
Dataflow Pointcut for Integrity Concerns

Kazunori Kawauchi Hidehiko Masuhara

Graduate School of Arts and Sciences, University of Tokyo

Tokyo 153–8902 Japan

{kazu,masuhara}@graco.c.u-tokyo.ac.jp

Abstract

Some security concerns, such as secrecy and integrity,
are sensitive to flow of information in a program exe-
cution. We proposed a new pointcut to aspect-oriented
programming (AOP) languages in order to easily imple-
ment such security concerns as aspects. The pointcut
identifies join points based on the origins of values, and
can be used with the other kinds of pointcuts in existing
AOP languages. This paper presents an example how
the pointcut can be applied to an integrity concern in a
web-application.

1 Introduction

Techniques to build secure software systems are crucial
for rapid development of network-based software systems
in open network environments. Many techniques have
been proposed such as runtime inspection, program ver-
ification, and encryption. For example, a program veri-
fication technique can identify problems that potentially
leak secret information to untrusted parties[9].

Application of those security techniques to a soft-
ware system often becomes crosscutting concerns as
security is usually related to several participants to
the system, such as a resource to be protected,
and trusted/untrusted third-party program and data.
Aspect-oriented programming would be useful program-
ming technique to modularize those security concerns.
In fact, there have been several studies that apply AOP
to modularize access control[3] and that propose an AOP
language for supporting authentication[13]. However, as
far as the authors’ knowledge there have been few stud-
ies to support the flow of information in AOP languages
although it is a crucial concept for ensuring secrecy and
integrity of software systems[9].

Based on the above observation, we proposed a mech-
anism that supports the flow of information in an AOP
language[8]. The mechanism offers a new pointcut prim-
itive into AspectJ-like AOP languages in order to con-
cisely determine the flow of information in aspect def-
initions. The mechanism is being implemented as an
extension to AspectJ language. This paper presents,

A
web-application

C
attacker

B
web-browser

1. directs B
to send a request to A

2. sends a
request with

a script
3. returns a

response with
the script

5. sends secret
information

4. executes the script as if it is from A

Figure 1: An Exploit of a Cross-site Scripting Problem

by taking an example security concern, how a secu-
rity concern crosscuts web-applications and how our new
pointcut primitive enables modularization of the con-
cern. Detailed description of the new pointcut primi-
tive and their implementation issues can be found in the
other literature[8].

We propose a new kind of pointcut, called dflow

pointcut, that identifies join points based on the ori-
gins of data. It is designed as an extension to AspectJ’s
pointcut language; dflow pointcuts can be used in con-
junction with the other kinds of pointcuts in AspectJ.
This makes it easy for the programmers to adopt dflow
with minimal efforts.

The rest of the paper is organized as follows. Section 2
gives an example problem. Section 3 presents the design
of the dataflow-based pointcut, and how it can solve the
problem. Section 4 discusses related work. Section 5
summarizes the paper.

2 Example: Security Problem in

Web-Applications

2.1 Cross-site Scripting Problem

Cross-site scripting is a security problem in web-
applications. By exploiting a flaw of a web-application,
an attacker can reveal secret information from the
browser of the web-application’s client[1]. The follow-
ing scenario with three principals, namely (A) a web-
application, (B) a web-browser of a client of A, and (C)
an attacker, explains an attack (Fig. 1).

1

Registration
doPost(req,res)

Servlet
doPost(req,res)
doGet(req,res)

Failure
doPost(req,res)

Inventory
doPost(req,res)

...

Request
getParameter(key)
setAttribute(key)
getAttribute(key)

Response
getWriter()

Figure 2: Structure of a Web Application

The problem could have been avoided if A did not re-
turn the malicious script as a part of the response to B. A
solution to this problem on the A’s side is not to generate
pages by using a string that comes from any untrusted
principal. A simple implementation is to remove special
characters that constitute scripts from strings that come
from untrusted principals, and to replace them with non-
special (or quoted) characters. This solution is usually
called sanitizing.

We here define a following sanitizing task for a web-
application:

Assume that the web-application is to gener-
ate a web page1. When a string that originates
from anyone untrusted by the web-application
appears in the generated page, it replaces spe-
cial characters in the string with quoted ones.

