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Abstract
We propose test-based pointcuts, a novel pointcut mechanism for
AspectJ-like aspect-oriented programming languages. The idea be-
hind the test-based pointcuts is to specify join points through unit
test cases associated with the target program. The test-based point-
cuts improve robustness and precision of pointcut languages. The
test-based pointcuts are more robust against software evolution
because they do not directly rely on identifier names in a target
program. The test-based pointcuts are more precise because they
can distinguish fine grained execution histories including condi-
tional branches by comparing the runtime execution histories with
recorded for ones of the unit test cases. This paper presents de-
sign and implementation of the test-based pointcuts as an exten-
sion of an AspectJ compiler. We evaluated robustness and runtime
efficiency of test-based pointcuts through case studies that applied
test-based pointcuts to several versions of practical application pro-
grams.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords Test-based Pointcuts, Fragile Pointcut Problem, Aspect-
oriented programming language, Unit Test Cases

1. Introduction
Aspect-oriented programming (AOP) [18, 19] is a programming
technique in order to modularize crosscutting concerns. In AOP,
programmers can define an aspect as a modular unit of the crosscut-
ting concern with respect to a target program1. Pointcut languages
are a key abstraction mechanism for aspects that allows the pro-
grammer to specify which join points (i.e., runtime actions of the
target program) match. There have been many studies on pointcut
languages in order to improve their precision [2, 9, 10, 11, 15, 22,
23, 27], robustness [1, 3, 8, 12, 13, 17, 21, 22], understandability
[14], and safety [4].
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1 In this paper, a target program means a program affected by the aspects.

This paper attempts to improve pointcut languages in terms of
two properties, namely robustness and precision, which are difficult
to be satisfied at the same time in existing pointcut languages.

Robustness of a pointcut is a property whether the set of join
points matched by the pointcut meets the developer’s intention after
software evolution. It is known that the property is hard to be guar-
anteed in existing pointcut languages, as also known as the fragile
pointcut problem [17, 26]. This is because in existing pointcut lan-
guages, pointcuts tend to directly depend on implementation details
of a target program, such as the signature of a method called inside
of another method. Existing proposals to this problem include the
ones to limit scope of pointcuts (e.g., Crosscutting Programming
Interface (XPI) [12] and Open Modules [1, 21]), the ones to exploit
information at not only an implementation phase of the software
development, but also other phases such as a design phase (e.g.,
model-based pointcuts [17] and Motorola WEAVER [8]), or the
ones to exploit program information at higher level (e.g., analysis-
based pointcuts [3, 13, 22]).

Pointcut languages should be precise enough so that program-
mers can exactly specify the set of join points that are affected by
an aspect. In this regards, pointcut languages have been improved
so that they can distinguish calling context (e.g., cflow), execution
history (e.g., tracematchs [2] and tracecuts [27]), intra-procedural
control flow (e.g., loop and conditional branch join points [15, 23]),
and so forth.

In existing AOP languages, it is often difficult to satisfy those
two desired properties. More precise pointcuts tend to be more
dependent on the implementation details, which is less robust. For
example, assume the programmer wants to apply advice when a
method behaved in a specific way. With existing techniques, he or
she has to specify join points performed inside the method to be
advised. The resulted pointcut is less robust because it depends on
the internal implementation of the method, which tends to change
more frequently than public interface of a module.

In order to resolve this dilemma, this paper proposes a novel
pointcut mechanism called the test-based pointcuts with which the
programmer can specify more precise pointcuts in more robust
manner. Concretely, a test-based pointcut can distinguish different
histories without directly depending on detailed implementation
of a method. The underlying idea is to specify execution history
through examples of program executions. We use unit test cases as
example programs, which can be easily maintained along with soft-
ware evolution. Our current design treats a set of runtime actions
during a method execution as an execution history. A history con-
tains information of branches taken at conditional branches, which
thus make the pointcuts more precise than the other existing history
sensitive pointcuts.

The rest of the paper explains our proposal in the following or-
der. Section 2 gives a motivating example where we need precision
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1 class FtpConnection {
2 boolean chdir(String dir) {...}
3 String[] list() {...}
4 void upload(String file) {...}
5 void download(String file) {...}
6 ...//other methods such as login follow here
7 }

Figure 1. Outline of the FtpConnection class

and robustness at the same time. Section 3 reviews a unit testing
framework that we use for defining pointcuts. Section 4 introduces
the test-based pointcuts and describes its semantics. Section 5 de-
scribes the how current implementation efficiently match pointcuts.
Section 6 evaluates how test-based pointcuts can replace and im-
prove existing pointcuts through case studies. Section 7 discusses
related work. Section 8 concludes the paper.

2. Motivating Example
This section explains precision and robustness properties of point-
cuts by using concrete code. We take, as an example, a GUI up-
dating concern in an AOP version of JFtp2, which is a network file
browser. The program is obtained by simplifying and refactoring
the original JFtp program in Java into an AspectJ program while
preserving its behavior.

2.1 Structure of AO-Refactored JFtp
The core part of JFtp we focus on here consists of the FtpCon-
nection class, the DirPanel GUI component and the Connec-
tionUpdate aspect. FtpConnection represents network connec-
tions with an FTP server. The GUI component displays files in
the current remote directory. ConnectionUpdate notifies the GUI
component of changes of the server and connection states.

2.1.1 The FtpConnection Class
FtpConnection objects (Figure 1) represent connections to an
FTP server. The methods defined in the FtpConnection class
implement all operations of the file transfer protocol. For example,
the chdir method takes a remote directory name and sends a
command to the server in order to change the remote working
directory.

2.1.2 GUI Component
Among many GUI components in JFtp, the DirPanel GUI compo-
nent displays the list of files in the current working directory on the
connected server as shown in Figure 2. Figure 3 shows an outline
of the definition. The method updateRemoteDirectory updates
the list of files by calling setDirList and revalidate.

2.1.3 Notification Aspect in Current AspectJ
The ConnectionUpdate aspect shown in Figure 4 implements the
GUI updating concern that refreshes the GUI components when-
ever the server status or connection states change. It crosscuts most
operations in FtpConnection. For example,the DirPanel compo-
nent must be updated when the current working directory changes.
The aspect therefore defines the updateRemoteDirectory point-
cut that matches the method execution join points of chdir method
in the FtpConnection class (lines 2 to 4 in Figure 4), and an
after advice declaration that updates the file list by calling the
updateRemoteDirectory method of the DirPanel component
that is associated with the connection obtained from a target
pointcut (line 5 to 10 in Figure 4).

