SCoPE: an Aspect]J Compiler for Supporting User-Defined
Analysis-Based Pointcuts

Tomoyuki Aotani

Graduate School of Arts and Sciences,
University of Tokyo

aotani@graco.c.u-tokyo.ac.jp

Abstract

This paper proposes an approach called SCoPE, which supports
user-defined analysis-based pointcuts in aspect-oriented program-
ming (AOP) languages. The advantage of our approach is better
integration with existing AOP languages than previous approaches.
Instead of extending the language, SCoPE allows the programmer
to write a pointcut that analyzes a program by using a conditional
(if) pointcut with introspective reflection libraries. A compilation
scheme automatically eliminates runtime tests for such a pointcut.
The approach also makes effects of aspects visible to the analysis,
which is essential for determining proper aspect interactions. We
implemented a SCoPE compiler for the Aspect] language on top
of the AspectBench compiler using a backpatching technique. The
implementation efficiently finds analysis-based pointcuts, and gen-
erates woven code without runtime tests for those pointcuts. Our
benchmark tests with JHotDraw and other programs showed that
SCoPE compiles programs with less than 1% compile-time over-
head, and generates a program that is as efficient as an equivalent
program that uses merely static pointcuts.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Aspect-Oriented Programming Languages, Point-
cuts, Compiler Design

Keywords AOP, Analysis-Based Pointcuts, Compiler Design

1. Introduction

Aspect-oriented programming (AOP) helps modularize crosscut-
ting concerns [12, 18, 19], which have scattered and tangled imple-
mentations when traditional modularization mechanisms such as
procedures and classes are used. Typical crosscutting concerns in-
clude logging, synchronization, persistence, performance optimiza-
tion, parallelization and profiling.

One of the important mechanisms of AOP languages is the
pointcut and advice mechanism, which is supported by most of
current mainstream AOP languages including AspectJ [18]. It can
be explained in terms of the three elements: join points, pointcuts
and advice. A join point is a point in the execution of a program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

AOSD 07, March 12-16, 2007, Vancouver Canada

Copyright © 2007 ACM 1-59593-615-7/07/03. .. $5.00

161

Hidehiko Masuhara

Graduate School of Arts and Sciences,
University of Tokyo

masuhara@acm.org

whose behavior can be affected by advice. A pointcut is a descrip-
tion that matches join points. An advice declaration, which consists
of a pointcut and body statements, specifies to run its body state-
ments in addition to or in place of the join points matching the
pointcut.

Pointcuts are the key element to make aspects more
declarative—more robust against software evolution, more reusable
and easier to understand [17]—as they are the means of specify-
ing how the effects of advice should crosscut the program. For the
pointcuts that specify join points by using immediate properties of
a program (e.g., the method signatures or the declaring types), ad-
vice declarations describing a complicated crosscutting behavior
often have to enumerate signatures of methods to be advised. Such
an aspect tends to be fragile, as even a small modification to the
program (e.g., changing a method name or adding a new field to a
class) could require changes in pointcuts, which prone to be omit-
ted [14, 16].

This paper focuses on analysis-based pointcuts as a means of
improving aspect robustness. Analysis-based pointcuts match join
points based on properties obtained by static program analyses,
such as control-flow reachability and side-effect freedom. Since
such properties are more stable than the immediate properties, they
contribute to the robustness of aspects against program evolution.
Note that we focus on static program properties; pointcuts for
examining dynamic properties, such as dynamic calling contexts
(e.g., cflow), execution histories [1, 10, 33] and dynamic data-
flows [24], are out of the scope of this paper.

This paper proposes a novel approach to supporting user-
defined analysis-based pointcuts. While there have been several
attempts [8, 11, 13,25, 26] with similar goals, our approach has
several advantages:

e Better integration with existing AOP languages: Our approach
merely relies on existing AOP constructs (i.e., conditional
pointcuts) and introspective reflection libraries. In addition,
compilers can be implemented by slightly modifying an ex-
isting compiler thanks to our backpatching-based technique.

Efficient compilation: Our implementation has a sufficiently
small overhead (excluding the elapsed time for user-defined
analysis) due to our backpatching technique.

Clear semantics: Our approach does not change the semantics
of existing AOP languages, but merely eliminates runtime tests
for analysis-based pointcuts while preserving the behavior. This
helps the programmer understand program behavior when as-
pect interacts with each other [23].

The rest of the paper is organized as follows. Section 2 shows
examples of analysis-based pointcuts. Section 3 discusses chal-
lenges for supporting analysis-based pointcuts. Section 4 presents

our SCoPE approach and illustrates how the pointcuts shown in
Section 2 can be defined with SCoPE. Section 5 describes the im-
plementation of our SCoPE compiler and its library support. Sec-
tion 6 discusses advanced features. Section 7 measures compilation
overheads and runtime performance. Section 8 discusses related
work. Section 9 concludes the paper.

2. Analysis-based Pointcuts

In order to clarify our goal, we first present examples of analysis-
based pointcuts, and how they contribute to more robust and ex-
pressive aspect definitions when compared to pointcuts based on
method and field signatures. This section describes how analysis-
based pointcuts identify join points by using hypothetical pointcut
primitives. Our approach to defining those pointcuts will be ex-
plained in later sections.

2.1 Regular Expression Matching

Pointcuts with regular expression matching identify join points
using regular expressions when matching class/method/field names
in the join points'. This can be considered as an extension to
wildcard-based type patterns in Aspect], and could be useful for
specifying names in more rigorous ways. For example, if Aspect]’s
type patterns and signature patterns were extended with regular
expressions, the following pointcut would match any method call
whose name consists of only lowercase characters.

| pointcut executelLowercaseMethod():
execution(.* .*\.[a-z]+(.%));

Even though regular expression matching might be too trivial
to be called analysis-based pointcuts, we present this as the sim-
plest example to explain our approach. Several AOP languages and
frameworks, including PROSE [28], JAC [27] and Spring AOP?,
support regular expression matching.

2.2 Class Structure Analysis

Pointcuts that analyzes class structures match join points based on
structural properties of the types. For example, hasmethod and
hasfield, which are available in JBoss AOP and Aspectwerkz3,
analyze whether the class has a specified method or field. Those
pointcuts are useful, for example, to implement the Inversion of
Control principle in a transparent manner®. For example, the fol-
lowing aspect transparently installs a transaction monitor at ob-
jectinitialization. The pointcut hasfield (TM tm) matches classes
that have a field tm of type TM.

aspect SetTransactionMonitor {
pointcut initObjectWithTmField():
execution(*.new(..)) && hasfield(TM tm)
after() returning(): initObjectWithTmField() {
// install a transaction monitor
}
}

The use of hasfield pointcut in the above example increases
the declarativeness of the aspect compared to the one defined using
a list of individual class and package names.

'Such extensions sometimes have been requested in the Aspect]’s mail-
ing list: http://dev.eclipse.org/mhonarc/lists/aspectj-dev/
msg01653.html

2http://www.springframework.org/

3 Also available in a recent version of the ajc Aspect] compiler as an
undocumented feature.

“http://docs. jboss.org/aop/1.3/aspect-framework/
examples/ioc_with_has/has.html

162

[P S SR S R

~

2.3 Predicted Control Flow

Pointcuts that predict control flow identify join points based on the
potential (or predicted) behavior at the current join point. We here
show a slightly modified version of the pcflow pointcut, which is
originally proposed by Kiczales [17].

