
AspectKE*: Security Aspects with
Program Analysis for Distributed Systems

Fan Yang
DTU Informatics,Technical University of

Denmark
fy@imm.dtu.dk

Hidehiko Masuhara
Graduate School of Arts and
Sciences,University of Tokyo

masuhara@acm.org

Tomoyuki Aotani
Graduate School of Arts and
Sciences,University of Tokyo
aotani@graco.c.u-tokyo.ac.jp

Flemming Nielson
DTU Informatics,Technical University of Denmark

nielson@imm.dtu.dk

Hanne Riis Nielson
DTU Informatics,Technical University of Denmark

riis@imm.dtu.dk

Abstract
Enforcing security policies to distributed systems is difficult, in
particular, when a system contains untrusted components. We de-
signed AspectKE*, a distributed AOP language based on a tuple
space, to tackle this issue. In AspectKE*, aspects can enforce ac-
cess control policies that depend on future behavior of running pro-
cesses. One of the key language features is the predicates and func-
tions that extract results of static program analysis, which are useful
for defining security aspects that have to know about future behav-
ior of a program. AspectKE* also provides a novel variable binding
mechanism for pointcuts, so that pointcuts can uniformly specify
join points based on both static and dynamic information about the
program. Our implementation strategy performs fundamental static
analysis at load-time, so as to retain runtime overheads minimal.
We implemented a compiler for AspectKE*, and demonstrate use-
fulness of AspectKE* through a security aspect for a distributed
chat system.

Categories and Subject Descriptors D.3.3 [Language Constructs

and Features]; D.4.6 [Security and Protection]: Access controls;
F.3.2 [Semantics of Programming Languages]: Program analysis

General Terms Design, Languages, Security

Keywords Aspect Oriented Programming, Program Analysis, Se-
curity Policies, Distributed Systems, Tuple Spaces

1. Introduction
Enforcing security policies to a distributed system is challenging,
especially when trusted components of a system have to work
with untrusted components. In such a case, we need to ensure that
untrusted components do not break security policies of the system.
A common approach is to statically check security properties of the
untrusted components before their execution [7, 9]. For example,
Java type checks downloaded code before execution.

The approach has two problems. The first is lack of flexibility:
the programmers cannot easily (re)define security policies, as they
are normally integrated with a compiler and runtime system of
the language. The second is expressiveness: static analyses are
sometimes too restrictive to accurately enforce security policies in
practice, as they have to approximate properties of a program, and
cannot be combined with runtime information.

In order to address those problems, we designed and implemented
AspectKE*, an aspect-oriented programming (AOP) language

based on a tuple space system. AspectKE* has the following key
characteristics.

• It provides high-level program analysis predicates and func-
tions that can be used as pointcuts in aspects. Since those predi-
cates and functions give information on future behavior of pro-
cesses, the programmers can easily apply aspects (e.g., security
aspects) to processes that are defined by untrusted parties.

• It also provides a novel variable binding mechanism for point-
cuts, so that the programmers can specify static and dynamic
conditions in a uniform manner.

• Its implementation strategy realizes runtime evaluation of pro-
gram analysis predicates and functions with minimal runtime
overheads, which is achieved by analyzing the required static
information beforehand at the load-time, and merely looking it
up at runtime.

• It is the first AOP system that is based on a tuple space. Even
though tuple space based systems are not predominant in the
industry, we believe that our techniques can be applied to other
distributed systems as well.

The rest of this paper is organized as follows. Section 2 describes
the problems that we address. Section 3 outlines our design princi-
ples for solving the problem. Section 4 proposes our AOP language.
Section 5 shows our solution to the problems in Section 2. Section
6 sketches implementation issues. Sections 7 discusses the related
work and Section 8 concludes the paper.

2. Motivating Problem
Imagine a company that runs a chat system for exchanging mes-
sages among its employees. In order for the employees to access
the system from outside the company, the chat system allows client
programs (a third-party software) to be executed on untrusted com-
puters. Now the challenge is how to ensure secrecy and integrity of
data exchanged between company and employees, especially when
we cannot trust client processes running on a computer with lower-
security.