2 http://j-ftp.sourceforge.net/

Figure 2. Screenshot of a GUI component in JFtp

1 class DirPanel extends JPanel {
2 ...
3 public void updateRemoteDirectory() {
4 setDirList(); //refreshes the list of files
5 revalidate(); //cause updating
6 // graphics of the component
7 }
8 ...//the definition of setDirList() follows here
9 }

Figure 3. Outline of a GUI component in JFtp

1 aspect ConnectionUpdate {
2 pointcut updateRemoteDirectory():
3 execution(boolean
4 FtpConnection.chdir(String));
5 after(FtpConnection c):
6 updateRemoteDirectory() && target(c) {
7 //refreshes layout of a GUI component
8 // associated with the connection
9 c.panel.updateRemoteDirectory();

10 }
11 ...//code for managing association between
12 // a connection and a GUI component follows here
13 }

Figure 4. Outline of the ConnectionUpdate aspect

2.2 Robustness Against Software Evolution
The pointcut definition in ConnectionUpdate is not robust against
software evolution as it directly relies on the identifier names in the
target program. The problem is also known as the fragile point-
cut problem: when a developer changes a target program without
knowing the pointcuts in the aspects, the change may make join
points accidentally matching or unmatching and result in an unin-
tended program behavior.

As a concrete example, we investigate the evolution of the Ft-
pConnection class. From version 1.07 to version 1.15, as shown
in Figure 5, the class is evolved to an interface BasicConnection
and a sibling class FilesystemConnection so that the new ver-
sion can also handle local files in the same manner as the files on
FTP servers.

The pointcut in the ConnectionUpdate aspect is not robust
against this evolution. The intention of the GUI updating concern
is to update the file listing component when the current direc-
tory changes. Therefore, the updateRemoteDirectory pointcut
should also match execution of chdir of the FilesystemCon-
nection class. However, it does not because this change was not
anticipated when the pointcut was written.
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chdir(dir)
upload(file)
...

FtpConnection

chdir(dir)
upload(file)
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chdir(dir)
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BasicConnection
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upload(file)
...

FilesystemConnection

Version 1.07 Version 1.15

Figure 5. Evolution of the FtpConnection class

1 public boolean chdir(String n) {
2 try {
3 socketio.send("CWD " + n);
4 } catch (Exception e) {}
5 String l = socketio.readLine();
6 if (l == null) {
7 return false; //update
8 } else if (l.startsWith(SUCCESS)) {
9 return true; //update

10 } else {
11 return false; //no update
12 } }

Figure 6. Implementation of the chdir method

2.3 Precision in terms of Execution Histories
Another problem of existing pointcut languages is that pointcuts
are not sufficiently precise because they can not distinguish fine
grained execution histories of join points. To illustrate this point,
we continue to use the ConnectionUpdate aspect shown in Sec-
tion 2.1.3.

Assume we would like to avoid updating the file listing when
chdir failed due to a non existing directory name (resulting in
the current working directory to stay the same). In other words,
we would like to update only when chdir succeeded, or when the
server is disconnected during chdir. Since the pointcut shown in
Figure 4 matches any chdir execution, we need to elaborate the
definition so that it can distinguish how chdir is processed.

This can be achieved if the aspect would observe which inter-
nal execution histories that the chdir method followed. The chdir
method implementation is shown in Figure 6 where the socketio
field stores an object that provides low-level bidirectional connec-
tion to the server. An execution of the method can have one of the
following three execution histories:

1. Success. It sends a command to the server (line 3). Then re-
ceives a response from the server (line 5). When it indicates
success (line 8), the method returns true (line 9).

2. Failure with a non existing directory name. After sending the
command, it receives a line that indicates failure of the re-
quested operation (line 8). It then returns false (line 11).

3. Failure by a network error. When the server or the network is
down, sending a command throws an exception, which is caught
by the handler (line 4). The attempt to receive a line results in a
null value (line 6). It then returns false (line 7).

The current AspectJ’s pointcut language is not sufficiently pre-
cise. A single pointcut definition cannot distinguish above three
cases from a matching join point and its exposing information such
as target and args. For identifying case 1 it needs to check the
return values from chdir with the help of the returning construct

1 public class TestFtpConnectionChdir
2 extends TestCase {
3 FtpConnection con, errorCon;
4 protected void setUp() {
5 ... //set up host information
6 con = new FtpConnection(hostInfoForTest);
7 errorCon=new FtpConnection(errorHostInfo);
8 }
9 protected void tearDown() {

10 con.disconnect();
11 }
12 public void testChdirSuccess() {
13 assertTrue(con.chdir("testDir"));
14 assertEquals(HOME+"/testDir", con.pwd());
15 }
16 public void testChdirFail() {
17 assertFalse(con.chdir("unknownDir"));
18 assertEquals(HOME, con.pwd());
19 }
20 public void testChdirFailWithNetworkError(){
21 assertFalse(errorCon.chdir(""));
22 assertEquals("", con.pwd());
23 }
24 }

Figure 7. Unit test case methods for the FtpConnection class

and an if pointcut, and for identifying case 2 it needs to check the
return values from readLine that is called from chdir.

2.4 Dilemma of Satisfying Robustness and Precision
To summarize the problem, there are two properties that pointcut
languages should have. The one is not to directly depend on names
of types, methods and fields. The other is the ability to distin-
guish execution histories including conditional branches in meth-
ods. Those requests are hard to be satisfied at the same time with
existing pointcut languages.

Solutions with existing techniques are too dependent on the
detailed implementation of chdir, and thus more fragile against
evolution. A solution in AspectJ is to use auxiliary flags and advice
declarations. Others are to use extended pointcut mechanisms such
as tracematches [2]. With those solutions, the pointcuts and the
aspect depend on the fact that chdir recognises a network error
by the return values from readLine, which is merely one possible
implementation among others. The aspect would become incorrect
if chdir was modified to return false in the exception handler at
line 4 in Figure 6.

