
Issues on Observing Aspect Effects from
Expressive Pointcuts

Hidehiko Masuhara and Tomoyuki Aotani

Graduate School of Arts and Sciences, University of Tokyo
masuhara@acm.org, aotani@graco.c.u-tokyo.ac.jp

Abstract. This paper discusses issues on interactions of aspects with
expressive pointcuts. Since expressive pointcuts specify join points based
on the results of program analysis, they should be carefully designed in
order to analyze effects of aspects and their precedence correctly. We
show examples in which aspects with expressive pointcuts interact, and
point out the required properties to those pointcuts for correct aspect
interaction. We also briefly present our approach to satisfy those proper-
ties in our SCoPE compiler, which supports expressive pointcuts within
AspectJ language.

1 Introduction

Aspect-oriented programming (AOP) languages allow more than one aspects
affect at the same point. On one hand, this enables modularization of cross-
cutting concerns that overlap the same points. On the other hand, this causes
aspect interactions. For example, assume we apply two aspects to a method,
namely a tracing aspect, which records method executions, and a memoization
aspect, which reuses previously calculated results of methods. Then those two
aspects applied to a program interact because the program could behave dif-
ferently depending on the precedence of aspects. If the tracing aspect precedes
the memoization, all invocations of the memoized methods are recorded. If the
memoization precedes the tracing, invocations with memoized arguments are not
recorded.

One of the important challenges in designing AOP languages is to support
expressive pointcuts, which specify join points based on high-level information on
a program and its execution, such as a method calling context, predicted behavior
and information flow. Those pointcuts can express programmers’ intention more
directly and can improve robustness of aspects against program evolution.

Although there are quite a few studies on the languages that support new
expressive pointcuts [1–7], interactions of aspects with expressive pointcuts are
not seriously considered. Since expressive pointcuts depend on the behavior of
a program, they should take effects from aspects into account. Moreover, the
effects from aspects should be carefully chosen in order to isolate effects from
irrelevant aspects.

1

This paper focuses on the expressive pointcuts that are based on static pro-
gram analysis, such as predicted control flow [1] and coding style rules [4]. Al-
though the following discussion assumes the pointcut and advice mechanism
in AspectJ language [8], it can be applied to other AOP mechanisms like the
inter-type declarations and to other AOP languages.

2 Expressive Pointcuts based on Static Analysis

Before discussing aspect interactions, we first review two examples that use
expressive pointcuts based on static analysis.

2.1 Expressive Pointcuts

Expressive pointcuts specify join points based on high-level information on a
program and its execution [1,9–13] in order to address the fragile pointcut prob-
lem. Those pointcuts exploit more stable information than signatures so that
trivial program modifications do not change the set of join points specified by
the pointcuts. In addition, expressive pointcuts enable the programmers to de-
scribe their intention in a more declarative manner. Further discussion on the
advantages of expressive pointcuts can be found in other literatures [7].

A typical aspects with expressive pointcuts are defined in conjunction with
regular pointcuts such as call and set. The regular pointcuts with wildcards
first specify kind and static scope of join points (e.g., “any field sets to figure
objects”). Then the expressive pointcuts restrict to the join points with certain
properties (e.g., “sets to such fields that are used for displaying figures”).

Although this paper discusses by using an AOP language that supports user-
defined expressive pointcuts [7], the raised issues are applicable to built-in ex-
pressive pointcuts. The main reason to take user-defined expressive pointcuts
as examples is that they concisely illustrate implementations of the expressive
pointcuts. Usefulness of user-defined expressive pointcuts can be found in other
literatures [2–7].

2.2 Examples

Predicted Control-Flow. pcflow is a hypothetical expressive pointcut that
predicts control flow [1]. It matches join points that are potentially reachable
from join point shadows matching the given pointcut.

Fig. 1 is an example given by Kiczales [1] that demonstrates usage of pcflow
by using a figure editor program with a display updating concern. The three
classes on the left hand side represent figures, and the aspect on the right hand
side updates a display whenever a program changes any visual property of a
figure.

