
A Fine-Grained Join Point Model

for More Reusable Aspects

Hidehiko Masuhara1, Yusuke Endoh2Æ, and Akinori Yonezawa2

1 Graduate School of Arts and Sciences, University of Tokyo
masuhara@acm.org

2 Department of Computer Science, University of Tokyo
{mame,yonezawa}@yl.is.s.u-tokyo.ac.jp

Abstract. We propose a new join point model for aspect-oriented pro-
gramming (AOP) languages. In most AOP languages including AspectJ,
a join point is a time interval of an action in execution. While those
languages are widely accepted, they have problems in aspects reusabil-
ity, and awkwardness when designing advanced features such as trace-
matches. Our proposed join point model, namely the point-in-time join
point model redefines join points as the moments both at the beginning
and end of actions. Those finer-grained join points enable us to design
AOP languages with better reusability and flexibility of aspects. In this
paper, we designed an AspectJ-like language based on the point-in-time
model. We also give a denotational semantics of a simplified language
in a continuation passing style, and demonstrate that we can straight-
forwardly model advanced language features such as exception handling
and cflow pointcuts.

1 Introduction

Aspect-oriented programming (AOP) is a programming paradigm that addresses
problems of crosscutting concerns[11, 15], such as exception handling, security
mechanisms and coordinations among modules. Since implementations of cross-
cutting concerns without AOP have to involve with many modules, AOP im-
proves maintainability of programs by making those concerns into separate mod-
ules.

One of the fundamental language mechanisms in AOP is the pointcut and
advice mechanism, which can be found in many AOP languages including As-
pectJ[15]. As previous studies have shown, design of pointcut language and selec-
tion of join points are key design factors of the pointcut and advice mechanisms
in terms of expressiveness, reusability and robustness of advice declarations[4,
14, 16–18,21].

A pointcut serves as an abstraction of join points in the following senses:

– It can give a name to a set of join points (e.g., by means of named pointcuts
in AspectJ).
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– Differences among join points, such as join point kinds and parameter posi-
tions, can be subsumed. For example, when we define a logging aspect that
records the first argument to runCommand method and the second argument
to debug, different parameter positions are subsumed by the next pointcut:

pointcut userInput(String s):

(call(* Toplevel.runCommand(String)) && args(s))

|| (call(* Debugger.debug(int,String)) && args(*,s));

– It can separate concrete specifications of interested join points from advice
declarations (e.g., by means of abstract pointcuts and aspect inheritance in
AspectJ). In other words, we can parameterize interested join points in an
advice declaration.

There have been several studies on advanced pointcut primitives for accurately
and concisely abstracting join points[4, 16, 17, 21].

In order to allow pointcuts to accurately abstract join points, the pointcut
and advice mechanisms should also have a rich set of join points. If an interested
event is not a join point, there is not way to advise it at all. Several studies have
investigated to introduce new kinds of join points, such as loops[14], conditional
branches[18], and local variable accesses[19] into AspectJ-like languages. In other
words, the more kinds of join points the pointcut and advice mechanism has,
the more opportunities advice declarations can be applied to.

This paper focuses on a language with finer grained join points for improving
reusability of advice declarations. The join point model can be compared with
traditional join point model in AspectJ-like languages as follows:

– In the join point model in AspectJ-like languages, a join point represents
duration of an event, such as a call to a method until its termination. We
call this model the region-in-time model because a join point corresponds to
a region on a time line.

– In our proposing join point model, a join point represents an instant of
an event, such as the beginning of a method call and the termination of a
method call. We call this model the point-in-time model because a join point
corresponds to a point on a time line.

The contributions of the paper are:

– We demonstrate that the point-in-time join point model can improve
reusability of advice.

– We present an experimental AOP language called PitJ based on the point-
in-time model. PitJ’s advice is as expressive as AspectJ’s in most typical use
cases even though the advice mechanism in PitJ is simpler than the one in
AspectJ-like languages.

– We give a formal semantics of the point-in-time model by using a small
functional AOP language called Pitλ. Thanks to affinity with continuation
passing style, the semantics gives a concise model with advanced features
such as exception handling.

2



1 aspect ConsoleLogging {

2 pointcut userInput(): call(String *.readLine());

3 after() returning(String s): userInput() {

4 Log.add(s);

5 }

6 }

Fig. 1. Logging aspect for the console version

2 Reusability Problem of Region-in-Time Join Point
Model

Although languages that are based on the region-in-time join point model are
designed to be reusable, there are situations where aspects are not as reusable
as they seem to be. This section explains such situations, and argues that this
is common problem to the region-in-time join point model.

