
On Type Restriction of Around Advice
and

Aspect Interference ?

Hidehiko Masuhara

Graduate School of Arts and Sciences, University of Tokyo
masuhara@acm.org

Abstract. Statically typed AOP languages restrict application of around
advice only to the join points that have conforming types. Though the
restriction guarantees type safety, it can prohibit application of advice
that is useful, yet does not cause runtime type errors. To this problem, we
present a novel weaving mechanism, called the type relaxed weaving, that
allows such advice applications while preserving type safety. This paper
discusses language design issues to support the type relaxed weaving in
AOP languages.

1 Advice Mechanism in AspectJ

The advice mechanism in aspect-oriented programming (AOP) languages is a
powerful means of modifying behavior of a program without changing the pro-
gram text. AspectJ[6] is one of the most widely-used AOP languages that support
advice mechanism. It is, in conjunction with the mechanism called the inter-type
declarations, shown to be useful for modularizing crosscutting concerns, such as
logging, profiling, persistency and enforcement[1, 3, 10, 12].

One of the unique features of the advice mechanism is the around advice,
which can change parameter and return values of join points (i.e., specific kinds
of events during program execution including method calls, constructor calls
and field accesses). With around advice, it becomes possible to define such as-
pects that directly affect values passed in the program, including caching results,
pooling resources and encrypting parameters. In object-oriented programming,
around advice is also useful to modify functions of a system that are represented
as objects by inserting proxies and wrappers, and by replacing with objects that
offer different functionality.

1.1 Example of Around Advice

We first show a typical usage of around advice by taking a code fragment (Fig. 1)
in a graphical drawing application1 that stores graphical data into a file, which
? In Proceedings of the 3rd International Workshop on Aspects, Dependencies and

Interactions (ADI’08), Paphos, Cyprus, July 2008.
1 The code fragment is taken from JHotDraw version 6.0b1, but simplified for ex-

planatory purpose.

1



void store(String fileName, Data d) {

OutputStream s = new FileOutputStream(fileName);

BufferedOutputStream output = new BufferedOutputStream(s);

output.write(d.toByteArray());

output.close();

}

Fig. 1. A code fragment that stores graphical data into a file.

PrintStream

FileOutputStream

getFD()

OutputStream

write()

BufferedOutputStream

BufferedOutputStream(s: OutputStream)

DuplicatedFileOutputStream

Fig. 2. UML class diagram of the classes that appear in the examples.

is executed when the user selects the save menu. The hierarchy of the relevant
classes is summarized in Fig. 2.

Assume we want to duplicate every file output to the console for debugging
purpose. This can be achieved by first defining a subclass of FileOutputStream
like Fig. 3, and editing the second line of the store method (Fig. 1) into the next
one.

OutputStream s = new DuplicatedFileOutputStream(fileName);

Instead of textually editing the store method, we can define an aspect that
creates DuplicatedFileOutputStream objects instead of FileOutputStream,
as shown in Fig. 4. By using the aspect, we can replace creations of objects that
are performed in many places in the program. In fact, there are several classes
in JHotDraw that create FileOutputStream in order to support different file
formats. The aspect definition can therefore achieve more modular modification.

2 The Problem: Restriction on Types of Around Advice

2.1 Restrictions for Type Safety

AspectJ guarantees type safety of around advice by type checking the body of
around advice with respect to its parameter and return types, and by checking

2



class DuplicatedFileOutputStream extends FileOutputStream {

DuplicatedFileOutputStream(String filename) { super(filename); }

void write(int b) { super.write(b); System.out.write(b); }

...override other methods that write data...

}

Fig. 3. A class that duplicates all file outputs to the console.

aspect Duplication {

FileOutputStream around(String n):

call(FileOutputStream.new(String)) && args(n) {

return new DuplicatedFileOutputStream(n);

}

}

Fig. 4. An aspect that replaces all creations of FileOutputStream with
DuplicatedFileOutputStream.

the return type of the around advice with respect to the return types of join
points which the advice is woven into.

The type checking rules can be summarized as follows. Given an around
advice declaration with return type T, pointcut P, and a return statement with
expression e:

T around(): P { ... return e; ... }

the program must satisfies the next two rules.