The following aspect, when used with a figure editor application
[18], redraws the screen whenever a figure object changes its visual
properties. The set pointcut identifies any assignments to any
fields in subclasses of class Fig. The pcflowGet pointcut, which
is a hypothetical pointcut, limits the assignments to those whose
target fields are referenced during the execution of draw method.
As aresult, the advice runs only at the assignments to the fields that
represent visual properties such as positions and colors of figure
elements.

aspect DisplayUpdating {
pointcut figureMove(): set(* Fig+.*) &&
pcflowGet (Fig+.draw());
after() returning(): figureMove() {
Canvas.update() ;
}
}

Compared to an aspect that enumerates all relevant field names,
the use of pcflowGet clarifies the intention of the programmer. In
addition, the aspect is robust against additions of new figure ele-
ment classes and additions of new fields to existing figure element
classes.

2.4 Side-Effect Analysis

A pointcut that analyzes side-effects identifies join points whose
potential execution performs only operations without side-effects,
such as I/O operations and accesses to global variables. Such a
pointcut would be useful for optimizing aspects since there are
many optimization opportunities for side-effect free methods.

The following aspect, for example, adds memoization (caching)
to methods by recording parameters and return values for each
method, and by reusing the recorded return value when the method
is called again with the same parameter”.

aspect Memoization{
Map<Integer,Integer> m;
pointcut purelntegerFunction(int key):
execution(int *(int)) && args(key)
&& isSideEffectFree();

int around(int key): pureIlntegerFunction(key) {
if (!m.containsKey (key))
m.put (key,proceed(key));
return m.get (key) ;
}
}

In the example, the hypothetical pointcut isSideEffectFree
matches join points whose potential execution performs no side-
effecting operations. In combination with the execution pointcut
that matches any integer method executions, the aspect properly
adds memoization to purely functional methods.

2.5 Coding Style Checking

Pointcuts that check statement-level coding styles enhance policy
enforcement mechanisms implemented using AOP languages.

5 This is largely simplified from practical ones, which would usually limit
itself to methods in a certain class, and would be generalized to support
types other than integer.

The following aspect alerts programmers when a method in
MyClass calls a method whose receiver type does not appear in any
field of MyClass. The rule is derived from the style rules of the law
of Demeter [22], but largely simplified®. The hypothetical pointcut
callToFieldType matches a join point when the caller type has
a field that has the same type as the static type of the receiver. By
using the declare warning mechanism of Aspect], the compiler
reports method calls violating the rule.

aspect StyleChecking {
pointcut violation(): call(x *(..)) &&
!callToFieldType() && within(MyClass);
declare warning(): violation()
"receiver should be stored in a field."

Policy enforcement is a well-known applications of AOP lan-
guages [21]. However, pointcuts in current AOP languages are lim-
ited to express rules beyond static scoping and naming conventions.
Analysis-based pointcuts would be a good approach to describe
more complicated rules.

3. Challenges for Supporting User-Defined
Analysis-Based Pointcuts

Even though analysis-based pointcuts are useful, they are not al-
ways available in practical AOP languages. Moreover, there is a
wide-range of analysis-based pointcuts, and many of them are spe-
cific to particular domains or applications. It is therefore difficult
to extend an AOP language to support all of them, or to provide
generic pointcut primitives for constructing complicated analysis-
based pointcuts.

Our approach is to support user-defined analysis-based point-
cuts. Of course, this does not necessarily mean that every program-
mer has to write program analysis code since our approach allows
to provide such pointcuts as a library.

Before presenting our approach, we discuss the challenges that
should be tackled when proving user-defined analysis-based point-
cuts. These challenges are common to our approach as well as sev-
eral existing AOP languages and frameworks [8,11,13,26,35] that
allow the programmer to define analysis-based pointcuts.

Runtime efficiency. Analysis-based pointcuts should have no run-
time overheads. In other words, they should be compiled as if
they are static pointcuts.

In AOP languages, a compiler generates executable code by
inserting, for each advice declaration, instructions that execute
an advice body into locations matching the pointcut of the
advice. This particular process is called weaving. A location in
which advice-executing instructions can be inserted is called a
Jjoin point shadow. If compiler finds that a pointcut of an advice
declaration matches all join points created at a shadow, it simply
inserts the appropriate advice instructions at the shadow. We
say such a pointcut is static. On the other hand, if compiler
finds that a pointcut matches join points whose shadows are
the same only when some runtime condition holds, it inserts
advice executing instructions with a conditional branch to test
the condition. Such a pointcut is dynamic. For example, call
and execution are static, and args and cflow are dynamic in
Aspect].

Compilation speed. From a practical viewpoint, compilation speed
is an important factor since industrial software development of-
ten requires compiling very large programs.

6 The law of Demeter has more rules in addition to the one presented here,
and requires a method call to satisfy any of them.

163

Clear semantics. Since analysis-based pointcuts in a program ob-
serve the behavior of the program itself, their semantics should
be carefully designed so as not to introduce contradicting be-
havior. We will discuss this point in Section 4.2.

Access to program information. In order to define complicated
program analyses, it should be possible to access the required
program information. In particular, some program analyses
such as predicted control flow analysis and side-effect analysis
are inter-procedural. Therefore, full access to entire class hier-
archy and bytecode (or expression) level information should be
provided.

Tool support. Programs that uses analysis-based pointcuts should
be well-supported by programming tools, such as integrated
development environments, refactoring tools and visualizers.
We will see that our approach is compatible with tools for
an existing AOP language as it does not extend syntax and
semantics of the language.

4. SCoPE Approach to Supporting
Analysis-Based Pointcuts

‘We propose an approach called SCoPE (Static Conditional Pointcut
Evaluation) for enabling user-defined analysis-based pointcuts. The
approach can be summarized as follows:

e It lets programmers describe their own analyses in a conditional
(if) pointcuts.

e It provides introspective reflection libraries so that the analysis
can access to program information.

e It offers a compiler that eliminates runtime tests for the condi-
tional pointcuts that implement analysis-based pointcuts.

As an example, consider the following pointcut which matches
any method call whose name consists of only lowercase characters,
as introduced in Section 2.1:

pointcut executelowercaseMethod(): execution(* *(..))
&& if (thisJoinPoint.getSignature()
.getName () .matches ("~ [a-z]+$"));

The first part of the pointcut matches any method execution. The
second part uses a conditional (if) pointcut to implement the anal-
ysis. In Aspect], the programmer can write any boolean expression
in an if pointcut in order to add arbitrary conditions to a pointcut.

The example uses Java and Aspect] reflection APIs in order
to analyze the program. The special variable thisJoinPoint is
an object that contains information about the join point, and the
methods getSignature () and getName () retrieve signature and
name of the method being executed.

Currently all Aspect] implementations compiles a conditional
pointcut into runtime tests, which usually results in overheads. Our
compiler eliminates those runtime tests so that the pointcut works
as if it was static.

Note that the above pointcut definition uses only features al-
ready existing in Aspect] and similar AOP languages. In other
words, our approach does not require any syntactic extensions to
existing AOP languages. However, the above pointcut definition
is not practical with current Aspect] compiler implementations as
they evaluate the condition at runtime’.

7When an expression in the conditional pointcut is very simple, an ex-
isting compiler might evaluate it at compile-time. However, as far as we
confirmed, all existing implementations evaluate conditional expressions
at runtime when they include thisJoinPoint, which is essential for
analysis-based pointcuts.

static boolean hasfield(JoinPoint tjp, String fname){

try {
tjp.getSignature() .getDeclaringType ()
.getField(fname) ;
return true; // when exists
} catch (Exception e) { return false; }

}

pointcut initObjectWithTmField():
execution(*.new(..))
&& if (hasfield(thisJoinPoint,"tm"));

Figure 1. hasfield pointcut with SCoPE.

Our approach therefore includes a novel compiler, which rec-
ognize pointcuts that perform static analyses as static ones so that
they introduce no runtime tests.