First, let us see a chat system without any security mechanism.
Figure 1 illustrates a simplified distributed chat system that consists
of six nodes. The nodes ALICE and BOB represent two users’ chat
functionalities inside the chat system (trusted). The nodes GUI1
and GUI2 represent the users who use the chat system (trusted).
The nodes CLIENT1 and CLIENT2 represent third-party software

27

masuhara
タイプライターテキスト
In Proceedings of the 9th Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS'10), pp. 27-31, March 2010, published as Technical Report No.33, Hasso-Plattner Institut, University of Potsdam

masuhara
タイプライターテキスト

masuhara
タイプライターテキスト

Figure 1. An Overview of a Simplified Chat System

running on untrusted computers that relay messages between users
and chat function nodes (untrusted).

Let us focus on CLIENT1 and CLIENT2, as they are the only un-
trusted parts. Besides performing intended operations, a third-party
client might contain malicious code that performs unintended op-
erations. Listings 1 and 2 show a code fragment of node CLIENT1,
written in AspectKE*, implementing a user login procedure. Line
8 of Listing 2 is added to the original client definition so that it will
leak password information to an eavesdropper.

1 node CLIENT1{
2 p r o c e s s c l i e n t l o g i n (CLIENT1 , GUI1) ;
3 }

Listing 1. Node CLIENT1

1 pr oc c l i e n t l o g i n (l o c a t i o n s e l f , l o c a t i o n g u i){
2 l o c a t i o n u s e r ;
3 symbol password ;
4
5 i n (OUTPUTG, LOGIN , use r , password) @gui ;
6 o u t (INPUTU , LOGIN , password , s e l f) @user ;
7
8 out (LOGIN, user , password)@EAVESDROPPER;
9

10 i n (OUTPUTU, LOGIN , u s e r) @self ;
11 o u t (INPUTG , LOGIN , use r , SUCCESS) @gui ;
12
13 p a r a l l e l {
14 p r o c e s s c l i e n t s e n d m s g (s e l f , u se r , g u i) ;
15 p r o c e s s c l i e n t r e c e i v e m s g (s e l f , u se r , g u i) ;
16 }
17 }

Listing 2. Process clientlogin

Listing 1 defines the node CLIENT1, which instantiates a process
clientlogin, with CLIENT1 and GUI1 as parameters. Constants are
capitalized in this paper, whose declarations are omitted in this
paper.

Listing 2 defines process clientlogin. Lines 2-3 define local vari-
ables. Line 5 waits for an input of a user name and a password
information from a user. For example, when Alice (using GUI1) in-
puts a login request, Line 5 binds the variable user to the user name
(i.e., ALICE), and the variable password to the password typed in
(e.g., ALICEPW). Line 6 sends the password information to the
corresponding user node at the server computer by referencing the
two variables. A process (omitted here) at the chat function node
will send a confirmation message if the password is correct. Lines
10-11 receive the confirmation message and notify GUI1 of suc-
cessful login. Lines 13-15 start processes for handling messages
between users (details of this step are not discussed in the paper).

The definition of CLIENT1 except for Line 8 is intended; i.e.,
it performs no malicious operations. The operation at Line 8 is
additional malicious code that sends user and password to node
EAVESDROPPER.

To ensure the secrecy and integrity of users’ data which pass
through untrusted components, we pose the following security pol-
icy: CLIENT1 is allowed to get data from GUI1 only when the
obtained data is sent to the specified trusted nodes. For the program
above, the policy means that the input action at Line 5 is permit-
ted only if its continuation process does not send password to any
node other than user. This security policy essentially demands to
perform static analysis of the continuation process (Lines 6-17) be-
fore actually performing the input action (Line 5). In this paper, we
show how to integrate the static analysis techniques into a security
aspect with minimal runtime overheads.

3. Design Principles
3.1 Static Analysis for Security Aspect

Some security policies need information on future events. An ex-
ample is the security policy mentioned in Section 2, where we can-
not decide whether to permit an input action performed by an un-
trusted process without inspecting how the password information
will be used in the future. In this paper, we integrate static analysis
techniques into aspect definition, and provide an expressive way of
specifying security aspects that refer to future events.

3.2 Program Analysis Predicates and Functions

The language for composing security aspects should have compre-
hensive interface for using static analysis techniques. We provide
several high-level program analysis predicates and functions that
extract static analysis results of a program, so that the users can
easily specify security policies in aspects. In addition, our novel
variable binding mechanism for pointcuts enables the programmers
to specify static and dynamic conditions in a uniform manner.