In order to clarify the problem, this section uses a crosscutting concern that
is to log user’s input received by the following two versions of base program:

a console version that receives user input from the console.
a hybrid version, evolved from the console version, that receives user input

from both the console and GUI components.

2.1 Logging Aspect for the Console Version

Figure 1 shows a logging aspect for the console version in AspectJ[15]. We assume
that the base program receives user input as return values of readLine method
in several classes.

Line 2 declares a pointcut userInput that matches any join point that rep-
resents a call to readLine method. Lines 3–5 declare advice to log the input.
after() returning(String s) is an advice modifier of the advice declaration
that specifies to run the advice body after the action of the matched join points
with binding the return value from the join point to variable s. The body of the
advice, which is at line 4, records the value.

It is possible to declare a generic aspect in order to subsume changes of join
points to be logged in different versions. For example, Figure 2 shows a generic
logging aspect that uses abstract pointcut userInput in an advice declaration,
and a concrete logging aspect for the console version that concretizes userInput
into call(String *.readLine()).

The generic logging aspect is reusable to log user’s input from environment
variables by changing userInput() pointcut in ConsoleLogging in Figure 2
to call(String *.readLine()) || call(String System.getenv(String)).
Note that we do not need to modify the generic logging aspect.
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1 abstract aspect UserInputLogging {

2 abstract pointcut userInput();

3 after() returning(String s): userInput() {

4 Log.add(s);

5 }

6 }

7 aspect ConsoleLogging extends UserInputLogging {

8 pointcut userInput(): call(String *.readLine());

9 }

Fig. 2. Generic logging aspect and its application to the console version

1 aspect HybridLogging extends UserInputLogging {

2 pointcut userInput(): call(String *.readLine());

3 pointcut userInput2(String s):

4 call(String *.onSubmit(String)) && args(s);

5 before(String s): userInput2(s) {

6 Log.add(s);

7 }

8 }

Fig. 3. Logging aspect for the hybrid version

2.2 Modifying the Aspect to the Hybrid Version

The generic logging aspect is not reusable when the base program changes its
programming style. In other words, pointcuts no longer can subsume changes in
certain kinds of programming style.

Consider a hybrid version of the base program that receives user input from
GUI components as well as from the console. The version uses the GUI framework
which calls onSubmit (String) method on a listener object in the base program
with the string as an argument when a user inputs a string via GUI interface.

Since UserInputLogging in Figure 2 can only log return values, we have to
define a different pointcut and advice declaration as shown in Figure 3.

Making the logging aspect for hybrid version reusable is tricky and awkward.
Since single pointcut and advice can not subsume differences between return val-
ues and arguments, we have to define a pair of pointcuts and advice declarations.
In order to avoid duplication in advice bodies, we need to define an auxiliary
method and let advice bodies call the method. The resulted aspect is shown in
Figure 4.

Some might argue that it is possible to reuse UserInputLogging aspect in
Figure 4 by finding join points that always run before calls to onSubmit. How-
ever, such join points can not always be found, especially when advice decla-
rations take parameters from join points. Moreover, such a compromise usually
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1 abstract aspect UserInputLogging2 {

2 abstract pointcut userInputAsReturnValue();

3 abstract pointcut userInputAsArgument(String s);

4 after() returning(String s): userInputAsReturnValue() {

5 log(s);

6 }

7 before(String s): userInputAsArgument(s) {

8 log(s);

9 }

10 void log(String s) {

11 Log.add(s);

12 }

13 }

Fig. 4. Generic logging aspect that can log for both return values and arguments

makes aspects fragile because the pointcuts indirectly specify join points that
the aspects are actually interested in.

2.3 Awkwardness in Advanced Pointcuts

Some advanced pointcuts require to distinguish beginnings and ends of actions as
different events. However, since region-in-time model does not distinguish them
as different join points, the resulted languages have to introduce mechanisms to
not only identifying join points but also mechanisms to specify their beginnings
and ends.

For example, the trace maching mechanism is one of the useful extensions to
AOP languages that enables advice run based on the history of events[1]. The
code below shows an example of a tracematch that logs query calls performed
only after completion of a login call.