4.1 Definitions of Analysis-Based Pointcuts

Below are definitions of the analysis-based pointcuts presented in
Section 2 rewritten using the SCoPE approach. Note that those
definitions may not be ideal in terms of analysis precision and
efficiency as we simplified them for explanation purposes.

4.1.1 Class Structure Analysis

Figure 1 shows a definition of hasfield pointcut. The hasfield
is a method that returns true when there is a field with given name
in the declaring type® of the join point. The conditional pointcut
merely calls the method in 1.11. Note that the definition does not
check the type of the field for simplicity; it can be easily extended
to do so.

4.1.2 Predicted Control Flow

Figure 2 is a sketch of the predicted control flow pointcut presented
in Section 2.3. The method pcflowGet (jp,entry) recursively
visits the instructions reachable from entry, and returns true when
it finds an instruction that references a field that has the same sig-
nature as the one in jp. The method call impls0f in 1.2 is pro-
vided in our library (discussed later), and returns a set of methods
with the given signature in entry. The Method and Instruction
objects are the metaobjects defined in a reflection library, and pro-
vide instruction-level information such as the body instructions in
a method, kind of an instruction (e.g., call and execution), and field
and method names accessed by the instruction.

Note that the definition is simplified from the actual one’, which
uses a loop rather than recursive calls to avoid stack overflow,
and keeps a set of visited methods to avoid looping infinitely over
recursive methods.

4.1.3 Side-Effect Analysis

Figure 3 is a sketch of side-effect analysis pointcut shown in Sec-
tion 2.4. The pointcut uses isSideEffectFree(jp), which re-
turns false when there is an instruction that accesses an instance
or class variable among the instructions reachable from the current
join point.

The method getProceedBody in 1.2 is provided by our library,
and returns a set of instructions reachable from the proceed form

8 A declaring type of a join point refers the target type of the join point.
For example, the declaring type of an execution join point is the class that
defines the executing method. The declaring type of a call join point is the
static type of the receiver object.

9Tt can be found at our project page, http://www.graco.c.u-tokyo.
ac.jp/ppp/projects/scope/

164

14

1
2

9

static boolean pcflowGet(JoinPoint jp, String entry){

for(Method m: implsOf(entry))
for(Instruction i: m.instructions)
if (i is getfield &&
i.hasSameSignature(jp))
return true;
else if (i invokes method m1 &&
pcflowGet (jp, ml))
return true;
return false;

}

jpointcut figureMove(): set(x Fig+.*) &&

if (pcflowGet (thisJoinPoint,"Fig.draw()"));

Figure 2. Predicted control flow pointcut with SCoPE.

static boolean isSideEffectFree(JoinPoint jp) {
for (Instruction i: getProceedBody(jp))
if (i is {get,set}{field,static})
return false;
return true;

}

pointcut purelntegerFunction(int key):
execution(int *(int)) && args(key) &&
if (isSideEffectFree(thisJoinPoint));

Figure 3. Side-effect analyzing pointcut with SCoPE.

in the advice that uses the pointcut. Since it collects instructions
over method calls, the body of the method is a simple loop over
those instructions. This simple analysis considers that any field
access instructions are side-effecting as shown in 1.3.

Assume we apply the memoization aspect in Section 2.4 to a
method int £ (int). When the argument to £ is not found in the
table, the aspect evaluates a proceed form in order to run the body
of £. The above library method getProceedBody therefore returns
the instructions in f (and the instructions in the other methods
called from f). Therefore, even though the memoization aspects
adds side-effecting operations to £, the analysis properly excludes
those operations by using getProceedBody. It might look com-
plex, but is crucial when there are interactions between aspects as
we will discuss in Section 4.2.

4.1.4 Coding Style Checking

Figure 4 is a definition of the coding style checking pointcut dis-
cussed in Section 2.5'°. The fieldTypes method gathers a list of
types of fields in a caller class. The callToFieldType method
checks whether the callee type appears in the list. Similar to the
class structure analysis, the analysis uses the Java reflection API to
obtain field types.

4.2 Semantics of Analysis-Based Pointcuts

When there is more than one aspect, semantics of analysis-based
pointcuts must be carefully designed so that the aspects properly
interact with each other. This issue is discussed in detail in our
previous work in detail [23]. We summarize here the required

10Because if pointcuts cannot be used within declare statements in
Aspect], the declare statement in Section 2.5 must be replaced with an
advice that throws warning messages at runtime.

2
2]
2!

23

// returns a collection of field types declared in ¢ and its ancestors
static Collection fieldTypes(Class c) {
Arraylist fieldTypes = new ArrayList();
for(;c != null; c = c.getSuperclass())
for(Field f: c.getDeclaredFields())
fieldTypes.add(f.getType());
return fieldTypes;
}
// returns true if the callee type appears in any field declaration of
// the caller class
static boolean callToFieldType
(JoinPoint.StaticPart ejp,
JoinPoint.StaticPart sjp){

Class caller=ejp.getSignature() .getDeclaringType();
Class callee=sjp.getSignature().getDeclaringType();

// true if callee type exists
return fieldTypes(caller).contains(callee);

}

pointcut violation(): call(* *(..)) &&
within(MyClass) &&
if (!callToFieldType (enclosingJoinPoint,
thisJoinPointStaticPart));

Figure 4. Coding style checking pointcut with SCoPE.

properties of analysis-based pointcuts to guarantee proper aspect
interactions.

Required Property 1 (Aspect Visibility): Effects of aspects should
be visible from the analysis-based pointcuts.

This property can be explained by using the isSideEffectFree
pointcut in Figure 3. The pointcut should not match a purely func-
tional method when another aspect (say tracing) adds side-effecting
behavior to the method. This becomes possible if effects of the trac-
ing aspect is visible from the isSideEffectFree pointcut.

SCoPE achieves the property by performing the analyses on the
executable code in which aspects are woven. Section 5.3 explains
how SCoPE realizes the property.

Note that our approach requires the analyses to be conservative
when an analysis-based pointcut (say if (p:)) in an advice dec-
laration (say a1) analyzes a code fragment that is advised by an
advice declaration (say a2) with another analysis-based pointcut
(say 1f (p2)). Since the code analyzed by p; is generated by an ex-
isting compiler, it contains a conditional branch that evaluates like
if (p2){ the body of a2 }.

We believe that our approach is a reasonable compromise to
avoid complicating language semantics and compiler implementa-
tions. Another approach is to evaluate an analysis-based pointcut
and weave the advice body one by one [13]. For example, the com-
piler first evaluates p2 with respect to the unwoven code and weaves
or does not weave the body of a. It then evaluates p; with respect
to the code generated in the previous step, and weaves or does not
weave the body of a;. This makes analyses more precise because
the code analyzed by p: does not contain the conditional branch
if (p2). However, it does not work well when the two advice dec-
larations are mutually affecting [20]; e.g., p1 matches if and only
if a2 is not woven into the code and p> matches if and only if a1
is woven into the code. It also complicates compiler implementa-
tions because they have to produce the woven code for each time
an advice declaration is processed.

Required Property 2 (Awareness of Aspect Precedence): The
analysis-based pointcuts should be able to take aspect precedence
into account when analyzing a program.

165

This property can also be explained using isSideEffectFree.
When a tracing aspect is applied to a purely functional method,
the precedence between the tracing aspect and the memoization
aspect should change the result of the isSideEffectFree point-
cut. When the memoization aspect precedes the tracing aspect, the
isSideEffectFree pointcut should not match the method be-
cause the operations to be memoized include the side-effecting op-
erations of the tracing aspect. On the other hand, when the tracing
precedes the memoization, the pointcut should match because the
operations to be memoized still have no side-effects.

SCoPE realizes the property by offering library methods to ac-
cess instructions only reachable from proceed forms in the advice,
namely getProceedBody in Figure 5. Since proceed executes the
advice bodies with lower precedence, the results from those library
methods properly reflect aspect precedence.