3. Overview of Unit Testing
Since our proposal relies on unit testing, we briefly review how unit
test cases are written in the JUnit framework3 .

We refer to a unit test case as a test of a behavior of a method
in a target program. A behavior of a method is defined as a pair of
a set of parameter values and an expected result that is generated
from a behavioral specification of the method. A test is a task to val-
idate the behavior of the method by invoking the method with the
specified parameters, and confirming if the obtained result meets
the expected one. We call the tested method the target method of
the unit test case.

In the JUnit framework, each unit test case is defined as a
separate method in a class.

3 http://www.junit.org/
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Figure 8. An overview of test-based pointcuts

Figure 7 shows a class containing three unit test cases (test-
ChdirSuccess, testChdirFail and testChdirFailWithNetwork-
Error) along with two auxiliary methods (setUp and tearDown)4.
The target method is chdir in FtpConnection. testChdir-
Success (lines 12 to 15) is a unit test case for the case that a
change directory operation succeeds. testChdirFail (lines 16 to
19) is a unit test for the case that the same operation fails because
the directory does not exist on the server. Finally, testChdir-
FailWithNetworkError (lines 20 to 23) is a unit test for the case
that the same operation fails due to a network error. The methods
whose names begin with assert, which are provided by JUnit
framework, are used to check whether the results returned from
target method are the same to the expected ones.

The methods setUp (lines 4 to 8) and tearDown (lines 9 to 11)
define common tasks at the beginning and the end of each method
of a unit test case, which are automatically called by the framework.

4. Test-based Pointcuts
To solve the problems mentioned in Section 2.2 to 2.4, we propose
a new mechanism called test-based pointcuts as an extension to
AspectJ.

4.1 Overview
A test-based pointcut matches join points of the target program
through unit test cases. Figure 8 illustrates an overview of the
mechanism, which consists of the following three key language
elements:

Unit test cases. The programmer defines a unit test case for each
execution history that he or she wants to advise. In Figure 8, the
three rectangles (testChdirSuccess, testChdirFail and
testChdirFailWithNetworkError) in the middle row repre-
sent the unit test cases for the chdir method. They correspond
to the three execution histories discussed in Section 2.3. The
unit test cases are defined in the same manner as the ones based
on the JUnit framework, and serve as ordinary unit test cases.
However, they must call two special methods in order to let the
compiler distinguish setup and validation operations from calls
of target methods.

Fixture. All unit test cases must access fixtures (i.e., testing values
and expected results) through appropriate fields in a class that
are defined for and shared by all unit test cases for a target
program. This means, for example, the programmer defines the
ConnectionFixture class for storing fixtures of the three unit

4 This paper assumes JUnit version 3, on which our curerrent implementa-
tion depends.

1 pointcut updateRemoteDirectory():
2 test(get(* ConnectionFixture.changedDirName)
3 ,!within(SocketIO+));

Figure 9. A test-based version of updateRemoteDirectory
pointcut defnition

test cases in Section 3. Each unit test case that accesses a correct
(i.e., existing in the server) directory name uses the changed-
DirName field in ConnectionFixture.

Test-based pointcuts. A test-based pointcut is written as test(p)
where p is a pointcut description that specifies unit test cases.
It matches join points that had the same execution history as
the one of the unit test cases specified by p. An optionall syn-
tax test(p,f) lets the test pointcut observe only the join
points that matched the pointcut f at testing time. This is use-
ful for ignoring the differences between testing and execution
environments, such as use of mock objects. This optional syn-
tax will be explained in Section 4.5. For example, test(get(*
changedDirName)) specifies join points that had the same ex-
ecution histories as testChdirSuccess or testChdirFail-
WithNetworkError because they access the field changed-
DirName.

Our system executes a program with test-based pointcuts by
following the next two stages:

1. At testing time (left hand side of Figure 8), the system compiles
the target program without aspects and executes all unit test
cases. For each unit test case, the system records an execution
history of the target method execution (i.e., the join points with
control flow in a dashed rounded line in the figure). The system
also records which unit test cases match the sub-pointcut of
each test-based pointcut.

2. At program execution time (the right hand side of the figure),
whenever the target program reaches a new join point, the
runtime system compares the current execution history against
the ones recorded at the first stage. When it finds a match, there
is a unit test case that produced the history. Then the pointcut
whose sub-pointcut matched the unit test cases at testing time
matches the current join point, hence the system runs the advice
body.

4.2 Notification Aspect with Test-Based Pointcuts
Figure 9 shows a redefinition of the updateRemoteDirectory
pointcut in the ConnectionUpdate aspect with test-based point-
cuts. The unit test cases are also redefined like shown in Figure 10.
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1 public class TestFtpConnectionChdir
2 extends TestCase {
3 FtpConnection con, errCon;
4 ConnectionFixture f;
5 ... //setUp and tearDown are omitted.
6 public void testChdirSuccess() {
7 f.changedDirName = "testDir";
8 f.changedPath = HOME+"/testDir";
9 Phase.beginTestCall();

10 boolean r = con.chdir(f.changedDirName);
11 Phase.endTestCall();
12 assertTrue(r);
13 assertEquals(f.changedPath,con.pwd());
14 }
15 public void testChdirFail() {
16 f.unknownDirName = "unknownDir";
17 f.unchangedPath = HOME;
18 Phase.beginTestCall();
19 boolean r = con.chdir(f.unknownDirName);
20 Phase.endTestCall();
21 assertFalse(r);
22 assertEquals(f.unchangedPath,con.pwd());
23 }
24 public void testChdirFailWithNetworkError(){
25 f.changedDirName = ""; f.changedPath = "";
26 Phase.beginTestCall();
27 boolean r = errCon.chdir(f.changedDirName);
28 Phase.endTestCall();
29 assertFalse(r);
30 assertEquals(f.changedPath,errCon.pwd());
31 }
32 }

Figure 10. The TestFTPConnectionChdir test case class re-
vised for test-based pointcuts

The updateRemoteDirectory pointcut now matches join points
that have the same execution histories as the unit test cases that
reference the changedDirName field of the ConnectionFixture
class. The second sub-pointcut !within(SocketIO+) ensures to
exclude actions within subtypes of SocketIO from execution his-
tories. This will be explained in Section 4.5.