1 tracematch() {
2 sym login after returning: call(* login(User,..));
3 sym query before: call(* query(Query));
4 login query+ // any query after login
5 { Log.add(...); } // shall be logged
6 }

The description of the tracematch consists of two parts, namely declarations
of the symbols and a piece of code with a trace pattern. Line 2 and 3 declare
symbols login and query as the end of a login call and the beginning of a
query call, respectively. Then line 4 specify the trace pattern of those events in
a regular expression of declared symbols.

One might first think that using named pointcuts instead of symbols could
simplify the language without losing expressiveness. However, it is not possible as
the named pointcuts can merely specify the join points and lack the information
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whether the programmer is interested in either the beginnings or the ends of the
join points.

2.4 Analysis of the Problem

By generalizing the above problem, we argue that pointcuts in the region-in-time
join point model can not subsume differences between the beginnings of actions
and the ends of actions.

Such a difference is not unique to the logging concern, but can also be seen in
many cases. For example, following differences can not be subsumed by pointcuts
in the region-in-time join point model:

– a polling style program that waits for events by calling a method and an
event driven style program that receives events by being called by a system,

– a method that reports an error by returning a special value and a method
that does by an exception, and

– a direct style program in which caller performs rest of the computation and
continuation-passing style in which the rest of computation is specified by
function parameters.

Our claim is that the problem roots from the design of join point model in
which a join point represents a region-in-time, or a time interval during program
execution. For example, in AspectJ, a call join point represents a region-in-time
while invoking the method, executing the body of the method and returning
from the method. This design in turn requires advice modifiers which indicate
either the beginnings or the ends of the join points that are selected by pointcut.

3 Point-in-Time Join Point Model

3.1 Overview

We propose a new join point model, called point-in-time join point model, and
design an experimental AOP language, called PitJ. PitJ differs from AspectJ-like
languages in the following ways:

– A join point represents a point-in-time (or an instant of program execution)
rather than a region-in-time (or an interval). Consequently, there are no such
notions like “beginning of a join point” or “end of a join point”.

– There are new kinds of join points that represent terminations of actions.
For example, a return from methods is an independent join point, which we
call a reception3 join point, from a call join point. Similarly, an exceptional
return is a failure join point. Table 1 lists the join points in PitJ along with
respective ones in AspectJ.

3 Older versions of AspectJ[15] have reception join points for representing different
actions.
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PitJ AspectJ

call / reception / failure method call
execution / return / throw method execution

get / success get / failure get field reference
set / success set / failure set field assignment

Table 1. Join points in PitJ and AspectJ

readLine();

main

readLine(){

}

console

call join point

readLine();

main

readLine(){

}

console

call join point

reception join point

in AspectJ-like languages in PitJ

Fig. 5. Join points in languages based on region-in-time and point-in-time models.

– There are new pointcut constructs that match those new kinds of join points.
For example, reception(m) is a pointcut that selects any reception join point
that returns from the method m.

– Advice declarations no longer take modifiers like before and after to specify
timing of execution.

Figure 5 illustrate the difference between the point-in-time join point model
and region-in-time one.

Figure 6 shows example aspect definitions in PitJ. The generic aspect (lines
1–6) is not different from the one in AspectJ expect that the advice does not
take a modifier (line 3). HybridLogging aspect concretizes the pointcut by using
reception and call pointcut primitives (lines 9–10). When readLine returns to
the base program, a reception join point is created and matches the userInput.
The return value is bound to s by args pointcut. When onSubmit method is
called, a call join point matches the pointcut with binding the argument to s.

As we see in Figure 6, differences in the timing of advice execution as well
as the way of passing parameters can be subsumed by pointcuts with the point-
in-time join point model. This ability allows us to define more reusable aspect
libraries by using abstract pointcuts because users of the library can fully control
the join points to apply aspect.

We verified the reusability problem which is effectively solved by the point-in-
time join point model by case study with some realistic applications, aTrack[2]
and AJHotDraw[20]. The details of the case study are presented in the other
literature[13].
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1 abstract aspect UserInputLogging {

2 abstract pointcut userInput(String s);

3 advice(String s) : userInput(s) {

4 Log.add(s);

5 }

6 }

7 aspect HybridLogging extends UserInputLogging {

8 pointcut userInput(String s): args(s) &&

9 (reception(String *.readLine()) || call(* *.onSubmit(String)));

10 }

Fig. 6. A logging abstract aspect and its application to the hybrid vertion in PitJ

1 aspect ErrorReporting {

2 after() throwing: call(* *.readLine()) {

3 System.out.println("exception");

4 }

5 }

Fig. 7. An aspect to capture exceptions in AspectJ

3.2 Exception Handling

In AspectJ, advice declarations have to distinguish exceptions by using a special
advice modifier after() throwing. It specifies to run the advice body when
interested join points terminate by throwing exception. For example, a sample
aspect in Figure 7 prints a message when an uncaught exception is thrown from
readLine. Similar to the discussion on the before and after advice, termination
by throwing an exception and normal termination can not be captured by single
advice declartion4.