(AJ1) The type of e must be a subtype2 of T.
(AJ2) For each join point matching P, T must be a subtype of its return type.

For example, the next around advice is rejected by AJ1 because the type of
System.out, namely PrintStream, is not a subtype of FileOutputStream.

FileOutputStream around(): call(FileOutputStream.new(String)) {
return System.out; //of PrintStream --- type error

}

The next advice declaration is rejected by AJ2. The pointcut of
the advice matches a join point that corresponds to an expression new
FileOutputStream(...) in store (Fig. 1). Since String is not a supertype of
FileOutputStream, the advice violates AJ2.

String around(): //weaving error
call(FileOutputStream.new(String)) {

return "Hello!";
}
2 Here, we assume the subtype and supertype relations are reflexive; i.e., For any T, T

is a subtype and supertype of T.

3



aspect Redirection {

PrintStream around(): call(FileOutputStream.new(String)) {

return System.out; // of type PrintStream

}

}

Fig. 5. An aspect that returns the PrintStream object (i.e., the console) instead of
creating FileOutputStream. While current AspectJ compilers reject this aspect as type
incompatible at weaving, our type relaxed weaving accepts this.

2.2 The Problem: Useful, yet Prohibited Advice

We found that the restrictions prohibit to define some useful advice. Assume we
want to redirect the output to the console, instead of duplicating. This can be
easily achieved by editing the second line of store (Fig. 1) into the next one.

OutputStream s = System.out; //of type PrintStream <: OutputStream

This is type safe, because the field System.out is of type PrintStream, which
is a subtype of OutputStream.

However, it is not possible to do the same replacement by using AspectJ’s
around advice. The aspect declaration in Fig. 5 seems to work at first glance,
but is actually rejected by AJ2. This is because AJ2 requires the return type
of the matching join point (FileOutputStream) to be a supertype of the return
type of the advice (PrintStream). Changing the return type of the advice into
FileOutputStream does not work, because it will violate AJ1.

2.3 Most Specific Usage Type

The problem can be clarified by using the notion of the most specific usage type
of a value. We define the usage types of a value as follows. When a value is
used as a parameter or a receiver of a method or constructor, the usage type of
the value is its static parameter or receiver type, respectively. When a value is
returned from a method, the usage type is the return type of the method. The
most specific usage type of a value is such T that T is a subtype of any usage
type of the value, and when T’ is a subtype of any usage type of the value, T’
is a subtype of T.

For example, the return value from new FileOutputStream(..) in store
(Fig. 1) is used only as a parameter to the BufferedOutputStream construc-
tor. Therefore, its most specific usage type is the static parameter type of the
constructor, namely OutputStream.

The most specific usage type of an expression’s return value indicates the
upper bound of return types of replacement expression. In other words, replac-
ing the expression with another expression succeeds when the return type of
the replacement expression is a subtype of the most specific usage type. In the
store’s case, the new FileOutputStream(..) expression can be replaced with
any expression that has a subtype of OutputStream.

4



By using the most specific usage type, the problem in the previous section
can be stated as follows:

Problem. AspectJ prohibits an around advice declaration when its return type T

is not a subtype of the return type of a matching join point, even if T is a subtype
of the most specific usage type of the return value of the join point.

2.4 More Example of the Problem

The problem is not artificially crafted. It rather can be found more frequently.
Another example is around advice that wraps handlers. Java programs frequently
use anonymous class objects in order to define event handlers. For example,
the next code fragment creates a button object, and then installs a listener
object into the button object. The listener object belongs to an anonymous
class that implements the ActionListener interface. The parameter type of the
addActionListener method is ActionListener.

JButton b = new JButton();
b.addActionListener(

new ActionListener () {
public void actionPerformed(ActionEvent e) {...}

}
);

Now, assume that we want to wrap the listener object with an object of
Wrapper that also implements ActionListener. While textually inserting a con-
structor call around the new expression is type safe, the next aspect that does
the same insertion violates AJ2.

aspect WrapActionListener {
ActionListener around(): call(ActionListener+.new(..)) {
ActionListener l = proceed();
return new Wrapper(l); // Wrapper implements ActionListener

}
}

Note that the pointcut captures any construction of objects that are of a subtype
of ActionListener (cf. the plus sign after the class name means any subtype of
the class).