The displayState pointcut represents field gets under the predicted con-
trol flow of—i.e., that are potentially performed during—the draw methods of
the Fig’s subclasses. It therefore represents field gets from Point.x, Point.y,

2

1 abstract class Fig {
2 abstract void draw ();
3 }
4 class Point extends Fig {
5 int x,y;
6 void draw () {
7 Display.plotXY(x,y);
8 }
9 }

10 class Line extends Fig {
11 Point p1,p2;
12 void draw () {
13 Display.line(p1.x, p1.y,
14 p2.x, p2.y);
15 }
16 }

1 aspect DisplayUpdating {
2 // predict control flow of
3 //Fig.draw () and find fields
4 // referenced in that control flow
5 pointcut * displayState ():
6 pcflow(
7 execution(void Fig+.draw ()))
8 && get (* Fig +.*);
9

10 //sets to such fields require
11 // display update
12 after (): set(<displayState () >) : {
13 Display.update ();
14 }
15 }

Fig. 1. Figure classes (left) and display updating aspect with pcflow (right) [1].

Line.p1 and Line.p2. The pointcut set(<displayState()>) in the advice
declaration matches all sets to the fields represented by displayState. Conse-
quently, when a program modifies a visual property (e.g.,, x of a Point object),
the aspect calls Display.update() to redraw the modified figure.

The DisplayUpdating aspect with the pcflow pointcut is more robust against
program evolution than the one defined by enumerating concrete field signatures.
Assume we modify the figure editor to support colors by adding a color field
to the Fig class, and performs “Display.setColor(color);” at the beginning
of each draw method. The DisplayUpdating aspect updates the display when
the program sets to the color field because the displayState pointcut auto-
matically includes the color field. If the advice declaration uses concrete field
names instead of the pcflow pointcut, the modification would require to change
the DisplayUpdating aspect as well.

Side-Effect Freedom. isSideEffectFree is also a hypothetical expressive
pointcut that analyzes whether a method accesses a global state. It matches a
join point when the code reachable from the shadow of the join point does not
perform field sets and gets.

Fig. 2 shows an example use of the isSideEffectFree pointcut. The
Memoization aspect is to optimize method executions by reusing the result of
a previous execution with the same argument. The memoPoint matches any
method executions that takes an integer as an argument and returns an integer
as a result, but restricted to, thanks to the isSideEffectFree pointcut, the
methods that performs no side-effecting operations.

The use of the isSideEffectFree pointcut makes the aspect more safe be-
cause it automatically excludes methods that access a global state. Otherwise,
the programmer who changes a method has to make sure that the method can
or can not be memoized, and update the pointcut if needed.

3

1 aspect Memoization{
2 Map <Signature ,Map <int ,int >> caches = ...;
3 pointcut memoPoint(int key): execution(int *(int)) && args(key)
4 && isSideEffectFree ();
5 int around(int key): memoPoint(key) {
6 // obtain the hash table associated to the current method
7 cache = caches.get(thisJoinPoint.getSignature ());
8 if (! cache.contains(key)) //if the argument is not in the table ,
9 cache.put(key ,proceed(key)); // run the method and record the result

10 return cache.get(key); //otherwise , return recorded result
11 }
12 }

Fig. 2. An aspect to reuse the results of non-side-effecting methods.

1 aspect Coloring {
2 Color Fig.color; //each figure has a color
3 before(Fig fig): this(fig)
4 && execution(void Fig+.draw ()) { // before drawing a figure ,
5 Display.setColor(fig.color); // change the current color
6 } //to the figure ’s
7 }

Fig. 3. An aspect to add colors to figures.

2.3 Languages that Support User-Defined Expressive Pointcuts

The topic of the paper—semantics of expressive pointcuts—is not only for lan-
guage designers, but also for advanced programmers. This is because studies
on AOP system enable advanced programmers to define new pointcut primi-
tives by themselves. Such systems include an extensible compiler [14], extensible
languages [2, 3] and our proposed SCoPE compiler, which supports expressive
pointcuts through the if pointcut in AspectJ [7].