In PitJ, ‘termination by throwing an exception’ is regarded as an independent
failure join point. Figure 8 is an equivalent to the one in Figure 7. A pointcut
failure matches a failure join point which represents a point-in-time at the
termination of a specified method by throwing an exception.

3.3 Around-like Advice

One of the fundamental questions to PitJ is, by simplifying advice modifiers,
whether it is expressive enough to implement around advice in AspectJ, which
has powerful mechanisms. We analyzed that around advice in AspectJ has four
abilities:

1. replace the parameters to the join point with new ones,
4 It is possible to capture them by using after advice, which however can not access

to return values or exception objects.
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1 aspect ErrorReporting {

2 advice(): failure(* *.readLine()) {

3 System.out.println("exception");

4 }

5 }

Fig. 8. An aspect to capture exceptions in PitJ

2. replace the return values to the caller of the join point,
3. go back to the caller without executing the join point, and
4. execute the join point more then once.

In PitJ, the abilities 1 and 2 can be simulated by treating a return value of an
advice body as a new value. For example, consider an advice declaration:

advice(String s): args(s) && (reception(* *.readLine())

|| call(* *.onSubmit(String)) {

return s.replaceAll("<", "&lt;").replaceAll(">", "&gt;");

}

This advice sanitizes user input by replacing unsafe characters with escape se-
quences. When an advice body ends without return, the value in the join points
remains unchanged.

For the ability 3, we introduce a new construct skip. When it is evaluated
in a call join point, jump occurs to the subsequent reception join point with no
execution between the two join points. Nothing happens when evaluated in a
reception and failure join points. For example, consider an advice declaration:

advice(): call(* *.readLine()) { skip "dummy"; }

With the advice, even if readLine() is evaluated, it immediately returns "dummy"
without reading any string from a console.

For the ability 4, a special function proceed is added. It executes the action
until the subsequent reception one, and then returns the result. For example,
consider an advice declaration:

advice(): call(* *.readLine()) {

skip(proceed() + proceed());

}

With this advice, the method readLine receives two lines at once, concatenates
them, and returns it.

We introduced the construct skip so that advice declarations can dynam-
ically control how to proceed. An alternative design would be to introduce a
different kind of advice that does not proceed to original join points even if it
does not evaluate skip. We need further programming experience to compare
those alternatives in terms of program readability.
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3.4 More Advanced Features

Some existing AOP systems including AspectJ provides some context sensitive
pointcuts. They don’t always match specific kinds of join points. Instead, they
judge whether a join point is in a specific context. PitJ has cflow pointcut, which
is a kind of context sensitive pointcuts. It identifies join points based on whether
they occur in the dynamic context during a region-in-time between a specified
call join point and the subsequent reception one. For example, cflow(call(*
*.onSubmit(String))) specifies any join point that occurs between when a
onSubmit method is called and when it returns.

In addition, we are considering the integration of trace sensitive aspects[9, 10,
21] which use execution trace, or history of occured join points, to judge whether
to perform additional computation, We expect that our finer grained join points
enhance its effectiveness and robustness.

3.5 Design Considerations of Pointcut Primitives

The design of the pointcuts in PitJ is chosen among several alternatives. In fact,
we examined the following three designs, which have different advantages and
disadvantages:

1. Provide a primitive for each kind of join point, similar to the pointcuts in
AspectJ. While it makes each pointcut description simple, it requires many
pointcut primitives. This is our current design.

2. Provide a set of primitives that discriminates kinds of events (e.g., call and
execution) and a set of primitives taht discriminates timing relative to an
event (e.g., entry and exit). For example, call(* *.readLine()) matches
both beginnings and ends of readLine calls, and call(* *.readLine())
&& exit() matches only ends of readLine calls. It requires a smaller set of
pointcut primitives, but often makes each pointcut description longer.