The unit test cases in Figure 10 are different from the ones in
Figure 7 in two points. First, they use the fields of the Connec-
tionFixture class, such as changedDirName or unkownDir-
Name, instead of literal values. Second, they have two dummy
method calls between phases of parameter setup, test execu-
tion, and validation. The calls to Phase.beginTestCall() and
Phase.endTestCall() in Figure 10 separate test executions of
the setup and validation operations, respectively.

Figure 11 shows the ConnectionFixture class, which defines
fields that store the parameters and expected results in the unit test
cases with respect to network connections.

The whole program runs in the following ways. At the testing
time, the system executes all the unit test cases and finds that test-
ChdirSuccess and testChdirFailWithNetworkError refer-
ence the field specified by the updateRemoteDirectory pointcut.
At the same time, it records execution histories of the target method
chdir called from each unit test case. For example, the execution
history of chdir from testChdirFailWithNetworkError are
the lines 2–7 in Figure 65. At the program execution time, when
an execution of chdir follows the same lines as the ones done by

5 It also keeps track of the executions of methods called from chdir. We
will discuss this in Section 4.4.

1 /** Fields in this class are for
2 * storing testing values and expected
3 * connection operations.
4 */
5 public class ConnectionFixture {
6 public String changedDirName;
7 public String unknownDirName;
8 ... //other fields follow here.
9 }

Figure 11. ConnectionFixture in the FTP client program

testChdirFailWithNetworkError, the pointcut matches, hence
the advice runs.

4.3 Advantages
We claim that the aspects defined with test-based pointcuts are
more robust and more suitable to distinguish fine grained execution
histories thanks to the following properties of unit test cases defined
with fixtures.

• Up-to-date. When developers change a target program, they
also change the unit test cases associated to the program so that
all the unit test cases succeed. Therefore, test-based pointcuts
automatically reflect the changes to the target program as long
as the associated tests are maintained.

• Thorough. Good programs are supposed to have unit test cases
that cover typical usages of each method. Therefore, we can
expect that there already exist unit test cases for the target
program, which are usable to distinguish particular behavior
(i.e., execution history) of a method. Even if we had to define
new unit test cases for defining test-based pointcuts, those unit
test cases will improve quality of the program because they also
serve as ordinary unit test cases.

• Crosscutting classification. Even though unit test cases are
usually organized along with the structure of the target program,
fixture fields help finding unit test cases related to a crosscutting
concern. This is because a fixture field often related to a concern
that crosscuts multiple unit test cases.

The aspect definition using test-based pointcuts solves the prob-
lems discussed in Section 2.2 and Section 2.3 in the following
ways. When the target program evolves as shown in Figure 5, the
developers will also add unit test cases for the chdir method of
the newly introduced class FilesystemConnection. Since those
new unit test cases also use the fixture fields changedDirName and
unkownDirName, the pointcut in Figure 9 automatically matches
join points in the FilesystemConnection class without modifi-
cation.

The test-based pointcut in Figure 9 can distinguish differences
of execution histories. As already explained, it can distinguish the
three execution histories shown in Section 2.3. Moreover, it does
not explicitly depend on the detailed implementation of chdir be-
cause the system automatically records histories of the test execu-
tions. In other words, we can say that test-based pointcuts provide
abstractions of detailed method behavior so that aspects can distin-
guish different execution histories without directly relying on de-
tailed implementations.

The fixture fields would help identifying crosscutting concerns
that will appear upon future evolution. In the above example, the
changedDirName fixture field represents changes of current direc-
tory name. Therefore, if a version of JFtp had another method that
changes current directory, a unit test case for the method would use
the same fixture field, which in turn helps the programmer to find
relevance with the GUI updating concern.
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4.4 Semantics
Below we explain the semantics of the test pointcut as processes
at the testing and program execution times.

4.4.1 Testing Time
At testing time, the system compiles a target program without
weaving aspects, and executes all unit test cases in order to identify
specifying unit test cases and to record execution histories.

Given a pointcut description test(p), the system identifies any
unit test case that creates at least one join point matching the sub-
pointcut p during the test execution. Note that p can be any pointcut
but should not include a test pointcut. For example, given the
pointcut in Figure 9:

test(get(* ConnectionFixture.changedDirName))

the system runs all the unit test cases in Figure 10, and finds that
testChdirSuccess and testChdirFailWithNetworkError
match the subpointcut.

When the system executes each unit test case, it also records the
execution history between calls to Phase.beginTestCall() and
Phase.endTestCall(). As for the unit test cases in Figure 10,
the system records histories of the executions of the chdir method
of the FtpConnection class. A later section will describe the
definition of an execution history.

4.4.2 Pointcut Matching at Program Execution Time
At program execution time, test(p) matches a method execution
join point when the execution history of the join point is the same as
the history of one of the unit test cases that matched p. Since an ex-
ecution history of a method execution is only available at the end of
the execution, our system compares execution histories only when a
test-based pointcut is used with an after advice declaration. When
used with a before or around advice declaration, the pointcut un-
conditionally matches execution join points of target methods that
were executed by a unit test case matching p.

The following subsections explain the definition of an execution
history and inclusion between execution histories.

4.4.3 Execution Histories in the Control Flow Graph
We define an execution history of a method with respect to the
control flow graph (CFG) of the method. An execution history is a
sequence of CFG nodes. A node of a CFG of a method is a segment
of bytecode instructions in the target method that corresponds to
a join point shadow [16, 20]. We extended the definition of the
join point shadow to include any bytecode instruction, such as
branches and accesses to local variables. We call the extended
join point shadows fine-grained join point shadows (FJPSs). Join
points generated from extended FJPSs are only used for comparing
execution histories. The semantics of existing pointcut primitives is
thus unchanged.

A CFG edge is a directed relation between two FJPSs and
individually labeled. We write an edge e from node a to b as
e = 〈a, b〉.

There are two kinds of edges in the CFG, namely regular and
irregular. An irregular edge denotes a transition caused by an
exception. A regular one does any other transition including a
conditional jump and a method call.