5. Implementation Issues

We realized the SCoPE approach by resolving the following imple-
mentation level issues, which are discussed in subsequent subsec-
tions:

e In order to provide full access to program information, we
provide flexible library support for describing a wide-range of
user-defined analyses.

e In order to find analysis-based pointcuts described by using
conditional pointcuts, we developed an efficient binding-time
checking mechanism.

e We proposed a novel compilation scheme based on a back-
patching technique. The scheme makes effects of aspects vis-
ible to analysis-based pointcuts and completely eliminates run-
time overheads.

We implemented a SCoPE compiler for Aspect] on top of the
AspectBench compiler [3]. The implementation is approximately
1900 lines of Java and Scala code including library adapters, and is
publicly available''.

5.1 Flexible library support

In order to define instruction-level program analyses, SCoPE uses
bytecode translation libraries as an extension to the introspective
reflection APIs in Java and Aspect]. Since those reflection APIs do
not provide information beyond class structures, bytecode transla-
tion libraries are crucial in defining analyses that require bytecode-
level information.

SCoPE does not rely on a particular library, but allows the
programmer to choose a suitable one for their purposes. Current
implementation supports ASM'? and Soot [32]", but supporting
similar ones such as BCEL'* and Javassist [71" is not difficult.

We provide an adapter for each bytecode library so that they
can be used as if they are extensions to the Java and Aspect] reflec-
tion APIL. Since those bytecode libraries are primarily designed for
program transformation, they require to manually load classes. Our
adapter (1) provides methods that bridges between Java/Aspect]
metaobjects (e.g., the ones of type java.lang.Class and org.
aspectj.lang.reflect.MethodSignature) and metaobjects
defined in the library, and (2) initializes the library by automati-
cally loading classes.

http://www.graco.c.u-tokyo.ac. jp/ppp/projects/scope/
Zhttp://asm.objectweb.org/
Bhttp://www.sable.mcgill.ca/soot/
“nhttp://jakarta.apache.org/bcel/
Shttp://www.csg.is.titech.ac.jp/~chiba/javassist/

1

interface XAdapter {
// finds a class object by name.
C classNodeOf (String cname);

// finds a field object by signature.
F fieldNodeOf (FieldSignature fsig);

// finds a method object by signature.
M methodNodeOf (CodeSignature msig);

// returns a set of methods (including overriding
// ones) by signature.
Collection<M> implesOf (CodeSignature msig) ;

// returns a set of subclasses by class object.
Collection<(C> subclasses0f(C cnode);

// returns a set of instructions potentially

// reachable from the proceed form in advice

List<I> getProceedBody(JoinPoint jp);

List<I> getProceedBody(JoinPoint.StaticPart jp);
}

Figure 5. Adapter methods for a bytecode library X, where C, M,
F and I stand for types of class, method, field and instruction.

X | ASM Soot(Jimple)
C | ClassNode SootClass
M | MethodNode SootMethod
F | FieldNode SootField
I | AbstractInsnNode Stmt

Table 1. Meta-classes in bytecode libraries.

Figure 5 shows the interface of an adapter defined for each li-
brary. Since each library provides different meta-classes for rep-
resenting classes, methods, fields and bytecode instructions, they
are described as C, M, F and I, respectively. They correspond to
classes as shown in Table 1.

The methods shown in Figure 5 can be classified into the next
three groups:

e Methods that convert from a string or Java/Aspect] metaobject
to a bytecode metaobject (i.e., classNodeOf, fieldNodeOf,
and methodNodeOf).

e Methods that provide frequently used functions common to
Java bytecode-level analysis such as collecting all subclasses
of a class and all method implementations of a signature (i.e.,
implesOf and subclassesOf).

e The methods that provide functions specific to analysis-based
pointcuts, such as collecting reachable instructions from proceed
(i.e., getProceedBody).

Another role of the adapters is to initialize the bytecode libraries
so that all classes in the program are loaded when SCoPE evaluates
analysis-based pointcuts. Therefore, the analysis code can easily
use methods in those libraries as if they were extensions to Java’s
and Aspect]’s reflection APIs. Since those libraries usually require
the programmer to manually load class files, the analysis code
would otherwise become very awkward.

5.2 Finding Static Conditional Pointcuts

Our SCoPE implementation automatically detects analysis-based
pointcuts (what we call the binding-time checking) and evaluates

166

type method
org.aspectj.lang.JoinPoint getArgs(), getTarget(), getThis()
javalang.Class newlnstance()
javalang.reflect.Field get(Object),
getBoolean(Object), ...,
set(Object,Object),
setBoolean(Object,boolean),...
java.lang.reflect. Method invoke(Object,Object|])

Table 2. Predetermined dynamic methods in Java and Aspect]
APIs.

them (what we call the pointcut evaluation) at compile-time. This
approach provides us with a better integration with existing devel-
opment tools as it does not extend the language’s syntax. We be-
lieve this property is important from a practical viewpoint, as mod-
ern software development involves a number of tools, such as inte-
grated development environments, debuggers, and test generators.

The above approach, however, needs a mechanism to automat-
ically find conditional pointcuts that can be evaluated at compile-
time. Since there is no distinction between analysis-based point-
cuts and other conditional pointcuts with runtime conditions, we
devised a technique akin to the binding-time analysis in partial eval-
uation [15].

Below, we explain how SCoPE efficiently finds conditional
pointcuts that can be evaluated at compile-time. We first present the
rules whether a conditional pointcut can be evaluated at compile-
time, and then explain an efficient yet effective algorithm to find
such pointcuts.

5.2.1 Definition of Static Conditional Pointcuts

Intuitively, a conditional pointcut is static if its expression always
returns the same value with respect to the same join point shadow.

We defined rules to determine whether a conditional pointcut
is static, which are simple enough to be efficiently checked at
compile-time, yet general enough to describe many useful program
analyses. The rules are defined with several auxiliary definitions.

First we define immutable class variables. A class variable
is immutable if it is final and of primitive type, or final and of
immutable class such as String and JoinPoint.StaticPart.
Correspondingly, a mutable class variable is a class variable that
is not immutable.

Next we define a set of dynamic methods. A set of dynamic
methods is a minimal set of the methods whose member is not
predetermined as static, and either (1) is a native method, (2) is
predetermined as dynamic (cf. Table 2), or (3) has any of the
following subexpressions in its body:

e an assignment or reference to a mutable class variable, or
¢ a dynamic method invocation.

Several library methods are predetermined as static. They in-
clude native methods that are known to have no side-effects (e.g.,
StrictMath.sin), and methods in the bytecode library.

A dynamic method invocation is an expression that may dis-
patches to a dynamic method. When the static signature of the
invoked method is an expression to invoke a method such as
C.m(...), and there exists a dynamic method with the same sig-
nature in C’s effective subclasses (explained later), the invocation
is dynamic.

Finally, a conditional pointcut if (e) is static if e has none of
the following subexpressions:

e a variable bound by other pointcuts (e.g., this, target and
args),

e an assignment or reference to a mutable class variable, or

1

aspect Tracing {
static boolean flag = true;
final static Map traced = new HashMap();

pointcut isActive(): if(flag);
pointcut nullArgument(Object x):
args(x) &% if(x == null);
pointcut nullAccess():
if (thisJoinPoint.getTarget() == null);
pointcut tracedMethods():
if (traced.get(thisJoinPoint.getSignature()
.getName ()) .boolValue())

Figure 6. Examples of dynamic conditional pointcuts.

e an invocation of a dynamic method.

The above rules are general enough to define useful analysis-
based pointcuts. In fact, the rules do not prohibit use of local
variables, object creations, assignments to instance fields, method
calls, and so forth. As a result, the pointcut definitions presented in
Section 4.1 can be made static.