3. Provide a set of primitive that identifies join points that represent begin-
nings of events, in addition to cflow-like pointcuts that create pointcuts
that identify ends and failures of events from a given pointcut. For ex-
ample, call(* *.readLine()) matches begginings of readLine calls and
cont(call(* *.readLine()))matches ends of readLine calls. Though this
design might be more powerful than the above two designs, it is not certain
whether we can define a clear semantics.

We chose the first design because its simplicity and affinity with AspectJ. No
design is, however, clearly better than others. More programming experiences
will give us better insight to discuss about the right design.

4 Formal Semantics

We present a formal semantics of Pitλ, which is a simplified version of PitJ. Pitλ
simplifies PitJ by using a lambda-calculus as a base language, and by supporting
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Syntax:

�Expression� e ::� x (Identifier)
� fun x � e (Function)
� e e (Application)

Semantic algebras:
numbers Int , booleans Bool , identifiers Ide

v � Val � Int � Bool � Fun (Values)
ρ � Env � Ide � Val (Environments)
κ � Ctn � Val � Ans (Continuations)
f � Fun � Ctn � Ctn (Functions)

Ans � Val� (Answers)

Valuation function for the expressions:

E : Expression � Env � Ctn � Ans
E�x	 ρ κ � κ �ρ x�

E�fun x � e	 ρ κ � κ �inFun�λκ�v. E�e	 �
v � x �ρ� κ���
E�e0 e1	 ρ κ � E�e0	 ρ �λFun�f�. E�e1	 ρ �λv.f κ v��

Fig. 9. Syntax and semantics of the base language

only call, reception and failure join points. The semantics contributes to clar-
ify the detailed behavior of the program especially when integrated with other
advanced features such as exception handling and context sensitive pointcuts.
It also helps to compare expressiveness of the point-in-time join point model
against the region-in-time one.

4.1 Base Language

Figure 9 shows the syntax of the base language and its denotational semantics
in a continuation passing style (CPS). We use untyped lambda-calculus as the
base language. The semantics follows the style of Danvy and Filinski[8].

4.2 Syntax and semantics of Pitλ0

We begin with Pitλ0, which is a core part of Pitλ that has only call and reception
join points. Syntactically, it uses the same expressions to the base language, and
has pointcuts and a list of advice as shown in Figure 10.

We give a semantics of Pitλ0 by modifying the semantics of the base language
in Section 4.1.

First, we define additional semantic algebras. An event ε is either call or
reception with a function name and a join point θ is a pair of an event and an
argument:

ε ::� call�x � � reception�x � �Evt�
θ ::� �ε, v� �Jp�
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�Expression� e ::� x (Identifier)
� fun x � e (Function)
� e e (Application)

�Pointcut� p ::� call(x) � reception(x) � args(x) � p && p � p || p
�Advice� a ::� 
 � advice : p � e; a

Fig. 10. Pitλ0 syntax

P : Pointcut � Env � Jp � �Env � �False��

P�call(x)	 ρ �call�x ��, v� �

�
ρ if x � x � or x � �

False otherwise

P�reception(x)	 ρ �reception�x ��, v� �

�
ρ if x � x � or x � �

False otherwise

P�args(x)	 ρ �ε, v� � 
v � x �ρ

P�p0 && p1	 ρ θ �

�
P�p1	 ρ� θ if P�p0	 ρ θ � ρ�

False otherwise

P�p0 || p1	 ρ θ �

�
ρ� if P�p0	 ρ θ � ρ�

P�p1	 ρ θ otherwise

Fig. 11. Semantics of pointcuts

Additionally, we define an auxiliary function σ that extracts a signature (or a
name) from an expression.

σ : Expression � Identifier

σ�e� �

�
e if e is Identifier

$ otherwise

If it receives an Identifier, the argument itself is returned. Otherwise, it returns
the dummy signature $. For example, σ�x � is x , and σ�fun x � x � is $.

The semantics of the pointcuts is a function P shown in Figure 11. P�p� ρempty θ
tests whether the pointcut p and the current join point θ match. If they do, it
returns an environment that binds a variable to a value by args pointcut. Oth-
erwise, it returns False.

We then define the semantic function A for lists of advice declarations (Fig-
ure 12), which receives an advice list, an event and a continuation. When the
pointcut of the first advice matches a join point, it returns a continuation that
evaluates the advice body and then evaluates the rest of the advice list. Other-
wise, it returns a continuation that evaluates the rest of the advice list. At the
end of the list, it continues to the original computation.