Figure 12 shows an example of a CFG constructed from the
chdir method in Figure 6. For readability, we omit several nodes.
Each circle labeled with ni denotes a CFG node, which is associ-
ated with a (virtual) bytecode instruction on its right. A solid arrow
between two nodes is a CFG edge. A dashed arrow denotes that we
omitted some nodes and edges between two nodes of the CFG. For
example, we omit eight sequentially connected nodes between n2

n0 exec(chdir(..))

n1 aload_0

n2 get(socketio)

n11 call(send(..))

n13 goto

n15 astore_2

n16 aload_0

n17 get(socketio)

n18 call(readLine())

n19 astore_2

n20 aload_2

n21 ifnonnull

n22 iconst_0

n23 ireturn

n24 aload_2

n25 ldc SUCCESS

n26 

n27 ifeq

n28 iconst_1

n29 ireturn

n30 iconst_0

n31 ireturn

n14 handler()

n12 
e5

e6
exec(send(..))

e1

e24

e33

e36

e4

e8

e9

e10

e11

e25

e7

e22

e12

e34
e31

e13

e14

e15

e16

e17
e18

e19

e20

e21

e23

e32e35

e2

e3

e26

e27
call(startsWith(..))
e28

e29e30

Figure 12. CFG of the chdir method

and n11. Compared with standard instruction-level CFGs, ours are
different in the following respects:

• In addition to real bytecode instructions, we introduced virtual
bytecode instructions in order to represent a code block that
corresponds to an AspectJ join point. In the example, n0 and
n12 are virtual instruction nodes that correspond to execution
join points.

• We integrate intra-procedural and inter-procedural edges into
one CFG. Therefore, call nodes (n11, n18 and n26) are con-
nected to their callee nodes as well as their subsequent in-
struction nodes. When a virtual method call can dispatch to
more than one implementations, there will be edges between
the caller node and each execution node.

• There is an irregular edge from every instruction node to each
exception handler node (if exists), or to the execution node of
the method (if there is no handler). In the example, e8, e9,
e10 and e11 are irregular edges. There are also irregular edges
from nodes n15 through n31 to n0, which are omitted in the
Figure 12.

4.4.4 Execution History
An execution history of a method execution is a set of CFG nodes
whose elements are instruction nodes executed during the execu-
tion. When chdir is executed and fails due to a network error, its
execution history is {n1, n2, · · · , n11, n12, n14, n15, n16, n17,
n18, n19, n20, n21, n22, n23}.

4.4.5 Matching Execution Histories
We define that an execution history he of method m at execution
time matches a history ht at the testing time if and only if he

contains all instruction nodes in ht; i.e., ht ⊆ he.
Since we represent an execution history by using a set of in-

struction nodes, there are cases when two different execution his-
tories are determined as the same. One is different behavior over
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iteration. The above definition of execution history abstracts actual
execution histories by discarding the number of iterations because
it is based on the sets of CFG nodes. Assume two executions of a
statement while(· · · ) {if(· · · ) A else B }. The histories un-
der our definition are equal if the one execution performs A then
B, and the other does B then A. Another case is because when
we need to distinguish edges that lead to a node, especially in case
of exception handling. We believe that future study would reveal
appropriate representations of execution histories.

4.5 Filtering Execution History
As already mentioned (Section 4.1), there is an optional syntax of
test-based pointcuts that is useful to ignore differences between
testing and execution environments. When a test-based pointcut
has an optional sub-pointcut, it specifies to filter out edges from
execution histories that do not match the sub-pointcut.

For example, a pointcut

test(get(* ConnectionFixture.changedDirName),
!within(SocketIOStub))

has the same meaning as the version without the filter except
for ignoring operations in the SocketIOStub class. This hides
differences between SocketIO objects used at testing time and
runtime. The unit test cases use so-called mock objects that mimic
network connection because it is not feasible to establish a network
connection at the testing time. With the mock objects, the execution
histories at the testing time and at the runtime are completely
different in send and readLine.

This filtering mechanism is also useful to exclude operations
that do not substantially change behavior of a target method such
as logging operations.

5. Implementation
We implemented a prototype compiler that supports test-based
pointcuts by extending the AspectBench Compiler (abc) [5] 6. The
size of the extension is approximately 3800 lines of Java code.

This section explains how our implementation realized the se-
mantics presented in the previous section. The main challenges are:

1. an overall compilation process that first records execution his-
tories, and then generates efficient executables, and

2. an efficient implementation of pointcut matching at runtime.

5.1 Overall Compilation Process
In order to pre-record execution histories of unit test cases, a com-
pilation of test-based pointcuts needs a process into a current As-
pectJ’s compilation strategy. Before explaining our compilation
process, we first review the compilation strategy of AspectJ.

5.1.1 Compilation Strategy of AspectJ Programs
AspectJ’s compilation strategy [5, 16] consists of the following
three steps:

1. Per-module compilation. Given source files of class declara-
tions and aspect declarations, the compiler compiles each of
them into an intermediate representation.

2. Processing inter-type declarations. An inter-type declaration
is a static crosscutting mechanism that can add method, field
or other declarations into existing classes from aspects. The
compiler modifies the intermediate representation of classes
according to the inter-type declarations.

6 The prototype implementation is publicly available at http://www.
graco.c.u-tokyo.ac.jp/ppp/projects/testbasedpc.

3. Advice weaving. Given an advice declaration with a pointcut,
the compiler looks for join point shadows that can match the
pointcut at runtime. For each of such shadows, it inserts a se-
quence of instructions that calls the body of the advice. The in-
structions include conditional branches if the pointcut requires
runtime tests (e.g., if and args pointcut primitives).

After those steps, the compiler generates a class file from the in-
termediate representation. Note that inter-type declarations should
be woven before the advice declarations because inter-type dec-
larations can change class structures, which could affect pointcut
matching.

5.1.2 Recording Execution Histories
Before weaving advice declaration, our compiler records execution
histories of all the unit test cases. It is achieved by generating
compiled code instrumented with the following two kinds of code
fragments.

1. History recording code. In order to record execution histories,
the compiler inserts recording code into entry of every basic
block in all methods in the target program. A basic block is
a sequence of nodes, when viewed in a CFG, each of which
has only one outgoing regular edge except for the last one.
The inserted code records if the test run executed the code at
least once, when the corresponding FJPS matches the filtering
pointcut. By only recording at the entry of each basic block, the
implementation reduces the size of execution histories.