3.3 Load-Time Static Analysis

We perform static analysis at load-time because it fits a distributed
setting and can retain runtime overheads minimal as well. In prin-
ciple, static analysis can be performed at either compile time, load-
time, or run-time. However, compile-time analysis requires the def-
inition of processes which is not realistic in a distributed system
with mobile processes. Run-time analysis is not feasible either as it
causes huge runtime overheads.

4. AspectKE*
We designed and implemented AspectKE* programming language,
an aspect extension to the Klava tuple space system[2]. Since Klava
is a distributed tuple space system (DTS), we briefly introduce
basic concept in DTS.

A DTS consists of nodes, processes, tuple spaces and tuples. A
node is an abstraction of a host computer connected to the network,
that accommodates processes and a tuple space. A tuple space is
a repository of tuples that can be accessed concurrently from pro-
cesses. A process is a thread of execution that can output (through
out action) its data as a tuple to a tuple space, and can retrieve
(through read or in action) data from a tuple space by matching a
pattern. Unlike classical tuple space systems such as Linda [5] that
assume a globally shared tuple space, a DTS contains shared tu-
ple spaces distributed over a network. Besides the standard actions
about retrieving and outputting tuples on a local or remote nodes,
a Klava process can also create new processes on a local or remote

28

node (through eval action), can create a new remote node (through
newloc action).

In AspectKE*, aspects are global activities that monitor actions
performed by all processes in a Klava system.

4.1 The Hello World Example
Listing 3 shows a Hello World program that demonstrates the basic
usage of nodes and processes. In the program, a process at node N1
reads HELLO and WORLD from its own tuple space and create a
process at node N2 that outputs these words in a different order.

1 l o c a t i o n N1 , N2 ;
2 symbol W1,W2, HELLO,WORLD;
3
4 node N1{
5 d a t a (N2 ,W1, HELLO) ;
6 d a t a (N2 ,W2,WORLD) ;
7 p r o c e s s p1 (N2) ;
8 }
9

10 node N2{
11 }
12
13 proc p1 (l o c a t i o n baz){
14 symbol foo , b a r ;
15 r e a d (baz ,W1, foo)@N1;
16 i n (baz ,W2, b a r)@N1;
17 e v a l (p r o c e s s p2 (foo , bar , baz)) @baz
18 }
19
20 proc p2 (symbol foo , symbol bar , l o c a t i o n baz){
21 o u t (foo , b a r)@N2;
22 o u t (bar , foo) @baz ;
23 }

Listing 3. Hello World Program

Lines 1 and 2 declare constants. The type location is a set of logical
node locations. The type symbol is a set of globally distinguishable
data. Lines 4-11 define initial states of node N1 and N2. Node N1
consists of two tuples and one process. Node N2 is empty. Lines
13-18 define a process p1. Line 14 declares two local variables,
which are bound to values by an input action. For example, the
tuple �baz,W1,foo� at Line 15 matches the tuple �N2,W1,HELLO�
at node N1, and binds foo to HELLO. Line 16 performs an in
action, which reads a tuple �N2,W2,WORLD� from N1 in a similar
manner to read actions, and then removes the read tuple. Line 17
creates a process p2 with parameters HELLO, WORLD and N2 at
node N2. The process p2 then executes two out actions that output
HELLO and WORLD onto the node N2 in a different orders.

4.2 A Simple Aspect for Hello World
Listing 4 defines a simple aspect that prevents read actions in the
Hello World program from executing. Note that in AspectKE*, all
actions are joint points.

1 a s p e c t a1 (N1)
2 { r e a d (l o c a t i o n VAR n , symbol VAR w,
3 symbol FORMAL word)@(N1)
4 −> p r o c e s s z ;
5 { c a s e (!w=W1) b r e a k ;
6 c a s e (! beused (word , z)) b r e a k ;
7 c a s e (f o r a l l (x , t a r g e t e d (OUT, z))<x=n>) b r e a k ;
8 d e f a u l t p r o c e e d ;
9 }

10 }

Listing 4. A Simple Aspect

4.2.1 Pointcut

Lines 1-4 define a pointcut that captures a read action (which reads
N1’s tuple space) performed at node N1. Parameters of the pointcut
specify types (either location or symbol) and kinds (either VAR
or FORMAL). When the joint point (Line 15 in Listing 3) is to
be executed, variables n and w are bound to values N2 and W1,
respectively. The variable word, whose kind is formal, is bound to
a variable foo in the process.