We finally define the semantic function of the expression. In the section, the
semantics of Identifier and Function remain unchanged. The semantics of
Application in Pitλ0 is defined by inserting application to A at appropriate
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A : Advices � Evt � Ctn � Ctn

A�advice : p � e; a �	 ε κ v �

�
E�e	 ρ� �A�a �	 ε κ� if P�p	 ρempty �ε, v�� ρ�

A�a �	 ε κ v otherwise

A� 
 	 ε κ v � κ v

Fig. 12. Semantics of advice

E : Expression � Env � Ctn � Ans
E�x	 ρ κ � κ �ρ x�

E�fun x � e	 ρ κ � κ �inFun�λκ�v. E�e	 �
v � x �ρ� κ���
E�e0 e1	 ρ κ � E�e0	 ρ �λFun�f�. E�e1	 ρ �λv.

A�a0	 call�σ�e0���f �A�a0	 reception�σ�e0�� κ�� v��

Fig. 13. Semantics of expressions

positions. The original semantics of Application is as follows:

E�e0 e1� ρ κ � E�e0� ρ �λFun�f�. E�e1� ρ �λv. f κ v��

The shadowed part f κ is a continuation that executes the function body
and passes the result to the subsequent continuation κ. The application to the
continuation f κ v, therefore, corresponds to a call join point. By replacing the
continuation with A�a� call�x � �f κ�, we can run applicable advice at function
calls:

E�e0 e1� ρ κ � E�e0� ρ �λFun�f�. E�e1� ρ �λv.A�a0� call�σ�e0�� �f κ� v��

where a0 is the globally defined list of all advice declarations.
Similarly a reception of a return value from a function application can be

found by η-expanding5 κ as follows:

E�e0 e1� ρ κ � E�e0� ρ �λFun�f�.E�e1� ρ �λv.f �λv�.κ v�� v��

Therefore, advice application at reception join point can be achieved by replacing
κ with A�a� reception�x � κ.

Figure 13 shows the final semantics for the expression with call and recep-
tion join points. As we have seen, advice application is taken into the semantic
function in a systematic way: given a continuation κ that represents a join point,
substitute with A�a� ε κ. In the next section, we will see advanced features can
also be incorporated in the same ways.
5 This η-expansion prevents tail-call elimination. It fits the facts that defining an

advice whose pointcut specifies a reception join point makes tail-call elimination
impossible.
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�Expression� e ::� . . .
� try e with x � e (Try)
� raise e (Raise)

�Pointcut� p ::� . . . � failure(x)

Fig. 14. Additional constructs for exception handling

5 Advanced Features with Pitλ

With the aid of the clarified semantics, we are now able to discuss advanced lan-
guage features with the point-in-time model. Thus far, we investigated several ad-
vanced features by defining an extended language called Pitλ1. The investigated
features include exception handling, context sensitive pointcuts (i.e., cflow-like
pointcut) and around advice. Due to the space limitation, we only present the
exception handling mechanism below. The other features are explained in the
other literatures[12, 13].

5.1 Exception Handling

In AspectJ, advice declarations have to distinguish exceptions by using a special
advice modifier (as described in Subsection 3.2). It not only complicates the
problem in reusability, but also makes the semantics awkward. This is because
we have to pay attention to all combinations of advice modifiers and pointcuts.
In fact, some existing formalizations[22, 23] gave a slightly different semantic
equation to each kind of advice declarations. Meanwhile, the point-in-time join
point model has no advice modifiers, which makes the semantics simpler.

Figure 14 shows additional constructs for exception handling: Try and Raise
as the expression, and failure as the pointcut. For the sake of simplicity, we
don’t introduce the special values which represent an exception; an arbitrary
value can be raised. For example, (fun x� raise x) 1 raises the value 1 as
an exception. try ((fun x� raise x) 1) � 2 with x� x� 3 is evaluated nor-
mally to the value 4. But, with advice : failure(	) && args(x)� x 	 2, it is
evaluated to the value 5.

We first give a standard denotational semantics to these constructs. In prepa-
ration for it, we introduce a continuation which represents current exception
handler to the semantics algebra Fun and the semantic functions A and E :

f 
 Fun � Ctn � Ctn � Ctn

E : Expression � Env � Ctn � Ctn � Ans

E�x� ρ κh κ � κ �ρ x �
E�fun x � e� ρ κh κ � κ �inFun�λκh

�κ�v.