At the same time, the rules determine the conditional pointcuts
in Figure 6 as dynamic because:

(isActive) flag is a non-final field,
(nullArgument) x is a variable bound by the args pointcut,
(nullAccess) getTarget is predetermined as dynamic, and

(tracedMethods) traced is of Map type, which is not immutable.

5.2.2 Efficient and Precise Binding-Time Checking

It is not difficult to implement a naive binding-time checker based
on the aforementioned rules. Aspect] compilers generate a boolean
method (which we call if-residue) for each conditional pointcut.
With the help of a bytecode library, it is simple to judge whether
a method has any instruction that violates one of the rules in an
inter-procedural manner.

However, precision and efficiency of binding-time checkers de-
pend on how it computes effective subclasses of C when judging
whether a method invocation is dynamic. We first explain why a
naive implementation, which uses all subclasses of C' in the entire
program (including libraries), has problems, and then explain our
algorithm based on the Rapid-Type Analysis [4].

Problems of A Naive Implementation. Assume a program has
the violation pointcut in Figure 4 and also has a definition of
DbTable class that implements Collection interface. The meth-
ods in DbTable have I/O side-effects since the class keeps values
in an external database.

According to the above rules, violation is static if the method
callToFieldType is static. Among other conditions, it requires
the invocation of Collection.contains in .17 to be static. This
is confirmed by checking all definitions of contains in effective
subclasses of Collection.

Naively, we might want to use all subclasses of Collection
in the program as effective subclasses. This causes the next two
problems:

e This slows down the analysis because it needs to check a large
number of method definitions when the receiver type has many
subclasses. This can be easily caused by the use of a collection
library, and by the use of the Object.equals method, which
frequently happens in Java programming.

167

e This can also degrade precision of the analysis as it can incor-
porate side-effecting methods which are never executed. In the
above example, since DbTable is a subclass of Collection,
the side-effecting operations in the DbTable. contains could
make the callToFieldType dynamic, even though we know
that ArrayList is the only runtime receiver class (see 1.17).

Computing Effective Classes by Using Rapid Type Analysis.
The above problem can be summarized as how to limit the set
of classes to be examined when the algorithm encounters a method
invocation. A similar problem can be found when performing a
method inlining optimization in object-oriented languages, which
determines a set of method declarations that actually executed from
a method invocation. There are several analyses proposed to the
method inlining problem, namely the Class Hierarchy Analysis
(CHA) [9], the Rapid Type Analysis (RTA) [4], and Points-to Anal-
ysis (PA) [2,30]. The naive implementation discussed above can be
classified as CHA.

We employ RTA because it is simple yet precise enough for our
purpose. Intuitively, the analysis traverses a program from an en-
try point to collect a set of instantiated classes, and uses the set of
classes to limit the set of method declarations that are actually exe-
cuted from a method invocation. For the example discussed above
(Figure 4), the analysis traverses the program from the expression
in the conditional pointcut and finds that only ArrayList is instan-
tiated'® in the traversed code fragments. Then, when it encounters
the call to contains in .17, it only needs to examine the contains
method declared in ArrayList.

Our algorithm is different from standard RTA in the following
two respects. (1) While RTA usually assumes a single entry point
for each program, ours focuses on more than one entry points in a
program. In addition, code reachable from each entry point tends
to be smaller than the entire program size. (2) Since our algorithm
traverses from the expression in a conditional pointcut, the code
reachable from the expression can reference an object that is in-
stantiated in the code unreachable from the expression. However,
we can safely ignore such a situation because the reference to such
an object can only be obtained through a global variable or a free
variable binded by other pointcuts such as args and this point-
cuts, which makes the conditional pointcut dynamic.

5.3 Compilation Scheme

As mentioned, effects of aspects are visible to analysis-based point-
cuts in SCoPE. In other words, analysis-based pointcuts observes
woven programs through introspective reflection libraries. At the
same time, SCoPE compiles the analysis-based pointcuts as static
pointcuts; i.e., instructions for advice executions are inserted with-
out runtime tests.

We realize those two contradicting properties by devising what
we call the backpatching technique. The technique is advantageous
to compiler developers because the technique works as a post-
processor to a standard Aspect] compiler, and does not require
major modifications to the existing compiler implementations.

We first explain our compilation scheme at conceptual level, and
then present our implementation with the backpatching technique.

5.3.1 Double Compilation: A Conceptual Compilation
Scheme

Conceptually, our compilation scheme is simple. It compiles the
whole program, including aspects, twice:

e The first step is to merely produce woven code by using a
standard compiler.

1We assume library methods called from callToFieldType and
fieldTypes do not instantiate objects.

1
2

@ —»| pointcut evaluator
Aspect) compiler v
backpatcher

weaving information XXX.class

\ /
Y
binding-time checker
| XXX.class

Figure 7. Compilation scheme with backpatching.

e The second step is to compile the program again, but whenever
the compiler matches a conditional pointcut with respect to a
join point shadow that it judges to be static, it evaluates the
expression in the pointcut. When the evaluation uses a reflection
library, the woven code generated at the first step is used as a
code base. If the result is true, it inserts instructions to execute
the advice body at the shadow. Otherwise, it does nothing.

Note that this scheme fully eliminates runtime overheads of the
static conditional pointcuts, as the second step treats them in a
similar manner to static pointcuts. At the same time, it achieves
aspect visibility by using the woven code as the code base.

5.3.2 Backpatching: More Efficient Compilation Scheme

Our actual implementation uses the backpatching technique rather
than double compilation, for more efficient compilation. As we see,
double compilation takes twice as much time as compilation by
standard compilers since it has to compile the whole program twice.

Figure 7 illustrates our compilation scheme. We explain each
step by assuming it compiles the following program:

class Main {
public static void main(String[] args) { ... }
public String toString() { ... }

}

aspect TraceLower {
pointcut executeLowercaseMethod():
execution(* *(..)) &&
if (thisJoinPointStaticPart.getSignature()
.getName () .matches ("~ [a-z]+$"));
before(): executeLowercaseMethod() { ... }

}

Aspect] Compiler. Using an Aspect] compiler, the woven class
files are generated with weaving information. The woven classes of
the above example look like this'”:

class Main {
final static JoinPoint.StaticPart shadow$l = ...;
final static JoinPoint.StaticPart shadow$2 e
public static void main(String[] args) {
if (TraceLower.if$1(shadow$1)) // runtime test
TraceLower.aspectOf () .before$1() ;
...method body
¥
public String toString() {

17 We present the woven classes at the source language level for readability,
though actual code has a bytecode representation.

168

22

1

if (TraceLower.if$1(shadow$2)) // runtime test
TraceLower.aspectOf () .before$1();
...method body
}
}

class TraceLower {

// if-residue

static boolean if$1(JoinPoint.StaticPart jp) {

return jp.getSignature()
.getName () .matches ("~ [a-z]+$"));

}

void before$1() {
}

} // advice body

In the woven code, conditional pointcuts are compiled into
boolean methods (e.g., 11.18-21) we call those methods if-residues.
Each join point shadow that matches execution(* *(..)) hasa
code fragment that calls the corresponding advice body when the
if-residue returns true (e.g., 11.5, 10).

The Aspect] compiler has been modified so that it will produce
weaving information, which is a list of the location of the join point
shadow that calls an if-residue, a signature of the if-residue, and
parameters of the if-residue. In the above example, the following
table represents the weaving information:

shadow location if-residue name parameters
L5 if$1 shadow$1
1.10 if$1 shadow$2

Binding-Time Checker. For each if-residue in the woven code,
the binding-time checker decides whether it is static by using the
algorithm outlined in Section 5.2. In the above example, if$1 is
judged as static.