2.5 Generality of the Problem

While the examples are about return types of around advice in AspectJ, the
problem and proposed solution in the paper are not limited to them.

First, the problem is not limited to the return type of around advice. Since
around advice can also replace values of parameters that are captured by args

5



and target pointcuts, the same problem arises at replacing those values by using
the proceed mechanism.

Second, the problem is not limited to AspectJ. Statically-typed AOP lan-
guages that support around advice, such as CaeserJ[9] and AspectC++[11],
should also have the same problems.

Third, the problem is not limited to AOP languages. The same problem
would arise the language mechanisms that can intercept and replace values,
such as method-call interception[7] and type-safe update programming[4].

3 Type Relaxed Weaving

3.1 Basic Idea

We propose a weaving mechanism, called type relaxed weaving, that solves the
problem. The only difference from the original AspectJ is AJ2, whose new rule
is shown below.

(AJ2′) For each join point matching P, T must be a subtype of its most specific
usage type of its return value.

The type relaxed weaving accepts the aspect Redirection in Fig. 5 and
WrapActionListener in Section 2.4. For the Redirection’s case, the return
type of the advice (PrintStream) is a subtype of the most specific usage type of
the join point (OutputStream). For the WrapActionListener’s case, the return
type of the advice (ActionListener) is a subtype of the most specific usage
type of the join point (ActionListener).

3.2 Design Issues

There are several design issues that need to be addressed in order to make the
type relaxed weaving into a concrete language implementation.

Operations that “use” values. We define the next eight operations use a
value. (1) Calling a method or a constructor with the value as a parameter. (2)
Calling a method with the value as a target. (3) Returning from a method with
the value. (4) Down-casting the value. (5) Accessing (i.e., either reading from or
writing to) a field of the value. (6) Assigning the value into a field. (7) Assigning
the value into an array. (8) Throwing an exception with the value.

Note that the operations do not include assignments to local variables. This
is because, types of local variables may not be available at bytecode weaving.
Also, excluding local variable assignments can give more opportunities to type
relaxed weaving. For example, when local variable assignments are not consid-
ered as use of values, the most specific usage type of the constructor call to
FileOutputStream in the next code fragment is OutputStream, which is other-
wise FileOutputStream.

FileOutputStream s = new FileOutputStream(fileName);
BufferedOutputStream output = new BufferedOutputStream(s);

6



Usage type of an overridden method call. When a value is used as a target
object of a method call, we regard it as a usage with type T where T is the most
general supertype of the static type of the value that defines the method.

Note the usage type of a target object can be different from the target
type in the method signature that the Java compiler gives. For example, to
the method call output.write(...) in store (Fig. 1), recent Java compilers
chooses BufferedOutputStream.write(byte[]) as its method signature be-
cause BufferedOutputStream is the static type of output.

The usage type of the value of output in the call is, however, OutputStream
because it is the most general type that defines write.

Extent of value tracking. When computing the most specific usage type of a
value, we merely chase dataflow of values within a method. This is a connotation
of our previous decision that regards parameter passing as the usage of a value.

There could be further type relaxation opportunities if we took dataflow
across method calls into account. Assume that the return value from
new FileOutputStream(..) is passed as a parameter to the constructor
BufferedOutputStream(OutputStream) (as shown in Fig. 1), but the construc-
tor used the parameter as a value of type Object. Then, it is theoretically safe
to replace the value with the one of any subtype of Object.

We however did not choose this level of relaxation because its implementation
requires inter-method dataflow analysis as well as changes of method signatures,
which are not easy.

When a usage type does not match. There are two options for the weaver
when it detects that the return type of around advice is not a subtype of the
usage type of a matching join point. The one is to raise an error as the current
AspectJ compilers do. The other is not to weave the advice at the join point;
i.e., we will weave advice to only join points that have more general usage types
than the return type of the advice. Our tentative choice is the former. We believe
further experiences will reveal the advantages and disadvantages of those options.

3.3 Aspect Interaction

When more than one aspect interacts, i.e., more than one around advice decla-
ration is applicable to one join point, care must be taken about type safety.