2. Sub-pointcut-matching code. The compiler also inserts a code
fragment into each join point shadow that matches the sub-
pointcut of a test pointcut. It records unit test cases matching
per a test pointcut basis.

After running each unit test case, the compiler obtains (1) an exe-
cution history of the unit test case, and (2) a set of test pointcuts
whose sub-pointcut matched the test case.

5.2 Efficient Pointcut Matching
Our implementation optimizes pointcut matching by eliminating
obvious overheads that a naive implementation would have. First,
our set-based semantics of an execution history enables more effi-
cient implementation than a sequence-based semantics. In addition,
our implementation avoids obvious overheads by:

(1) only monitoring code blocks that are executed by unit test cases,

(2) only checking at entries of basic blocks, and

(3) using bit vectors for recording flags.

Even though there is room for further optimizations such as the
ones used in path profiling techniques [6], our current implementa-
tion exhibits, as an initial step, reasonable performance as we will
see in Section 6.1.

Below, we explain how our compiler instruments code by taking
a case when chdir in Figure 6 is compiled with ConnectionUp-
date in Figure 9 and TestFtpConnection in Figure 10.

The first compilation stage finds that the sub-pointcut in the
pointcut matches two unit test cases, namely testChdirSuccess
and testChdirFailWithNetworkError. Let’s assume that the
compiler gives indices 0 and 1, respectively to those two execution
histories. It also records respective execution histories of those
unit test cases. The compiler prepares sets of flags to respective
execution histories in order to monitoring code blocks executed
at runtime. The runtime system sets one of the flags at the entry
of each basic block in CFG that are visited by an execution of
a unit test case. At the end of each target method, the runtime
system checks all the expected flags in order to compare execution
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1 public boolean chdir(String n) {
2 TraceCFlow $1 = ConnectionUpdate.$trace$1;
3 $1.push(2); $1.set(0,3); $1.set(1,3);
4 try { $1.add(0,2); $1.add(1,2);
5 try {
6 socketio.send("CWD " + n);
7 } catch (Exception e) { $1.add(1,1); }
8 String l = socketio.readLine();
9 boolean $r;

10 if (l == null) { $1.add(1,0);
11 $r = false;
12 } else { $1.add(0,0);
13 if (l.startsWith(SUCCESS)) { $1.add(0,1);
14 $r = true;
15 } else {
16 $r = false;
17 } }
18 return $r;
19 } finally {
20 if ($1.check())
21 ConnectionUpdate.aspectOf().after$1();
22 $1.pop();
23 } }

Figure 13. The chdir method after instrumentation (manually
decompiled)

Table 1. Methods of TraceCFlow
push(n) creates an array of bit vectors for n unit test cases
set(t,b) allocates b-bit vector for unit test case t
add(t,b) sets a flag for basic block b of unit test case t
check() returns true if all flags of any unit test case are set
pop() merges top two arrays of bit vectors into one

histories. In the case of chdir, the compiler prepares flags for
nodes n0, n24 and n28 with respect to testChdirSuccess, and
n0, n14 and n22 with testChdirFailWithNetworkError.

The runtime system manages sets of flags for each advice dec-
laration, by using the TraceCFlow class, which is a thread-local
stack of arrays of bit vectors. The methods of TraceCFlow are
summarized in Table 1.

Figure 13 shows (decompiled) code generated by the compiler.
At the beginning of the method, it obtains a stack by obtaining a
TraceCFlow object (line 2), pushes an array of bit vectors and
allocates bit vectors (line 3). For each entry of basic block that
was executed by a unit test case (e.g., lines 4 and 7), it sets flags
in respective bit vectors. The code that runs an advice body (line
21) is guarded by checking if all flags of any unit test case are set
(line 20). Before returning from the method, it merges the current
bit vectors into the ones under the stack top (if there exists). This
is because, when the method is recursively called, the execution
history of the inner call should be part of the one of the outer call
as well.

One of the potential problems of our optimization is imprecise-
ness at exception handling. Since we computed basic blocks by
only concerning regular edges, a set of flags does not indicate how
many instrunctions in a basic block are executed when an exception
is thrown. For example, when an exception is thrown during an exe-
cution of the following code, we cannot determine either statement
throws the exception: try { A ; B } catch(· · · ) {· · · }.

Table 2. Average execution times (µsecs)

simplified
NA AJ TB TB/AJ

Success 6.38 6.43 14.6 2.27
Failure 5.30 5.41 13.1 2.42

NetworkError 26.0 26.1 34.6 1.33

original
NA AJ TB TB/AJ

Success 43.7 43.7 84.0 1.92
Failure 36.5 37.4 69.6 1.86

NetworkError 72.1 74.2 112 1.51

6. Evaluation
We evaluated test-based pointcuts with the respect to runtime per-
formance (Section 6.1), feasibility of test-based pointcuts (Sec-
tion 6.2), and robustness against evolution (Section 6.3). Sec-
tion 6.2 and 6.3 mainly focus on rewriting AspectJ pointcuts into
test-based ones. Due to lack of practical examples, we have not
performed quantitative evaluation of pointcuts that require to dis-
tinguish fine-grained behavior. This is left for future study.

6.1 Preliminary Performance Measurement
In order to confirm feasibility of our implementation, we measured
and compared execution times of several micro-benchmark pro-
grams compiled with either an aspect with current AspectJ point-
cuts or the one with test-based pointcuts. We executed all measure-
ment on an Intel Core Duo 2.16 GHz with 2 MB L2 cache memory,
2 GB RAM and a HotSpot JVM version 1.5.0 07 under Mac OS X
10.4.10.

We executed each program for five times and chose the shortest
overall execution time. The benchmark programs are:

• a simplified chdir implementation presented in Section 5.2,
and

• the original chdir implementation in JFtp version 1.48 consist-
ing of 11 methods or 180 lines of code. We slightly modified the
code to support unit testing.

All programs are executed with a mock object that simulates net-
work communications.

These programs are compiled with the following three aspect
configurations: (NA) without aspects, (AJ) with a current AspectJ
aspect which manually monitors a calls to getLine inside chdir
implementation, and (TB) with an aspect using test-based pointcuts.
These aspects simply increment an integer filed in their advice
declarations. The lengths of allocated bit vectors for those aspects
are 8 (in simplified) and 49 (in original).