Pointcut Evaluator. The pointcut evaluator runs static if-residues
with respect to each join point shadow. Before evaluation, it creates
a separate class loader, and resets the state of bytecode libraries
used in the if-residues, and let them load woven classes. A separate
class loader is essential as SCoPE itself is written in Java and uses
a bytecode library.

It then invokes an if-residue for each join point shadow listed
in the weaving information with a static if-residue. If the if-residue
takes a JoinPoint object as its argument, it creates a JoinPoint
object based on the weaving information.

An interesting optimization here is parallel evaluation. Since
we analyzed that no if-residue has no side-effects, we can safely
evaluate them at the same time using threads.

For the shadow at 1.5 in the above example, it evaluates
TraceLower.if$1 (shadow$1), which returns true.

Backpatcher. For each evaluated shadow, the backpatcher re-
places the method invocation instruction of the if-residue with a
constant instruction that produces a corresponding truth value ob-
tained at the previous step. As a result, the woven code has condi-
tional branches with constant expression like this:

class Main {

public static void main(String[] args) {
if (true) // backpatched
TraceLower.aspectOf () .before$1();

}
public String toString() {

if (false) // backpatched
TraceLower.aspect0f () .before$1();

3}

13 | static boolean pcflowGet(JoinPoint jp, Pointcut entry){

Even though the resulting code still has conditional branches, the
code runs as efficient as the code that does not use conditional
pointcuts thanks to runtime compilers in Java virtual machines. If
we have to run the code on an interpretive virtual machine, they can
be eliminated by simple post-processing.

6. Extended Features

This section discusses several extended features to SCoPE that
need syntax changes to the language. Those features are not imple-
mented yet as we are focusing on the features that do not require
syntactic extensions.

6.1 Explicit Declaration vs. Automatic Detection

While current SCoPE automatically finds analysis-based pointcuts,
it becomes possible to declare analysis-based pointcuts explicitly
by extending the syntax of the underlying language.

One of the most modest extensions is to add annotations to such
a pointcut. For example, the following pointcut explicitly declares
that the conditional pointcut should be evaluated at compile-time
by using an annotation:

pointcut initObjectWithTmField():
execution(*.new(..))
&&% @btcStatic if(hasfield(thisJoinPoint,"tm"));

Even with this approach, our proposed algorithm to find static con-
ditional pointcuts is useful to confirm that the expression in the an-
notated conditional pointcut does not access runtime information.

Another use of annotations is to allow the user-defined program
analysis to access global variables. When a class field is annotated
with @btcStatic, we could treat the field as if it was immutable,
which otherwise would be judged as mutable in our current algo-
rithm. This feature would be useful for optimizing some analyses
by caching intermediate results into a global table, so that the re-
sults can be shared when analyzing different join point shadows.

Currently, we plan to implement these extensions when the
underlying compiler supports annotations.

6.2 Higher-Order Pointcuts

A more challenging extension is to make analysis-based pointcuts
higher-order; i.e., to allow analysis-based pointcuts to take sub-
pointcuts as its parameters like cf1low.

The definitions of analysis-based pointcuts in Section 4.1 ex-
plains the motivation. For example, the predicted control flow uses
a string value to specify a starting point of the analysis as shown
in Figure 2. If we could specify a pointcut instead of a string, the
pointcut definition becomes more reusable through the use of the
abstract pointcut mechanism in Aspect].

In order to realize this idea, we need to devise (1) a mechanism
to pass a pointcut description to a Java method, and (2) a mecha-
nism to retrieve information from the pointcut parameter from the
Java method.

Our current plan is to introduce a new pointcut primitive that
reifies a pointcut description into a variable, and to offer methods
to access matching shadows of the reified pointcut. The syntax of
the new primitive is:

reify(v, p)

where v and p ranges over variables and pointcuts, respectively.
We believe this syntax allows the compiler to easily distinguish
pointcut descriptions from Java expressions.

The variable v has type Pointcut, which has the following
method:

169

for(JoinPoint.StaticPart s: entry.getShadows())
for(Method m: methodNodeOf (s.getSig()))
... the rests are the same

}

pointcut figureMove(Pointcut entry): set(* Fig+.*) &&

reify(entry, execution(void Fig+.draw())) &&
if (pcflowGet (thisJoinPoint, entry));

Figure 8. Predicted control flow pointcuts with higher-order point-
cut mechanism.

| regex hasfield LoD JHotDraw

source (LoC) 23 40 122 20974
compiled SCoPE 200 351 977 134918
(# of abc (enum) 63 90 82 70674
instructions) abc 193 342 969 133043
abc(memo) N/A N/A N/A 133718

Table 3. Source and compiled code sizes of benchmark programs.

/I returns a list of join point shadows matching the pointcut
Collection<JoinPoint.StaticPart>
Pointcut.getShadows() ;

By using those mechanisms, the predicted control flow point-
cut can be redefined as shown in Figure 8. In the definition,
the execution pointcut at 1.8 is reified into variable entry,
and passed to pcflowGet method as its second parameter. The
getShadows method in 1.2 retrieves all join point shadows match-
ing the execution pointcut, which are used as starting points of
the analysis.

Since the second parameter to reify in 1.8 can be any pointcut
description, it is possible to describe more complicated pointcuts,
or to parameterize them by using the abstract pointcut mechanism.

There are a few studies on supporting user-defined higher-order
pointcuts [31,34]. However, none of them considers syntactic com-
patibility with Aspect]-like languages and compile-time pointcut
evaluations.

7. Performance Measurements

We evaluated compilation and runtime efficiency of our SCoPE im-
plementation in order to demonstrate SCoPE’s practical feasibility.

For micro benchmarks, we created small programs with aspects
that use analysis-based pointcuts. The programs have simple itera-
tions with empty method invocations. The pointcuts are the regular
expression matching (regex), the class structure analysis (hasfield),
and coding style checking (LLoD) as presented in Section 4.

For larger-scale benchmarks, we also used JHotDraw'®, a graph-
ical figure editor application, whose display updating mechanism is
separated into an aspect by using the pcflowGet pointcut in Sec-
tion 4.

For comparison purposes, we also created the equivalent pro-
grams that do not use analysis-based pointcuts, but use primitive
pointcuts such as call, execution and set by enumerating all ap-
plicable signatures instead. Those programs exhibit best efficiency
as they should have no runtime overheads at all, while having the
same behavior as the ones with analysis-based pointcuts. We refer
those programs as abc(enum).

8nttp://www. jhotdraw.org/

SCoPE abc ov.

A B C D (%)
regex 423 0.25 0.07 0.02 4.97 -9.46
hasfield 5.03 0.25 0.09 0.02 546 || -2.93
LoD 7.53 027 7.61 0.02 7.58 3.17
JHotDraw 95.20 0.51 433295 0.23 | 95.32 0.65

Table 4. Compilation times of programs with analysis-based
pointcuts (sec.). The columns titled A—D in the SCoPE section give
breakdowns of the internal steps, namely (A) Aspect] compilation,
(B) binding-time check, (C) pointcut evaluation and (D) backpatch-
ing. The overheads exclude the times for pointcut evaluation.

Table 3 shows the sizes of the source and compiled code of
those four programs, measured by lines of code and the sum of
the number of bytecode instructions, respectively.

All benchmark programs were executed on top of Sun HotSpot
Server Java VM 1.5.0_08 running on dual Xeon 3.06 GHz Linux
machine with 6 GB memory. Compilation and execution times are
measured by System. currentTimeMillis (). We executed/com-
piled each program for 100 times, and calculated the median values.

7.1 Compilation Speed

We compared the compilation times of the benchmark programs
using our SCoPE compiler and the AspectBench compiler version
1.2.1 (abc).