2.2 How Sanitizing Crosscuts a Web Ap-

plication

In the web-applications that dynamically generates
many pages, the sanitizing can be a crosscutting con-
cern because its implementation could involve with many
parts of the program. Here, we assume a web-application
on Java servlets framework, which defines a class for
each kind of pages. Fig. 2 shows a class structure of
the web-application. Each Servlet subclass represents
a particular kind of pages. When a client browser sends
a request for a URL, the framework automatically cre-
ates an instance of a respective Servlet subclass, and
then invokes doPost (or doGet, etc.) with objects rep-
resenting the request and a response. The method can
read values to the input fields from the request object,
and generates a new page by writing into a stream in
the response object. Alternatively, a method can dele-
gate another method to generate a page after performing
some process.

Fig. 3 shows definitions of some of the Servlet sub-
classes. When doPost method of Registration class

1Another approach is to replace special characters when the
web-application receives strings from browsers. It is not recom-
mended because the replacement might affect the intermediate
process unexpectedly. Also, it can not sanitize strings that come
to the application via methods other than HTTP[2].

is invoked, it merely checks whether the requested ID
is found in the database, and transfer itself to either
Inventory page or Failure page. In Failure class, it
displays a message of failure with the requested ID. It
also places a link to the previous page by reading infor-
mation in the attributes of the request.

The sanitizing task is to wrap the call to
getParameter method in Failure class with a method
that replaces special characters. Although the task needs
to change only one place in the application, it crosscuts
the application because the similar modifications need to
be done in many sibling classes when those classes also
use the results from getParameter for responding.

2.3 Usefulness of Dataflow

Since the sanitizing task crosscuts, it looks a good idea
to implement it as aspects. However, it sometimes is not
easy to do so with existing pointcut-and-advice mech-
anisms because they do not offer pointcuts to address
dataflow, which is the primary factor in the sanitizing
task.

The problem can be illustrated by examining
the (incomplete) aspect definition in Fig. 4. The
respondClientString pointcut is supposed to intercept
any join point that prints an unauthorized string to a
client. (By unauthorized, we mean that a string is cre-
ated from one of client’s input parameters.) With prop-
erly defined respondClientString, the task of sanitiz-
ing is merely to replace all special characters in the unau-
thorized string, and then continue the intercepted join
point with the replaced string2.

With existing kinds of pointcuts, it is not possible to
write an appropriate respondClientString in a declar-
ative manner.

• First, a straightforward definition is not appropri-
ate. For example, the following pointcut will in-
tercept strings that are to be printed as a part of
a response to a client. However, it will intercept
strings including ‘authorized’ ones:

pointcut respondClientString(String s) :

call(* PrintWriter.print*(String))

&& args(s) && within(Servlet+);

• Second, even if one could write an appropriate
pointcut definition, the definition is less declarative.
For example, an appropriate respondClientString
could be defined with auxiliary advice declarations
that detect and trace unauthorized strings. How-
ever, those advice declarations are not declarative

2In AspectJ, proceed is a special form to do so. When the
formal parameters of the advice (i.e., s) is bound by args point-
cut (e.g., args(s)), the arguments to the proceed (i.e., quote(s))
replace the original arguments in the continued execution.

2

class Registration extends Servlet {

void doPost(Request req, Response res) {

String id = req.getParameter("ID"); //read input field

if (<id is found in the database>)

<transfer to an Inventory page>

else {

req.setAttribute("PREV", req.getURL()); //store current URL as an

<transfer to a Failure page> //originating address of the

} //transferred page

}

}

class Failure extends Servlet {

void doPost(Request req, Response res) {

PrintWriter out = res.getWriter();

out.println("<HTML>...Login failed for: ");

out.println(req.getParameter("ID")); //read input field & print

out.println("...<a href=");

out.println(req.getAttribute("PREV")); //back to the originating page

out.println(">go back..."); //by using the stored address

}

}

Figure 3: Implementation of Servlet Subclasses
(Type names are abbreviated due to space restrictions.)

because they have to monitor every operations that
involve with (possibly) unauthorized strings.