Assume there are two around advice declarations: the one is in the
Redirection aspect (Fig. 5), and the other is as follows.

FileOutputStream around(): call(FileOutputStream.new(String)) {
FileOutputStream s = proceed();
... s.getFD() ... // getFD() is defined only in FileOutputStream
return s;

}

7



Note that the advice uses the return value from proceed as the one of type
FileOutputStream.

When those advice declarations are applied to a constructor call to
FileOutputStream (e.g., the second line of store in Fig. 1), it is not safe de-
pending on the advice precedence. If the latter advice precedes the former, the
latter receives a value that is replaced by the former: i.e., a PrintStream object.
The method call at the third line in the latter advice declaration then fails be-
cause the method is defined only in FileOutputStream. If the former precedes
the latter, there is no problem because the former does not proceed further.

To cope with this interaction problem, we need to take the usage in ad-
vice bodies into account. Given a join point, we regard that its return value
is used by advice bodies in addition to the operations listed in Section 3.2. In
the above example, the latter advice uses the return value from proceed as
FileOutputStream. Therefore, the most specific usage type of the join point
becomes FileOutputStream, which correctly detects the problem of combining
those two advice declarations.

3.4 Implementation

We are implementing a system that allows the type relaxed weaving. The im-
plementation is based on existing AspectJ compilers extended with a modified
weaving algorithm. Since the difference is only in between AJ2 and AJ2′, the
modification should be minimal.

The implementation consists of two parts, namely an analyzer that computes
the most specific usage type of a given expression, and a judgment routine that
decides whether a weaver can apply an around advice body to a join point.

The analyzer can be implemented as a bytecode verifier for the Java bytecode
language that checks type safety of a method given in a bytecode format. The
difference from standard bytecode verifier is that it performs type inference with
the return type of a specified method call unknown. Since we decided to track
dataflow merely within a method, it is not difficult to implement the analysis.

The judgment routine is invoked when a weaver is to apply a set of applicable
advice declarations to a join point. When the set does not include around advice,
it proceeds as usual. When it does, it first computes the most specific usage type
of the join point, as well as the most specific usage type of the body of each
applicable advice. It then finds the greatest type T that is a subtype of all the
most specific usage types. Finally, it allows advice weaving when the return type
of the around advice is a subtype of T.

4 Preliminary Feasibility Assessment

Before implementing the system, we estimated the number of opportunities in
practical programs that can benefit from the type relaxed weaving. We monitored
executions of five medium-sized Java programs, and classified the join point

8



shadows (i.e., source code locations) based on their most specific usage types.
We used AspectJ for monitoring program executions.

The evaluated programs and the results are summarized in Table 1. The ‘more
general’ row shows the numbers of shadows whose most specific usage type are
strict supertypes of the return types or parameter types of the shadows. They
approximate the numbers of shadows that can benefit from the type relaxed
weaving. As can be seen in the table, we found that approximately 15–30% are
such shadows. Even though the numbers merely represent potential benefits,
they suggest that the type relaxed weaving can be useful in practice.

5 Related Work

There are several researchers that work on the types of the advice mechanism
in AspectJ-like languages.

Clifton and Leavens formalized the proceed mechanism of around advice and
its type safety[2]. They directly work on the type system of around advice, but
for formalizing the existing mechanism. Our work purposes to deregulate existing
mechanism for enabling more useful around advice declarations.

StrongAspectJ offers an extended mechanism and a type system for around
advice in AspectJ[5]. The purpose of the work is to support generic around advice
without compromising type safety. It would be useful to define an around advice
declaration applicable to many different join points with different types, as long
as the advice body does not access the values obtained from join points. We
believe our proposed mechanism complements their mechanism, as ours aims at
supporting advice declarations that explicitly changes types of values exchanged
between advice and join points.

Aspectual Caml is an AOP extension to the functional language Caml[8]
that supports polymorphic pointcuts. Similar to StrongAspectJ, polymorphic
pointcuts enable to weave advice declarations into join points with different
types as long as the advice body does not access the values in join points.