We measured execution times of each configuration of each
chdir implementation with the following three runtime parame-
ters: by averaging the elapsed time of a loop repeated for ten mil-
lion times.

• (Success) a correct directory name and a functional network
connection,

• (Failure) a non existing directory name and a functional net-
work connection, and

• (NetworkError) a correct directory name and a broken network
connection.

Table 2 shows the execution times. As the TB/AJ columns
show, TB configurations are slower than AJs by the factors of 1.33
to 2.42. Note that the overhead factors are those of the worst cases
since we measured the execution times of the advised method only,
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Table 3. Number of pointcut definitions converted into test-based pointcuts. (The first three applications are from the AspectJ distribution,
and the last four are from AspectJ in Action [24].)

FC
Application SC Total 1 2 3 Test Cases Fixture Fields
observer 1 0 0 0 0 1 1
telecom 5 0 0 0 0 14 6
spacewar 19 3 0 3 0 39 45
factorial 1 1 1 0 0 3 2
account 2 0 0 0 0 4 5
auth 3 5 2 0 3 6 6
transaction 3 10 2 1 7 7 7
Total 34 19 5 4 10 74 72

which does not include network communication time. We believe
the overheads are reasonable as an initial implementation, though
it still has room for further optimization.

6.2 Feasibility of Test-based Pointcuts
Clearly, not all pointcuts in AspectJ can be rewritten into test-
based pointcuts. In order to see how oftenly we can use test-based
pointcuts, we rewrote pointcuts in existing AspectJ applications
into test-based pointcuts. We took seven non-trivial programs from
the AspectJ distribution7 and a text book [24]. Since they come
without unit test cases, we defined unit test cases by ourselves.
Table 3 summarizes the results of the experiment. Each column
shows:

• (SC) the number of the test-based pointcuts that are successfully
converted,

• (FC) the number of the pointcuts that cannot be converted into
test-based pointcuts,

• (Test Cases) the number of the unit test cases that we defined
along with the test-based pointcuts, and

• (Fixture Fields) the numbers of the fixture fields that are declared
for the unit test cases.

Approximately three fifth of pointcuts can also be expressed by
test-based pointcuts. Other 19 pointcuts that are converted can be
classified to the following groups.

1. Compositions of named pointcuts, such as factorialOpera-
tion(n) && !cflowbelow(factorialOperation(int)).
Even though it might be possible to convert such a pointcut into
test-based one, there are no points to do so because the pointcut
is sufficiently abstract.

2. Universally matching pointcuts, such as call(* *.*(..)). It
is difficult to select unit test cases universally due to lack of
common fixture variables.

3. Pointcuts that capture library access. Even though we can de-
fine unit test cases for library accesses, we did not do so as it
is unlikely to test libraries from application programs, and li-
brary APIs are ususally stable and do not cause fragile pointcut
problems.

6.3 Robustness against Evolution
In order to evaluate how test-based pointcuts make can aspects
more robust against software evolution, we compared two AOP
implementations of open source software systems over several ver-
sions.

7 http://www.eclipse.org/aspectj/

6.3.1 Setup
We chose two open source software systems written in Java, se-
lected several versions in their archives, and refactored several
crosscutting concerns into two kinds of aspects, namely current As-
pectJ aspects and aspects with test-based pointcuts. We also wrote
unit test cases for the latter, when necessary.

The chosen software systems and versions are follows:

1. JFtp network file browser versions 1.07, 1.15 and 1.48. We
refactored a GUI updating concern that refreshes screen upon
changes in a remote directory.

2. Scarab issue tracking system8 versions b16, b19, b20 and b21.
It is a medium size web application having hundred thousands
lines of code. We refactored (1) a security concern that checks
user’s permissions9, (2) an email concern that reports actions
through e-mail, and (3) a caching concern that reuse database
objects.

6.3.2 Counting Mismatch
The current AspectJ aspects do not use wildcard in the pointcuts.
This is because, from the original implementation, it was hard to
derive pointcuts with wildcards that accurately reflect developers’
intention. Therefore, the evaluation should be taken as the maximal
improvements by using test-based pointcuts from a naive aspect
implementation.

For each version of the AO refactored implementations, we
applied the aspects to the classes in the next version, and counted
the number of methods in the next version that are accidentally
advised and the number of methods that are not advised while they
should be.

6.3.3 Results
Table 4 shows the number of mismatches. We separately discuss
the cache concern in Scarab in Section 6.3.4. Each row in the table
corresponds to one version, indicating the following numbers.

• (Mismatches) The numbers of join point shadows that either
should be advised in the current version but missed by the point-
cuts in the previous version, or should not be advised but cap-
tured by the previous pointcuts. Therefore, lower the numbers
are, more robust pointcuts are. The numbers t/a correspond to
the number of mismatches by test-based pointcuts and current
AspectJ pointcuts, respectively. Following the total numbers
of mismatches, the numbers in CC, MA, MD and SC columns
show the breakdown by the causes of mismatches, which are
explained below.

8 http://scarab.tigris.org/
9 We refactored security concerns that involve with 8 permission types
among 19 in Scarab.
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Table 4. Number of mismatching join point shadows captured by pointcuts in previous versions
Mismatches

Version Total CC MA MD SC UC JPS
GUI updating concern 1.07 1/0 10

in JFtp 1.15 6/10 6/6 0/4 - - 12/0 8
1.48 3/24 3/3 0/21 - - - 32

security concern b16 13
in Scarab b19 - - - - - 13

b20 0/1 - 0/1 - - 14
b21 4/8 2/2 2/4 (1) 0/1 17

email concern b16 18
in Scarab b19 1/1 1/1 - - - 19

b20 - - - - - 19
b21 0/2 - 0/1 (1) - 19

• (UC) The number of unintended captures. An unintended cap-
ture is a join point shadow that is not advised in one version
but matches pointcut in the previous version. For example, in
a Java version of JFtp, there are two methods that implement
the same functionality yet have different number of parameters.
For some reasons, only one of them updates the GUI. In the
test-based pointcut version, both methods are advised due to
the almost same unit test cases defined for them. As we cannot
find good reasons to explain this inconsistency in the original
Java version, we excluded those shadows from mismatches10.

• (JPS) The number of join point shadows (i.e., target methods)
that are advised by aspects.