In order to define respondClientString in a declarative
manner, a pointcut that can identify join points based
on the origins, or dataflow, of values is useful. The next
two reasons support this claim.

First, dataflow can use non-local information for de-
termining the points of sanitizing. For example, the re-
sult of getAttribute in Failure class in Fig. 3 needs
no sanitizing because if we trace the dataflow, it turns
out to be originally obtained by getURL (i.e., not by
getParameter) in Registration class.

Second, dataflow can capture derived values. For ex-
ample, assume that a web-application takes a parame-
ter string out from a client’s request, and creates a new
string by appending some prefix to the string, the new
string will also be treated as well as the original param-
eter string.

3 Dataflow Pointcut

We propose a new kind of pointcut based on dataflow,
namely dflow. This section first presents its syntax and
example usage for the simplest case, and then explains
additional constructs for more complicated cases.

3.1 Pointcut Definition

The following syntax defines a pointcut p:

p ::= call(s) | args(x,x,. . .) | p&&p | p||p

::= dflow[x,x](p) | returns(x)

where s ranges over method signature patterns and x

ranges over variables.
The second line defines new pointcuts.

dflow[x,x′](p) matches if there is a dataflow from
x′ to x. Variable x should be bound to a value in
the current join point. (Therefore, dflow must be
used in conjunction with some other pointcut, such as
args(x), that binds x to a value in the current join
point.) Variable x′ should be bound to a value in a past
join point matching to p. (Therefore, p must have a
sub-pointcut that binds a value to x′.) returns(x) is
similar to args, but binds a return value from the join
point to variable x. This is intended to be used only in
the body of dflow, as a return value is not yet available
when a current join point is created.

By using dflow, the pointcut for the sanitizing task
can be defined as follows:

pointcut respondClientString(String o) :

call(* PrintWriter.print*(String))

&& args(o) && within(Servlet+)

&& dflow[o,i](

call(String Request.getParameter(String))

&& returns(i));

3

aspect Sanitizing {

pointcut respondClientString(String s) : ...; // incomplete

Object around(String s) : respondClientString(s) {

return proceed(quote(s)); //continue with sanitized s

}

String quote(String s) {

return <replace all special characters in s>;

}

}

Figure 4: (Incomplete) Aspect for the Sanitizing Task

The second line is not changed from the one in Sec-
tion 2.3, which matches calls to print methods in
Servlet subclasses, and binds the parameter string to
variable o. The dflow pointcut restricts the join points
to such ones that the parameter string originates from a
return value of getParameter in a past join point.

3.2 Dataflow Relation

The condition how dflow pointcut identifies join points
can be elaborated as follows: assume x is bound to a
value in the current join point, dflow[x,x′](p) matches
the join point if there exists a past join point that
matches p, and the value of x originates from a value
bound to x′ in the past join point. By originating from
a value, we mean the value is used for deriving an inter-
ested value. For example, when two strings are concati-
nated, the concatinated string originates from those two
strings. We let the originating-from relation be transi-
tive; e.g., the origins of the two strings are considered as
the origins of the concatinated string as well.

The originating-from relation is defined as follows. Let
v and w are two values. v originates from w when

• v and w are the identical value, or

• v is a result of a primitive computation using
u1, . . . , un, and ui originates from w for some i (1 ≤
i ≤ n).

The above definition is sufficient for languages only
with primitive values. When a language also has com-
pound values, such as arrays and objects, we need to
extend the matching condition for dflow. Although it
needs further study to give a feasible condition, we ten-
tatively extended the definition in the following ways.
dflow[x,x′](p) matches when the value of x or a value
reachable from the value of x originates from the value
of x′ or a value reachable from the value of x′.

3.3 Excluding Condition

We also defined an extended syntax of dflow for ex-
cluding particular dataflows. We call the mechanism
bypassing.

A motivation of bypassing can be explained in terms
of the sanitizing task. Assume a Servlet subclass that
manually quotes the client’s inputs:

class ShippingConfirmation extends Servlet {

void doPost(Request req, Response res) {

PrintWriter out = res.getWriter();

String address =

quote(req.getParameter("ADDR"));

out.print("...Please confirm address:");

out.print(address);

...