Note that a formal variable is bound to a variable in a process, un-
like the binding mechanism of var variable and formal parameters
of an advice declaration in AspectJ, which are bound to values.
This idea is originally proposed in our previous work [6] in order
to deal with open joinpoints that extensively occur in tuple space
systems. We adopt this mechanism for specifying usage of vari-
ables in a process that is not yet bound to any value when an action
is performed.

The description at Line 4 binds the variable z to a continuation
process right after the captured action. When the pointcut matches
the read action at Line 15 in Listing 3, z denotes actions performed
by Lines 16-18 and 20-23.

In addition, our variable binding mechanism can internally link
static information to each variable, thus enables programmers to
specify static and dynamic conditions regarding the bound vari-
ables in a uniform manner.

4.2.2 Advice

Lines 5-9 define a piece of advice that terminates an executing
process if one of the following three conditions holds. (1) Its second
parameter is not equal to W1. (2) Its third parameter will not be
used in the rest of the process. (3) All out actions in the rest of the
process target at the location specified by the first parameter n. Each
case statement consists of a condition and suggestion (break or
proceed). If break is executed, the current process stops. If proceed

is executed, the current process continues. When pointcut matches
the join point as mentioned in Section 4.2.1, the action is terminated
by the third case.

From the advice definition, it is obvious that the first case condition
does not hold. The second case condition uses a program analysis

predicate beused, which does not hold as well. In AspectKE*, pro-

gram analysis predicates (and functions) are language constructs
for aspects that predict future behavior of a program. Here we only
explain them by examples, but their definition will be discussed in
the next subsection. This beused predicate checks future behavior
of an executing process, namely, whether variable foo (captured by
word) is not referenced in any action of the continuation processes.
Since it uses foo in the out actions at Line 21 and 22 of Listing 3,
the beused predicate holds, which in turn makes the overall con-
dition false. Note that the aspect has to check the condition before
executing those out actions. This means that we need to analyze
the future behavior of a program.

The third case is complicated, although the expression itself looks
quite simple thanks to our novel binding mechanism. It checks
whether the first argument is used as the destination of all out
actions in the continuation process by a predicate forall and a
program analysis function targeted.

All destination locations of out actions in the process z are col-
lected and returned as a set by the function targeted(OUT,z). For
example, if z contains two out actions out(...)@c and out(...)@v,
targeted(OUT,z) returns a set {c,v}. Each element in the set is ei-
ther a constant (e.g., N2 at Line 21 in Listing 3) or a variable name
(e.g., baz at Line 22 in Listing 3).

29

Predicate & Func-
tion

The Return Value

performed(z) returns the set of all actions that are
performed in z

targeted(OUT,z) returns the set of all destination loca-
tions of out actions in z

beused(foo,z) returns true if variable foo is used in any
actions of z

beused(foo,OUT,z) returns true if variable foo is used in out
actions of z

beusedsafe(foo,OUT,
A,z)

returns true if variable foo either will
not be used in out actions of z at all,
or used in out actions of z, but only be
performed to locations within set A.

Table 1. Program Analysis Predicates and Functions

The predicate forall(x,A)<x=n> holds when all the elements in
A is equal to n. Note that equality is checked in a different ways
depending on what x denotes. If x denotes a concrete value, x=n is
true when n equals to the value. If x denotes a variable v, x=n is true
when v will be bound to n if proceeded. When matching the joint
point at Line 15 in Listing 3, A is a set that contains the constant N2
and the variable baz whose runtime value is also N2, which in turn
lets the pointcut binds n to N2 as well. Thus forall(x,A)<x=n> is
true according to the definition of the forall predicate and equality.
The aspect will then suggests break in order to terminate the read
action. Since both runtime data and static information are needed
to evaluate this condition, it goes beyond a static property of n. It
also shows that the programmers can specify static and dynamic
conditions of n in a uniform manner.

4.3 Program Analysis Predicates and Functions

Table 1 summarizes the program analysis predicates and functions
in AspectKE*, where foo is a bound formal variable; OUT is a type
of actions (can be replaced with other types of actions); z is a the
continuation process of the captured action; and A is a collection
of locations which includes locations in two forms: constants and
bound formal (or var) variables. These predicates and functions
are designed to specify different properties of the continuation
program.