3 Required Properties of Expressive Pointcuts for Aspect
Interactions

Expressive pointcuts with static analysis make aspect interactions more compli-
cated because the programs that are analyzed by the expressive pointcuts can be
affected by aspects themselves. When expressive pointcuts are poorly designed
and implemented, aspects that ought to interact could no longer interact.

Below, we summarize the required properties of expressive pointcuts for en-
abling correct aspect interactions.

3.1 Aspect Visibility

Assume we have a Coloring aspect (shown in Fig. 3) that allows individual
figures in Fig. 1 to have different colors. The aspect implements this feature
by declaring a color field in Fig class, and letting draw methods change the
drawing color to the figure’s.

4

Here, the DisplayUpdating aspect should aware of the effects from the
Coloring aspect because the latter aspect lets the draw methods perform field
gets from additional fields. This means that the pcflow pointcut should ana-
lyze the program including the effects of the Coloring aspect. Even it might
sound trivial, it is not so actually because the pointcut needs a compiled (or
woven) program to analyze, while the compiled program is generated only after
matching the pointcut.

To generalize, in order to make aspects interact correctly, the following prop-
erty should be satisfied:

Required Property 1: Effects of aspects should be visible from the analyses
of expressive pointcuts.

The property is also rationalized by the semantics of the other features in
most AOP languages that let aspects observe effects of aspects. An advice dec-
laration observes advice execution join points and join points during advice
execution. Also, as pointed out by Havinga, et al. [15], the inter-type declaration
mechanism can also observe effects of other inter-type declarations.

When an expressive pointcut of an advice declaration observes the effects of
the advice itself, it is not trivial to satisfy the property as pointed out by Klose
et al. [16]. We will discuss this in Sec. 4.1.

3.2 Delimited Target of Analysis

Assume a method that accesses no global state, and the Memoization aspect
(Fig. 2) and a tracing aspect (whose definition is not given in this paper but
obvious) applied to the method. The Memoization aspect stores the resulting
values of method executions for later uses if they have no (observable) side-effect
(as determined by using the isSideEffectFree() pointcut), and the tracing
aspect records method executions into a log file.

Depending on the precedence of those two aspects, the Memoization aspect
works differently by the following reasons:

1. When the Memoization aspect precedes the tracing aspect, memoization
should not be performed because, from the viewpoint of the Memoization,
the execution of the method is side-effecting as it includes the behavior of
the tracing aspect.

2. When the tracing aspect precedes the Memoization aspect, memoization
should be performed because the method execution from the viewpoint of
the Memoization has no side-effect.

This means that the expressive pointcut isSideEffectFree() used in the
Memoization should match the join points when the Memoization is less prece-
dent to the tracing aspect. In other words, the isSideEffectFree() pointcut
should be aware of the precedence of aspects.

Note that we do not claim which aspect should precede the other, nor that
the expressive pointcut should control the precedence of aspects. Rather, our

5

tracing (before proceed)

memoization (before proceed)

tracing (after proceed)

memoization (after proceed)

method body

(a) when tracing precedes memoization

ta
rg

et
 o

f
an

al
y
si

s

memoization (before proceed)

tracing (before proceed)

memoization (after proceed)

tracing (after proceed)

method body

(b) when memoization precedes tracing

ta
rg

et
 o

f
an

al
y
si

s

Fig. 4. Code layouts of the woven method.

claim is that, given aspect precedence (which can be controlled by using declare
precedence in ApsectJ), the isSideEffectFree() pointcut should give different
results.

In order to let the memoization aspect work only when the tracing aspect
has precedence, the isSideEffectFree pointcut should observe the effects from
aspects including aspect precedence.

One of the reasonable solutions to this problem is to let isSideEffectFree()
analyze the code only reachable from proceed in the advice body. Depending
on the aspect precedence, the code layout of the woven method will look like
Fig. 4 (a) and (b). By delimiting the targets of analysis with the code fragments
reachable from the proceed (as shown by the arrows on the side of the boxes
in the figure), the pointcut can analyze the program with correctly including or
excluding the effects of other aspects.