Table 4 shows the compilation times for SCoPE and abc for
the four benchmarking programs. The columns titled A-D are the
times elapsed for the four internal compilation steps in SCoPE
shown in Figure 7. The rightmost column shows the overheads in-
troduced by SCoPE. We excluded the times for the pointcut evalu-
ation because the step mainly runs user-defined analysis methods.

As we see at the JHotDraw row, compilation overheads are
small enough even with medium-sized programs. On the other
hand, the overall compilation times are not very small. However,
this is due to the abc’s compilation process, and could be improved
when we switched the underlying compiler to a faster compiler,
such as the one developed by the Eclipse project (ajc).

7.2 Runtime Overheads

In order to verify our claim that SCoPE fully eliminates runtime
overheads of the conditional pointcut, we executed the four bench-
marking programs in the three configurations, namely SCoPE,
abc(enum) and abc.

By following the DaCapo benchmarking methodology [6], we
split a single run into the initialization phase (init) and three con-
secutive iterations (1st to 3rd), and separately measured time spent
for each phase.

Table 5 summarizes the results. Each column corresponds to dif-
ferent configuration. The rightmost column shows the overheads of
SCoPE executions relative to the ideal, i.e., abc(enum), executions.

7.2.1 Method Invocation with Advice

The first three benchmarking programs compares efficiency of an
empty method invocation when empty advice with analysis-based
pointcut is applied to the method. Each iteration of those programs
invokes the method for 10000000 times. They perform no opera-
tions at the initialization phases.

As we see in the regex, hasfield and LoD rows in the table,
SCoPE successfully eliminates the runtime tests at advice execu-
tion as the SCoPE compiled programs runs as fast as the ideal
ones at the second and third iterations. There are overheads at the
first iterations, though. We presume that this is due to a conditional
branch with a constant value at advice invocation. Since a JVM first

170

abc abc ov.
SCoPE (enum) (memo) abc (%)
regex Ist 0.03 0.02 N/A 12.64 50
2nd 0.02 0.02 N/A 12.43 0
3rd 0.02 0.02 N/A 12.41 0
has- Ist 0.04 0.02 N/A 4.63 | 100
field 2nd 0.03 0.03 N/A 4.24 0
3rd 0.02 0.02 N/A 4.24 0
LoD Ist 0.06 0.02 N/A 124.46 | 200
2nd 0.03 0.03 N/A 124.10 0
3rd 0.02 0.02 N/A 124.00 0
JHot- init 1.06 0.84 591.80 N/A 26.19
Draw Ist 2.18 2.18 5.55 N/A 0
2nd 1.88 1.87 3.33 N/A 0.53
3rd 1.87 1.86 3.32 N/A 0.54

Table 5. Execution times (sec.)

executes a program by using a bytecode interpreter, such a branch
poses overheads until a dynamic compiler in JVM optimizes it.
The figures in the abe column are more than two orders of
magnitude larger than the ideal cases. This means that an existing
compiler can not eliminate overheads of analysis-based pointcuts
even for very simple analysis methods such as regex and hasfield.

7.2.2 Overall Runtime Performance with JHotDraw

In order to measure performance with a practical application pro-
gram, we measured execution times of JHotDraw. The initialization
phase in JHotDraw sets up a canvas in a window with menus and
icons, and draws four different kinds of figure elements on the can-
vas. One iteration in JHotDraw moves the four figure elements on
a canvas 1000 times. In order to exclude effects of interaction with
a window system, we executed the programs with a virtual screen
(Xvib).

As the JHotDraw rows in Table 5 show, the SCoPE compiled
program, when compared against the ideal one, has a 26% overhead
at the initialization phase, but no overheads during the iterations.
We presume that the overheads at the initialization phase are due
to the conditional branches with constant values, and also due
to bloated code size, which in turn impacts dynamic compilation
speed. As we see in Table 3, the compiled code generated by
SCoPE has almost as twice number of instructions as the ideal one,
even though the former includes the analysis methods, which are
never executed at runtime.

For the abc column, we used an analysis-based pointcut with
memoization. The analysis method is modified to record the anal-
ysis result into a global table in order to avoid running the anal-
ysis more than once for the same join point shadow. The exe-
cution time of the program without memoization was more than
two hours. With memoization, overheads during iterations are rea-
sonable. However, the initialization phase becomes tremendously
slower as it has to analyze the program for a number of join point
shadows at runtime.

8. Related Work

There are several studies on supporting user-defined analysis-based
pointcuts. Josh [8] and LogicAJ [13] are new AOP languages simi-
lar to Aspect]. Those languages have their own weavers, and allow
the programmer to define new pointcut primitives that uses program
analysis by extending the weaver. As a result, tools for those lan-
guages such as integrated development environments and debug-
gers need to support newly defined pointcut primitives. Eichberg
et al. presented a language to define user-defined analysis-based
pointcuts by using the XQuery language [11]. The work however

does not cover implementation of the overall compilation frame-
work.

Alpha is a new AOP language that provides rich program in-
formation to user-defined pointcuts [26]. Although it is possible to
define many useful analysis-based pointcuts in Alpha, its dynamic
execution model would require a sophisticated compilation frame-
work in order to achieve as efficient performance as static pointcuts.

As far as the authors know, no publications for those languages
explicitly mention about the aspect visibility and aspect precedence
awareness properties discussed in Section 4.2. Some languages,
LogicAJ [13] for example, seem to address this problem by auto-
matically determining evaluation order of pointcut primitives and
iteratively weaving advice and inter-type declarations. We believe
that our backpatching approach provides reasonable semantics and
better compilation speed.

XAspects is a system that integrates domain-specific aspect
languages and component languages [29]. Although XAspects is
not a general purpose language, it employs a similar compilation
scheme in which an AOP feature examines the properties of the
code generated by the result of first compilation.

Model-based pointcuts are an alternative solution to the fragile
pointcut problem [16]. Since this approach requires the program-
mer to maintain a conceptual model in response to the program
changes, we believe that analysis-based pointcuts will complement
the model-based pointcuts when the programmer can clearly de-
scribe analyses.

Shadow Programming is an approach that uses user-defined
analysis-based pointcuts for static crosscutting (e.g., inter-type dec-
larations and warnings) [35]. As far as the authors know, those
user-defined pointcuts can not be used in advice declarations. In
addition, user-defined pointcuts in Shadow Programming can only
access to information at the join point shadow. As a result, it would
be almost impossible to realize inter-procedural analyses with their
approach.

Partial evaluation is an optimization technique to generate more
efficient programs by using some of the parameters of a program
[15]. Evaluation of conditional pointcuts in SCoPE can be seen as
partial evaluation, because it evaluates the expression in a condi-
tional pointcut by using information of join point shadows, which
is already known at compile-time. However, when compared with
a fully-fledged partial evaluation system, SCoPE is much simpler
since it evaluates the expression when it does not use any runtime
parameters at all. As a result, when a conditional pointcut contains
both static and dynamic expressions as below, the pointcut is re-
garded as dynamic in SCoPE:

if (flag && thisJoinPoint.getSignature()
.getName () .matches ("~ [a-z]+$"))

Partial evaluation techniques, which regenerate an expression by
replacing static subexpressions with evaluated values, could opti-
mize more kinds of conditional pointcuts.

9. Conclusion

This paper presented an approach called Static Conditional Pointcut
Evaluation (SCoPE), which supports user-defined analysis-based
pointcuts. The contributions of the paper are as follows. (1) We
pointed out that a number of useful analysis-based pointcuts can be
written by using conditional pointcuts in existing AOP languages.
(2) We showed a compilation scheme that fully eliminates the run-
time overheads of user-defined analysis-based pointcuts. (3) We
demonstrated that our compiler implementation for Aspect], which
is built on top of the AspectBench compiler, has very small amount
of compile-time and runtime overheads when executed on a Java
virtual machine.

