, the whole
class will still be generated with a different version number, creating two classes
with identical implementation but different naming. Code clones may also occur
within method and field level. Ideally, code reuse should be encouraged in which
one copy of the implementation is represented by different namings. An idea to deal
with this would be to extract common parts from different versions of the class and
use inheritance to reduce code clones.

The idea to reduce code clone through inheritance would require assigning mean-
ing to the each version number. This relates to the versioning system, another aspect
of the design that can be further improved. Currently, a version is an integer num-
ber that does not hold meaning on its own. We believe that incorporating the idea of
semantic versioning into our concept of programming with versions may be benefi-
cial. In this manner, as an example, it may be possible to express a class of a certain
range of version using one common implementation.

Additionally, the current concept where the version is explicitly assigned by the
programmer can also be replaced by automatic versioning by the compiler. This can
be done by comparing a program with already compiled versions of the program,
from where the difference can be statically analyzed and proper semantic versioning
can be assigned.

To further prove the feasibility of this concept, it should be applied to a wider
variety of cases with different sizes and kinds of breaking changes.



34 Chapter 7. Conclusion

Lastly, since BatakJava is a prototype language that attempts to work on Java,
a well-established high-level language, there are many features of Java left to be
integrated into BatakJava.
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