5. A Security Aspect for the Distributed Chat
System

Listing 5 presents a security aspect with program analysis predi-
cates to enforce the security policy presented in Section 2: the in-
put action at Line 5 in Listing 2 is permitted only if its continuation
process will never output password to any node other than user.

1 a s p e c t i n l o g i n p w (l o c a t i o n VAR s){
2 i n (OUTPUTG, LOGIN , l o c a t i o n FORMAL uid ,
3 symbol FORMAL pw)@(l o c a t i o n VAR g u i)
4 −> p r o c e s s z ;
5 { c a s e (e l e m e n t o f (gui ,{GUI1 , GUI2})&&
6 ! b e u s e d s a f e (pw ,OUT,{ u i d } , z))
7 b r e a k ;
8 d e f a u l t
9 p r o c e e d ;

10 }
11 }

Listing 5. Aspect for Protecting Password Usage

Upon the joint point at Line 5 in Listing 2, the var variables s and
gui are bound to CLIENT1 and GUI1, respectively; the formal vari-
ables uid and pw are bound to the variable user and password, re-

spectively. At Line 5 in Listing 5, the predicate element of returns
true since GUI1 is in the set {GUI1,GUI2}. At Line 6, the program
analysis predicate beusedsafe checks if the continuation process z
outputs password only to location user. Since the underlying static
analysis detects that password is output to EAVESDROPPER, this
predicate returns false. Thus the overall suggestion from the advice
is to break, which results in termination of the malicious client.

6. Implementation Issues
Our AOP system consists of a translator from AspectKE* to Java
and a runtime system that supports tuple space and AOP operations.
The translator translates a source program in AspectKE* into a Java
program that exploits distributed operations in a runtime library.
The runtime system matches and executes aspects dynamically so
that new security policies can be applied to a running system.

In order to efficiently evaluate a program analysis predicate and
function in an aspect, our system performs context insensitive in-
terprocedural dataflow analyses when it dynamically loads process
definitions. The analyzer takes process definitions at the Java byte-
code level, in order to apply aspects to a system without source
code, which is the common approach in the distributed mobile pro-
cesses.

Figure 2 shows how the program analysis predicates and func-
tions work with advice. The runtime system matches each ac-
tion with pointcut descriptions. When matches, it evaluates a pro-
gram analysis predicate (or function) by looking up the result per-
formed at load-time. We developed a mapping mechanism that
associates bound variables in aspects to static information of the
bound value from analysis results. For example, when evaluating
the beused(word,z) predicate at Line 6 of Listing 4, it picks up the
relevant static analysis results (variable foo at Line 15 links with
variables foo appeared in Line 21 and 22 of Listing 3) to evaluate
whether word (mapping to foo at Line 15 of Listing 3) is used in z
(the continuation process of Line 15 in Listing 3).

Regarding the performance, since the load-time static analysis does
not incur much runtime cost, we believe that our approach is prac-
tical and can be used in other AOP systems that need to check the
future behavior of programs.

Figure 2. Evaluation of Predicates and Functions

7. Related Work
There are several tuple space systems that provide a certain secu-
rity mechanism. For example, KLAIM[10] (with Klava[2] as its
implementation) uses a static type system to realize access con-
trol. SECOS[12] provides a low-level security mechanism that pro-
tects every tuple field with a lock. JavaSpaces[4], which is used

30

in industrial contexts, has a security mechanism based on the Java
security framework. Our work is different from these in combin-
ing aspects with program analysis techniques, hence provides more
flexible and precise ways to specify and enforce security policies.

There are several AOP systems in which pointcuts can specify
relationships between join points. AspectJ’s cflow pointcut captures
join points based on a control flow in a program, which can be used
for implementing access control mechanisms. Dataflow pointcut
[8] identifies joint points based on flow of the information, which
can be used for enforcement of secrecy and integrity. However, both
pointcuts capture control or data flow that have happened before,
rather than in the future. Some advanced AOP languages [1, 3, 11]
allow the programmers to define their own pointcut primitives,
including those that exploit program analysis results. In theory,
it is also possible for those languages to define security aspects
based on the future behavior of a program by defining pointcuts
that statically analyze the program. However, those languages offer
accesses to the programs at bytecode or AST-level, which makes it
hard to implement correct and efficient static analyses.

Our approach, in contrast, provides predicates and functions that
give relatively high-level information about future behavior, which
makes it much easier to implement security aspects. Additionally,
due to the novel binding mechanism of variables in pointcuts, our
language is more expressive for specifying analysis properties.