}

}

When an object of this class runs with Sanitizing as-
pect after filling its pointcut definition with the one in
Section 3.1, the aspect intercepts method calls that print
address in ShippingConfirmation. As address has
already quoted string, it doubly applies quote to the
quoted string.

The following extended dflow syntax excludes
dataflows that go through certain join points:

p ::= dflow[x,x](p) bypassing[x](p)

Intuitively, a bypassing clause specifies join points that
should not appear along with a dataflow. By using
bypassing, the following pointcut avoids intercepting
quoted strings:

pointcut respondClientString(String o) :

call(* PrintWriter.print*(String))

&& args(o) && within(Servlet+)

&& dflow[o,i](

call(String Request.getParameter(String))

&& returns(i))

bypassing[q](call(String *.quote(String))

&& returns(q));

4

quote

"John" "<SCRIPT...>"

"John<SCRIPT...>"

"John"

(a) matches

quote

"John" "<SCRIPT...>"

"John<SCRIPT..."

"John"

(b) not matches

quote

"<SCRIPT..."
i

i

q

o

q

i

q

o

i

Figure 5: How dataflow is restricted in dflow[o,i](...) bypassing[q](...).

The bypassing clause requires that o (an argument to
print method) to originate from i (a return value from
getParameter) but not through q (a return value from
quote) after i.

Precisely, bypassing requires existence of at least one
dataflow that does not go through join points matching
to the pointcut in the bypassing clause. Fig.5 illustrates
computations that generate concatenated strings from
two strings. Assume that the original strings at the top
of the figure are the results of getParameter in the above
example. Then the dflow pointcut with bypassing

clause matches the computation (a) because there is a
dataflow to the string at the bottom of the figure with-
out going through quote. On the other hand, it does
not match the computation (b) because all dataflows go
through quote; i.e., there are no dataflows bypassing
quote.

The semantics of bypassing clause can be defined by
slightly extending the originating-from relation. Let v

and w are two values. v originates from w bypassing x

in p, when:

• there have been no such a join point that matches
p and the value bound to x is identical to v, and

• either of the following conditions holds:

– v and w are the identical value, or

– v is a result of a primitive computation using
u1, . . . , un, and ui originates from w bypassing
x in p for some i (1 ≤ i ≤ n).

3.4 Explicit Dataflow Propagation

We provide an additional declaration form that speci-
fies explicit propagation of dataflow through executions
in external programs. This is useful in an open-ended
environment, where a program runs with external code
whose source programs are not available (e.g., a class
library distributed in a binary format).

A declaration is written as a member of an aspect in
the following form:

declare propagate: p from x,x,. . . to x,x,. . .;

where p and x range over pointcuts and variables. The
form requests that, when a join point matching to p is
executed, it will regard that the values of the to-variables
originate from the values of the from-variables.

For example, assume that a program uses update

method of Cipher class for encryption (or decryption),
but the system has no access to the source code of
the class. With the following declaration, the system
will regard that the return value from Cipher.update

originates from its argument. As a result, if a string
matches dflow pointcut, the Cipher encrypted string of
the string also matches to the dflow pointcut.

aspect PropagateOverEncryption {

declare propagate:

call(byte[] Cipher.update(byte[]))

&& args(in) && returns(out)

from in to out;

}

The propagate declarations are designed to be
reusable; i.e., once someone defined propagate declara-
tions for a library, the users of the library merely need
to import those declarations to track dataflow over the
library.

The propagate declarations would be sufficient for the
libraries that have only dataflows between input and out-
put parameters. Coping with more complicated cases,
such as the ones involving with structured data or the
ones with conditional dataflows, is left for further study.

4 Related Work

There are systems that can examine dataflow in a pro-
gram either in a static or dynamic manner (e.g., Con-
fined Types[10] and taint-checks in Perl[14]). Those are
useful for checking security enforcement. On the other
hand, when a breach of the security enforcement is found
by those systems, the programmer may have to fix many
modules in the program without AOP support.