Table 1. Characteristics of the measured programs and the results. The bottom four
rows show the numbers (and their percentages in parentheses) of join point shadows
whose return values or parameter values are used as the values of more general, more
specific, incompatible or same types of the shadows.

program name Javassist ANTLR JHotDraw jEdit Xerces

program size (KLoC) 43 77 71 140 205
number of shadows 862 1,827 3,558 8,524 3,490

more general(%) 177 (21) 315(17) 576 (16) 2,499(29) 650(19)
more specific(%) 37 (4) 70 (4) 170 (5) 974(11) 156 (4)
incompatible(%) 0 (0) 4 (0) 42 (1) 42 (0) 64 (2)

same(%) 648 (75) 1,438(79) 2,770 (78) 5,009(59) 2,620(75)

9



6 Conclusion

This paper presented a problem of type restriction to around advice that prevents
the programmer defining advice that replaces values into of different types, while
the replacement is type safe when it is achieved by textual modification. To the
problem, we proposed the notion of the most specific usage type and a novel
weaving mechanism called the type relaxed weaving, which permits around advice
to replace values with the ones of the most specific usage type. Our preliminary
assessment showed that practical programs have 15–30% join points (per source
code location basis) that can benefit from the type relaxed weaving.

We are currently implementing an extended AspectJ compiler that supports
type relaxed weaving. The implementation will consist of the type inference
algorithm in Java bytecode verifier, and a small modification to the weaving
mechanism in an existing AspectJ compiler.

We also plan to formalize the mechanism so that we can prove type safety
with the type relaxed weaving. We believe this is needed for ensuring the cor-
rectness of the algorithm in complicated cases, especially when more than one
aspect interacts.

Acknowledgments

The author would like to thank Atsushi Igarashi, Tomoyuki Aotani, Eijiro Sumii,
Manabu Touyama, the members of the PPP research group at University of
Tokyo, the members of the Kumiki 2.0 project and the anonymous reviewers for
their helpful comments.

References

1. Ron Bodkin. Performance monitoring with AspectJ: A look inside the Glassbox
inspector with AspectJ and JMX. AOP@Work, September 2005.

2. Curtis Clifton and Gary T. Leavens. MiniMAO1: Investigating the semantics of
proceed. Science of Computer Programming, 63(3):321–374, December 2006.

3. Adrian Colyer and Andrew Clement. Large-scale AOSD for middleware. In Pro-
ceedings of the 3rd International Conference on Aspect-Oriented Software Devel-
opment (AOSD’04), pages 56–65, March 2004.

4. Martin Erwig and Deling Ren. Type-safe update programming. In ESOP 2003,
volume 2618 of Lecture Notes in Computer Science, pages 269–283, 2003.

5. Bruno De Fraine, Mario Südholt, and Viviane Jonckers. StrongAspectJ: flexible
and safe pointcut/advice bindings. In Proceedings of the 7th International Con-
ference on Aspect-Oriented Software Development (AOSD’08), pages 60–71, April
2008.

6. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In Proceedings of 15th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2001), volume 2072
of Lecture Notes in Computer Science, pages 327–353. June 2001.

10



7. Ralf Lämmel. A semantical approach to method-call interception. In Proceed-
ings of the 1st International Conference on Aspect-Oriented Software Development
(AOSD’02), pages 41–55. April 2002.

8. Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori Yonezawa. Aspectual Caml:
an aspect-oriented functional language. In Proceedings of International Conference
on Functional Programming (ICFP 2005), pages 320–330, September 2005.

9. Mira Mezini and Klaus Ostermann. Conquering aspects with Caesar. In Proceed-
ings of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD’03). March 2003.

10. Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In Proceed-
ings of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD2003), pages 120–129. March 2003.

11. Olaf Spinczyk, Andreas Gal, and Wolfgang Schroder-Preikschat. AspectC++: An
aspect-oriented extension to C++. In Proceedings of the 40th International Con-
ference on Technology of Object-Oriented Languages and Systems (TOOLS Pacific
2002), pages 18–21, February 2002.

12. Daniel Wiese, Regine Meunier, and Uwe Hohenstein. How to convince industry of
AOP. In Proceedings of Industry Track at AOSD.07, March 2007.

11