To generalize, the following property should be satisfied:

Required Property 2: Expressive pointcuts should be able to delimit the
target of their analysis to the code fragments that are actually executed
when aspect precedence is taken into account.

4 Aspect Interaction with SCoPE Compiler

SCoPE is a compiler that supports expressive pointcuts within AspectJ language
[7]. In SCoPE, an expressive pointcut is realized by writing a program analysis
as a condition of an if pointcut, which is a build-in construct in AspectJ, with
the help of reflection API and bytecode analysis tools. Although the if pointcut
is dynamically tested with the standard AspectJ compilers, SCoPE evaluates
those pointcuts when they do not access runtime information, leaving no runtime
overheads.

Fig. 5 and Fig. 6 show implementations of the expressive pointcuts pcflow
and isSideEffectFree shown before. In Fig. 5, pcflowGet traverses the in-
structions that are reachable from the given method, and returns true when
there is an instruction that references the field that is set by the current join
point. In Fig. 6, isSideEffectFree traverses the instructions that are reachable
from the proceed expression in the advice body, and returns false when there is
any instruction that accesses a global variable.

6

1 aspect DisplayUpdating {
2 static boolean pcflowGet(JoinPoint jp , String entry){
3 for(Method m: implsOf(entry)) //for each method implementation ,
4 for(Instruction i: m.instructions)// for each instruction ,
5 if (i is a field get && // return true if it gets from the same
6 i.hasSameSignature(jp)) //field to the current join point.
7 return true;
8 else if (i invokes method m1 && // recursively check the invoked
9 pcflowGet(jp , m1)) // method

10 return true;
11 return false; //false when no such field get
12 }
13 after (): set (* Fig +.*) &&
14 if(pcflowGet(thisJoinPoint ,
15 "execution(void Fig+.draw ())")): {
16 Display.update ();
17 }
18 }

Fig. 5. An implementation of the predicted control flow pointcut in SCoPE. (Simpli-
fied from the actual implementation, which uses a queue instead of recursively calling
pcflowGet, and a set of checked methods for preventing stack overflow.)

1 aspect Memoization{
2 pointcut memoPoint(int key): execution(int *(int)) && args(key)
3 && if(isSideEffectFree(thisJoinPoint));
4 static boolean isSideEffectFree(JoinPoint jp) {
5 for (Instruction i: traverseProceed(jp.getStaticPart ()))
6 if (i is a field set or field get)
7 return false;
8 return true;
9 }

10 ... the same field and advice declaration go here ...
11 }

Fig. 6. An implementation of Memoization aspect in SCoPE.

Below, we briefly discuss how SCoPE copes with the issues of aspect inter-
actions.

4.1 Double Compilation for Aspect Visibility

In order to make effects of aspects visible from the pointcuts, SCoPE takes
the double compilation approach. When SCoPE compiles a program, it first
generates an executable program in which all effects of aspects are woven into
base classes yet leaving all if pointcuts as dynamic tests. It then evaluates
the conditions in the if pointcuts with respect to each join point shadow and
removes dynamic tests from the executable program. Aspect visibility is achieved
by letting the if pointcuts inspect the woven program.

Our approach avoids paradoxical situations caused by self-observing aspects
in contrast with other languages that support user-defined expressive pointcuts.

First, we explain why existing languages can cause paradoxical situations.
Assume there is an expressive pointcut in an advice declaration that observes

7

the effects of the advice itself, and a language decides whether to weave the advice
based on the result of the expressive pointcut with respect to a program before
weaving aspects. If the result is true, it weaves the advice into the program, which
might change the result of the expressive pointcut to false; i.e., the advice should
not be woven into the program, which contradicts to the previous decision.

We believe the paradox is caused by the strategy to let the expressive point-
cuts analyze the programs either in which the advice is unconditionally woven, or
in which the advice is not woven at all. Hence the pointcuts can return different
results.

We avoid this paradoxical situations by letting the expressive pointcuts an-
alyze the program that conditionally executes the advice. Since our compiler
merely optimizes the conditional branches at the second compilation, it is safe
to reuse the result of the analysis with respect to the program before optimiza-
tion.