Information flow analyses (e.g., [11]) can detect a se-
cret that can leak by indirect means, such as the con-
ditional context and timing. For example, the following

5

code does not have direct dataflow from b to x, but in-
formation about b indirectly leaks in x:

if (b) { x = 0; } else { x = 1; }

As we have shortly discussed, our dataflow definition
only deals with direct information flow. It does not re-
gard a dataflow from b to x. Extending dataflow defini-
tion to include such indirect information flow, is left for
future study.

Giving more expressiveness to pointcuts in AOP lan-
guages are studied in many ways. Some offer point-
cuts that can examine calling context[5], execution
history[12], and static structures of a program[4].

Demeter is an AOP system that can declaratively
specify traversals over object graphs[6, 7]. It allows to
examine relation between objects, but the relation is
about a structure of data in a snapshot of an execution.

5 Conclusion

We presented dflow pointcut in aspect-oriented pro-
gramming (AOP) languages and its application to san-
itizing aspect for web-applications. Since the pointcut
identifies join points based on the dataflow of values, it
enables the programmers to write more robust pointcuts
in aspects that are sensitive to information flow.

Although the pointcut primarily aims at security con-
cerns, we believe that its applications are not limited to
such. Our plan is to apply the pointcut to many pro-
grams, such as the other kinds of security concerns.

The design space of the dflow pointcut is large enough
for further study. Especially, to find a right balance be-
tween the declarativeness of the pointcut and the run-
time efficiency is crucially important. It will also be
crucially important to give a formal framework of dflow
pointcut so that we can reason about completeness of
the semantics.

References

[1] CERT. Malicious HTML tags embedded in client
web requests. Advisory Report CA-2000-02, CERT,
Feb. 2000.

[2] CERT Coordination Center. Understanding mali-
cious content mitigation for web developers. Tech
tips, CERT, Feb. 2000.

[3] B. De Win, B. Vanhaute, and B. De Decker. Se-
curity through aspect-oriented programming. In
B. De Decker, F. Piessens, J. Smits, and F. Van Her-
reweghen, editors, Advances in Network and Dis-
tributed Systems Security, volume 206 of IFIP Conf.
Proc., pages 125–138. Kluwer Academic Publishers,
2001.

[4] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts.
In Proceedings of the 2nd International Confer-
ence on Aspect-Oriented Software Development
(AOSD2003), pages 60–69. ACM Press, 2003.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of As-
pectJ. In ECOOP 2001, pages 327–353, 2001.

[6] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-
oriented programming with adaptive methods.
Comm. ACM, 44(10):39–41, Oct. 2001.

[7] K. J. Lieberherr. Adaptive Object-Oriented Soft-
ware: the Demeter Method with Propagation Pat-
terns. PWS Publishing Company, Boston, 1996.

[8] H. Masuhara and K. Kawauchi. Dataflow pointcut
in aspect-oriented programming. In A. Ohori, edi-
tor, Proceedings of The First Asian Symposium on
Programming Languages and Systems (APLAS’03),
volume 2895 of Lecture Notes in Computer Sci-
ence, pages 105–121, Beijing, China. (or Kanazawa,
Japan or Nanjing, China.), Nov. 2003.

[9] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1), Jan. 2003.

[10] J. Vitek and B. Bokowski. Confined types. In Pro-
ceedings of the 1999 ACM SIGPLAN conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA99), pages 82–
96. ACM Press, 1999.

[11] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Com-
puter Security, 4(3):167–187, 1996.

[12] R. J. Walker and G. C. Murphy. Implicit context:
Easing software evolution and reuse. In Proceedings
of the eighth international symposium on Founda-
tions of software engineering for twenty-first cen-
tury applications (FSE-8), volume 25(6) of ACM
SIGSOFT Software Engineering Notes, pages 69–
78, San Diego, California, USA, Nov. 2000.

[13] R. J. Walker and G. C. Murphy. Joinpoints as or-
dered events: Towards applying implicit context to
aspect-orientation. In Workshop on Advanced Sep-
aration of Concerns in Software Engineering (ICSE
2001), May 2001.

[14] L. Wall and R. Schwartz. Programming Perl.
O’Reilly and Associates, 1991.

6