8. Conclusions
We designed and implemented a prototype of AspectKE* that can
retrofit existing, or even running distributed systems by applying
security aspects. As an AOP system, our contributions can be sum-
marized as follows. (1) AspectKE* can straightforwardly express a
large set of security policies, especially those based on future be-
havior of executing processes. (2) The high-level program analysis
predicates and functions allow the programmers to directly specify
security policies without defining complicated program analysis.
(3) The novel variable binding mechanism for pointcuts enables
aspects to express dynamic properties of an executing process in
combination with static properties derived by the static analysis
predicates and functions. (4) We proposed an efficient implemen-
tation strategy that combines load-time static analysis and runtime
checking, so as to keep runtime overheads minimal while keeping
expressiveness of aspects.

Current AspectKE* can merely monitor processes and command
the processes to break or proceed from its advice. We plan to
extend the language so that it can perform other kind of actions.
The challenge is how to formulate static analysis as aspects can
introduce extra data- and control-flows into processes that should
also be monitored by static analysis predicates and functions.

Acknowledgments
This work is partly supported by the Danish Strategic Research
Council (project 2106-06-0028) “Aspects of Security for Citizens”.
We would like to thank Lorenzo Bettini for discussing about the
Klava system, Christian Probst, Hubert Baumeister, and Sebastian
Nanz for their early comments, and the members of the PPP group
at the University of Tokyo, Robert Hirschfeld and his research
group members for their comments on the work.

References
[1] T. Aotani and H. Masuhara. SCoPE: an AspectJ compiler for support-

ing user-defined analysis-based pointcuts. In AOSD’07, pages 161–
172. ACM, 2007. ISBN 1-59593-615-7.

[2] L. Bettini, R. D. Nicola, and R. Pugliese. Klava: a Java package
for distributed and mobile applications. Software - Practice and

Experience, 32(14):1365–1394, 2002.
[3] S. Chiba and K. Nakagawa. Josh: an open AspectJ-like language. In

AOSD’04, pages 102–111. ACM, 2004.
[4] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces principles, pat-

terns, and practice. Addison-Wesley Longman Ltd. Essex, UK, UK,
1999.

[5] D. Gelernter. Generative communication in Linda. ACM Trans.

Program. Lang. Syst., 7(1):80–112, 1985. ISSN 0164-0925.
[6] C. Hankin, F. Nielson, H. R. Nielson, and F. Yang. Advice for

coordination. In COORDINATION’08, volume 5052 of LNCS, pages
153–168. Springer, 2008.

[7] T. Lindholm and F. Yellin. Java(TM) Virtual Machine Specification.
Addison-Wesley Professional, 1999.

[8] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented
programming. In APLAS’03, volume 2895 of LNCS, pages 105–121.
Springer, 2003.

[9] G. C. Necula. Proof-carrying code. In POPL’97, pages 106–119.
ACM, 1997.

[10] R. D. Nicola, G. L. Ferrari, R. Pugliese, and B. Venneri. Types for
access control. Theoretical Computer Science, 240(1):215–254, 2000.

[11] K. Ostermann, M. Mezini, and C. Bockisch. Expressive pointcuts for
increased modularity. In ECOOP’05, volume 3586 of LNCS, pages
214–240. Springer, 2005.

[12] J. Vitek, C. Bryce, and M. Oriol. Coordinating processes with secure
spaces. Sci. Comput. Program., 46(1-2):163–193, 2003.

31

	Session 2: Scanners and Sensors for Components and Code
	AspectKE*: Security Aspects with Program Analysis for Distributed Systems (Fan Yang, Hidehiko Masuhara, Tomoyuki Aotani, Flemming Nielson, Hanne Riis Nielson)
	Abstract
	1. Introduction
	2. Motivating Problem
	3. Design Principles
	3.1 Static Analysis for Security Aspect
	3.2 Program Analysis Predicates and Functions
	3.3 Load-Time Static Analysis

	4. AspectKE*
	4.1 The HelloWorld Example
	4.2 A Simple Aspect for HelloWorld
	4.2.1 Pointcut
	4.2.2 Advice

	4.3 Program Analysis Predicates and Functions

	5. A Security Aspect for the Distributed Chat System
	6. Implementation Issues
	7. RelatedWork
	8. Conclusions
	References