We classified the versions of the mismatches into the following
categories and analyzed the effectiveness of test-based pointcuts for
each categories:

• Concern Change (CC); when a developer decided to apply
aspects to different join points from the previous version. We
have to modify pointcuts by all means in this case.

• Method Addition (MA); when a new version has a newly defined
method that should be advised by an aspect. The test-based
pointcuts can help as long as the new method also has proper
unit test cases. We found introduction of sibling classes (e.g.,
FilesystemConnection in JFtp as discussed in Section 2.2),
or introduction of a new operation into a group of operations for
a class (e.g., in the methods the ModifyIssue class in Scarab)
are typical cases of this category. Since those newly defined
methods are similar to existing ones, defining unit test cases
that use shared fixture variables is not so difficult.

• Method Deletion (MD); when a method that is advised in the
previous version does not exist in the new version. Both current
AspectJ and test-based pointcuts do not match in the new ver-
sion in this case. Since both have no problems upon evolution
we merely indicated the number of deleted methods in parenth-
sis in the table.

• Signature Change (SC); when the signature of a method changes
from the previous version. The test-based pointcuts can auto-
matically match the new version as long as unit test cases are
properly modified. This is a reasonable assumption because
compilation (or execution) of unit test cases easily identifies
the cases that are not compatible with the modified method
definitions. Using wildcards in current AspectJ aspect would

10 In Scarab, we did not count the number of unintended captures. However,
we conjecture to be zero as it has minimal number of unit test cases, and it
is more consistent than JFtp.

improve robustness as well, but not always useful especially to
unanticipated changes.

6.3.4 Caching Concern in Scarab
It turned out difficult to define test-based pointcuts for the caching
concern in Scarab. This is because, Scarab applies a caching mech-
anism to, not all of, but some of the database accesses, presum-
ably selected by efficiency and safety criteria. Therefore, it is not
possible for test-based pointcuts to conjecture such properties from
parameters in the unit test cases. An explicit collection of unit test
cases for database accesses that should be cached could help little,
when compared against current AspectJ pointcuts that enumerate
all the method signatures.

6.3.5 Analysis of the Result
Through the case study, we found that the test-based pointcuts can
improve robustness against evolution especially when signature of
a method changes, and when a new member (e.g., a method or a
class) is introduced into a family.

On the other hand, we also found that test-based pointcuts may
not be suitable to crosscutting concerns that are selectively applied
based on non-functional properties such as efficiency.

7. Related Work
7.1 Techniques to Cope with Fragile Pointcut Problem
To address the fragile pointcut problem, several studies proposed
techniques or programming conventions that prevent or detect as-
pects that depend on details of implementations. For example, XPI
[12] and Open Modules [1, 21] restrict aspects so that they will only
depend on the interface that is explicitly provided. Those propos-
als certainly make aspects robust, but make it difficult to precisely
apply aspects.

Another approach to robust pointcut is to use high-level pro-
gram information instead of signatures in detailed implementa-
tions. The approach includes semantics- or analysis-based point-
cuts, such as ALPHA [22] and CARMA [13] and SCoPE [3]. Even
though defining accurate rules are not easy, we believe this ap-
proach would compliment ours.

Similarly, there are approaches that exploit information at ear-
lier development stages. For example, model-based pointcuts [17]
can use information in design models. Motorola WEAVER [8]
can use information in behavioral specifications. Both systems re-
quire mechanisms to map high-level information to the code, which
should be provided by developers. Test-based pointcuts use unit test
cases, which are already associated to the code in many cases.

Rather than automatically solving the fragile pointcut problem,
there are tools that detect it. Such tools include the pointcuts delta
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analysis [26] and JMantlet [7]. The test-based pointcuts can also
detect problems by running unit test cases, but also can resolve the
problems by modifying the test cases.

7.2 More Precise Aspect Application
There are studies that make aspects sensitive to execution his-
tory. Those include tracecuts [27], tracematches [2], the work by
Douence et al. [9, 10, 11] and ALPHA [22]. Most prominent differ-
ence from our proposal is whether a pointcut description depends
on implementation details of a target program. Since pointcuts in
those studies specify execution histories based on a language of
join points, individual points have to be specified by means of tradi-
tional pointcuts. The test-based pointcuts, on the other hand, spec-
ify execution histories by using examples of executions, i.e., unit
test cases, which do not need to specify detailed behavior.

There are attempts to introduce finer grained join points, such
as loop continuations [15] and conditional branches [23], into As-
pectJ like languages. The test-based pointcuts can also distinguish
branches, without directly relying on implementation details.

8. Conclusion
This paper proposed test-based pointcuts as an extension to As-
pectJ. A test-based pointcut indirectly matches method execution
join points through fixture fields and unit test cases. We believe
those indirection steps nicely abstract crosscutting concerns. Fix-
ture fields, or test parameters can capture representative values spe-
cific to a concern. Unit test cases can abstract a specific execution
history. With the help of automated test execution tools, those indi-
rect steps can be validated against the target program.

Those properties make test-based pointcuts a novel solution that
addresses both robustness and precision of pointcuts. Of course,
test-based pointcuts do not automatically solve the fragile pointcut
problem, because the unit test cases must be consistent with the
target program, which usually has to be done by developers. In
this sense, our proposal merely shifted the maintenance cost from
pointcuts to unit test cases, the latter of which has to be paid anyway
in practical software development processes.

We implemented a compiler that supports test-based pointcuts
on top of the AspectBench compiler. The implementation executes
unit test cases at compilation time and records execution histories.
At the program execution time, instrumented compiled code effi-
ciently checks similarity of execution histories. Our initial imple-
mentation showed an overhead factor of merely 1.33–2.42 in a ker-
nel method.

We also carried out a case study that evaluates how much test-
based pointcuts can alleviate the fragile pointcut problem in prac-
tical open-source software systems. The study suggests that test-
based pointcuts are useful to program evolution due to signature
changes and method additions into a family of classes or methods.

There are many interesting challenges left for future work. The
algorithm and implementation of the mechanism in that record
and compare execution histories should be improved. Precision of
execution history is another interresting issue. While we define a
history as a set of executed basic blocks in a CFG, alternative ones
that can distinguish edges might be better. At the same time, it
would be useful to have a mechanism that can specify unrelevant
parts in the history.
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