171

Compared to other AOP languages that support user-defined
pointcut primitives, SCoPE achieves better integration with an ex-
isting AOP language, namely Aspect]. Syntactically and seman-
tically, SCoPE is fully compatible with Aspect]. In other words,
SCoPE can be seen as an aggressively optimizing compiler for As-
pect]. At the implementation level, our SCoPE compiler acts as a
post-processor for an existing Aspect] compiler. It only requires the
Aspect] compiler to produce information about conditional point-
cuts. Therefore, it is easy to follow the evolution of the underlying
language.

Our future work includes separate compilation and more precise
binding-time checking. Current SCoPE implementation assumes
whole-program compilation so that one must have a complete set
of classes in hands at compile-time. This is because our binding-
time checking algorithm requires a complete class hierarchy infor-
mation in a program. Moreover, analysis-based pointcuts introduce
additional dependency from an analyzing module to the analyzed
modules, which would complicate the rules for separate compila-
tion.

As for the binding-time checking, our current algorithm is
not precise enough when a user-defined analysis and an ad-
vice declaration interfere. Assume an advice declaration calls
thisJoinPoint.getArgs() in its body. When the advice is ap-
plied to a method that implements defining an analysis-based point-
cut, the binding-time checking algorithm will find the call and con-
cludes that the pointcut is dynamic. However, the call to getArgs
can be evaluated at compile-time because the join point object will
also be instantiated during the execution of the analysis, rather than
supplied outside from the pointcut. We plan to improve the algo-
rithm by employing an efficient points-to analysis algorithm such
as the ones proposed in [5, 30] instead of the rapid type analysis
mentioned in Section 5.2.2.

Acknowledgments

We would like to thank all anonymous reviewers of this paper and
the members of the PPP group and PoPL meeting at University
of Tokyo, especially Jan Hanneman and Kohei Sakurai for their
comments. We also thank Karl J. Lieberherr, Kenichi Asai, Kris De
Volder, Klaus Ostermann, Shigeru Chiba and his research group for
their comments to the early stage of this work.

References

[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie
Hendren, Sascha Kuzins, Ondfej Lhotidk, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. Adding trace
matching with free variables to Aspect]. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented programming
systems languages and applications, pages 345-364. ACM Press,
2005.

[2] Lars Ole Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU, University of
Copenhagen, 1994.

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhotdk, Ondrej Lhotdk, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. abc: An extensible
Aspect] compiler. In Proceedings of the 4th International Conference
on Aspect-Oriented Software Development, pages 87-98. ACM Press,
2005.

[4] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++
virtual function calls. In Proceedings of the 11th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 324-341. ACM Press, 1996.

[5] Marc Berndl, Ondfej Lhotdk, Feng Qian, Laurie Hendren, and
Navindra Umanee. Points-to analysis using bdds. In Proceedings

of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation, pages 103—114. ACM Press, 2003.

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications. ACM Press, 2006.

[7

—

Shigeru Chiba. Load-time structural reflection in Java. In Proceedings
of the 14th European Conference on Object-Oriented Programming,
pages 313-336. Springer, 2000.

Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open Aspect]-like
language. In Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 102—111. ACM Press,
2004.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. In
Proceedings of the 9th European Conference on Object-Oriented
Programming, pages 77-101. Springer, 1995.

[8

=

[9

—

[10] Rémi Douence, Pascal Fradet, and Mario Siidholt. Composition, reuse
and interaction analysis of stateful aspects. In Proceedings of the 3rd
international conference on Aspect-oriented software development,
pages 141-150. ACM Press, 2004.

[11] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts
as functional queries. In Proceedings of the 2nd ASIAN Symposium
on Programming Languages and Systems, pages 366—381. Springer,
2004.

[12] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented
programming: Introduction. Communications of the ACM, 44(10):29—
32,2001.

[13] Stefan Hanenberg Giinter Kniesel, Tobias Rho. Evolvable pattern
implementations need generic aspects. In Proceedings of Workshop
on Reflection, AOP and Meta-Data for Software Evolution, 2004.

[14] Kris Gybels and Johan Brichau. Arranging language features for
more robust pattern-based crosscuts. In Proceedings of the 2nd
international conference on Aspect-oriented software development,
pages 60-69. ACM Press, 2003.

[15] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial
evaluation and automatic program generation. Prentice-Hall, Inc.,
1993.

[16] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing
the evolution of aspect-oriented software with model-based pointcuts.
In Proceedings of the 20th European Conference on Object-Oriented
Programming, pages 501-525, 2006.

[17] Greger Kiczales. The fun has just begun, 2003. Keynote talk at
AOSD’03.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of Aspect]. In
Proceedings of the 15th European Conference on Object-Oriented
Programming, pages 327-353. Springer, 2001.

[18

[19

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the 11th European Conference on

Object-Oriented Programming, pages 220-242. Springer, 1997.

[20] K. Klose and K. Ostermann. Back to the future: Pointcuts as
predicates over traces. In Proceedings of Foundations of Aspect-
Oriented Languages workshop, 2005.

[21] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., 2003.

[22] Karl J. Lieberherr and Ian M. Holland. Assuring good style for
object-oriented programs. IEEE Software, 6(5):38—48, 1989.

[23] Hidehiko Masuhara and Tomoyuki Aotani. Issues on observing aspect

172

[24]

[25]

[26]

[27]

(28]

[29]

[30

—

(31]

[32]

[33]

[34]

[35]

effects from expressive pointcuts. In Proceedings of Workshop on
Aspects, Dependencies and Interactions, pages 53-61, 2006.

Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut
in aspect-oriented programming. In Proceedings of the 1st Asian
Symposium on Programming Languages and Systems, pages 105—
121. Springer, 2003.

Sean McDirmid and Wilson C. Hsieh. Splice: Aspects that analyze
programs. In Proceedings of the 3rd International Conference on
Generative Programming and Component Engineering, pages 19-38.
Springer, 2004.

Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive
pointcuts for increased modularity. In Proceedings of the 19th
European Conference on Object-Oriented Programming, pages 214—
240. Springer, 2005.

Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gerard
Florin. JAC: A flexible solution for aspect-oriented programming
in Java. In Proceedings of the 3rd International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns,
pages 1-24. Springer, 2001.

Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic
weaving for aspect-oriented programming. In Proceedings of the 1st
international conference on Aspect-oriented software development,
pages 141-147. ACM Press, 2002.

Macneil Shonle, Karl Lieberherr, and Ankit Shah. XAspects:

an extensible system for domain-specific aspect languages. In
Companion of the 18th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
28-37. ACM Press, 2003.

Bjarne Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 32-41. ACM Press,
1996.

David B. Tucker and Shriram Krishnamurthi. Pointcuts and advice
in higher-order languages. In Proceedings of the 2nd international
conference on Aspect-oriented software development, pages 158—167.
ACM Press, 2003.

Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam,
Etienne Gagnon, and Phong Co. Soot - a Java optimization
framework. In Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research, pages 125-135.
IBM Press, 1999.

Robert J. Walker and Gail C. Murphy. Implicit context: easing
software evolution and reuse. In Proceedings of the 8th ACM
SIGSOFT international symposium on Foundations of software
engineering, pages 69—78. ACM Press, 2000.

Geoffrey Washburn and Stephanie Weirich. Good advice for type-
directed programming aspect-oriented programming and extensible
generic functions. In Proceedings of the 2006 ACM SIGPLAN
workshop on Generic programming, pages 33-44. ACM Press, 2006.

Pengcheng Wu and Karl Lieberherr. Shadow programming:
Reasoning about programs using lexical join point information.
In Proceedings of the 4th International Conference on Generative
Programming and Component Engineering, pages 141-156. Springer,
2005.