4.2 Delimited Join Point Shadows

In order to appropriately delimit the target of analysis, we are designing an API
for accessing bytecode instructions. For example, traverseProceed in Fig. 6
gives a sequence of bytecode instructions that will be executed during evaluation
of proceed in an advice body. We also offer methods for traversing bytecode
including the advice body itself, and including other preceding advice bodies.
The design and implementation of the API are still in progress.

5 Related Work

There are several AOP languages that support user-defined expressive pointcuts
[2–5]. We believe that practical programming experiences in those languages will
highlight the aspect interaction issues discussed in the paper. However, as far as
the authors understood, few of those explicitly addresses the aspect interaction
with expressive pointcuts so far.

6 Conclusion

This paper presented how expressive pointcuts based on static analysis com-
plicate aspect interactions due to the fact that the target of the analysis can
also be affected by aspects and their precedence. It also showed the two required
properties of expressive pointcuts, namely the aspect visibility and the delimited
target of analysis, for enabling aspects interact correctly.

Our solution in the SCoPE compiler is to let expressive pointcuts analyze
the woven program and to provide the high-level API for delimiting target of
analysis. We implemented the SCoPE compiler1 except for the high-level API.

1 Publicly available at http://www.graco.c.u-tokyo.ac.jp/ppp/projects/scope/ .

8

References

1. Kiczales, G.: The fun has just begun. Keynote Speech at AOSD’03 (2003)
2. Chiba, S., Nakagawa, K.: Josh: an open AspectJ-like language. In Proceedings of

AOSD’04 (2004) 102–111
3. Rho, T., Kniesel, G.: Uniform genericity for aspect languages. Technical Report

IAI-TR-2004-4, Computer Science Department III, University of Bonn (2004)
4. Wu, P., Lieberherr, K.J.: Shadow programming: Reasoning about programs using

lexical join point information. In Proceedings of GPCE’05. LNCS 3676 (2005)
5. Ostermann, K., Mezini, M., Bockisch, C.: Expressive pointcuts for increased mod-

ularity. In Proceedings of ECOOP 2005. LNCS 3586 (2005)
6. Burke, B., Brok, A.: Aspect-oriented programming and JBoss. Published on The

O’Reilly Network (2003)
7. Aotani, T., Masuhara, H.: Compiling conditional pointcuts for user-level semantic

pointcuts. In Proceedings SPLAT05 Workshop at AOSD’05 (2005) Online pro-
ceedings are available at http://www.daimi.au.dk/˜eernst/splat05/.

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In Proceedings of ECOOP’01. LNCS 2072 (2001) 327–353

9. Walker, R.J., Murphy, G.C.: Implicit context: easing software evolution and reuse.
SIGSOFT Softw. Eng. Notes 25(6) (2000) 69–78

10. Walker, R.J., Viggers, K.: Implementing protocols via declarative event patterns.
In Proceedings of FSE’04 (2004) 159–169

11. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhotäk, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace matching with
free variables to AspectJ. In Proceedings of OOPSLA’05 (2005) 345–364

12. Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., Komiya, S.: Association
aspects. In: Proceedings of AOSD’04 (2004) 16–25

13. Masuhara, H., Kawauchi, K.: Dataflow pointcut in aspect-oriented programming.
In: Proceedings of APLAS’03 (2003) 105–121

14. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: an extensible AspectJ
compiler. In Proceedings of AOSD’05 (2005) 87–98

15. Havinga, W., Nagy, I., Bergmans, L., Aksit, M.: Detecting and resolving ambigu-
ities caused by inter-dependent introductions. In Proceedings of AOSD’06 (2006)
214–225

16. Klose, K., Ostermann, K.: Back to the future: Pointcuts as predicates over
traces. In Proceedings of FOAL Workshop at AOSD’05 (2005) Online pro-
ceedings are available at http://www.cs.iastate.edu/˜ leavens/FOAL/papers-
2005/proceedings.pdf

9