E�e� ��v � x 
ρ� κh
� κ���

E�e0 e1� ρ κh κ � E�e0� ρ κh �λFun�f�. E�e1� ρ κh �λv.

A�a� call�σ�e0�� κh �f κh �A�a� reception�σ�e0�� κh κ�� v��
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(a) Pointcuts (failure only):

P�failure(x)	 ρ �failure�x ��, v� �

�
ρ if x � x � or x � �

False otherwise

(b) Advices:

A : Advices � Evt � Ctn � Ctn � Ctn

A�advice : p � e; a �	 ε κh κ v �

�
E�e	 ρ� �A�a �	 ε κh κ� if P�p	 ρempty �ε, v�� ρ�

A�a �	 ε κh κ v otherwise

A� 
 	 ε κh κ v � κ v

(c) Expressions (Application, Try and Raise only):

E�e0 e1	ρκhκ � E�e0	 ρ κh �λFun�f�. E�e1	 ρ κh �λv.
A�a	 call�σ�e0�� κh

�f �A�a	 failure�σ�e0�� κh κh��A�a	 reception�σ�e0�� κh κ�� v��
E�try e0 with x � e1	 ρ κh κ � E�e0	 ρ �λv. E�e1	 �
v � x �ρ� κh κ� κ

E�raise e	 ρ κh κ � E�e	 ρ κh κh

Fig. 15. Semantics of Pitλ1 with exception handling

The new definition of A is in Figure 15-(b). This modification, adding the shad-
owed parts, is mechanical since additional continuations are dealt with only by
the additional constructs. After that, we can define a semantics of the Try and
the Raise as Figure 15-(c).

Now, we define the semantics of a failure join point by modifying the original
semantics. The failure is added to the events Evt :

ε ::� . . . � failure�x �

and the semantics of the failure pointcuts is defined as Figure 15-(a).
Then, look the semantics of Application. From the first argument κh in

f κh . . ., show up the application form by η-expansion.

E�e0 e1� ρ κh κ � E�e0� ρ κh �λFun�f�. E�e1� ρ κh �λv.
A�a� call�σ�e0�� κh

�f �λv. κh v��A�a� reception�σ�e0�� κh κ�� v��

This continuation κh corresponds to a failure join point. We therefore define
the semantics of Application as Figure 15-(c), in a similar way to call and
reception.

The above semantics clarifies the detailed behavior of the aspect mechanism
with exception handling. For example, consider that an exception is to be thrown
in an advice body, which runs at a call join point. It is not obvious whether other
advice declarations matching the same join point shall be executed in this case.
With the above semantics, we can easily tell that no declaration will be executed.
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This is because the semantics of Application passes κh to the semantic A in
order to execute advice at a call join point, like A�a� call�name� κh . . ., which
means that the exception handler of the advice execution is the same one to the
one of the function application.

6 Related Work

As far as we know, practical AOP languages with pointcut and advice, including
AspectJ[15], AspectWerkz[3] and JBoss AOP[6], are all based on the region-in-
time model. Therefore, the reusability problem in Section 2 is common to those
languages even though they have mechanisms for aspect reuse.

A few formal studies[5, 9, 22] treat beginning and end of an event as different
join points. However, motivations behind those studies are different from ours.
MinAML[22] is a low-level language that serves as a target of translation from a
high-level AOP language. Douence and Teboul’s work[9] focuses on identifying
calling contexts from execution history. Brichau et al.[5] attempt to provide a
language model that generalizes many AOP languages.

Including the region-in-time and point-in-time models, previous formal stud-
ies focus on different properties of aspect-oriented languages. Aspect SandBox
(ASB)[23] focuses on formalizing behavior of pointcut matching and advice ex-
ecution by using denotational semantics. Since ASB is based on the region-in-
time model, the semantics of advice execution has to have a rule for each advice
modifier. MiniMAO1[7] focuses on type soundness of around advice, based on
ClassicJava style semantics. It is also based on the region-in-time model.

7 Conclusion

We proposed an experimental new join point model. The model treats ends of
actions, such as returns from methods, as different join points from beginnings
of actions. In PitJ, ends of actions can be captured solely by pointcuts, rather
than advice modifiers. This makes advice declaration more reusable. Even with
simplified advice mechanism, PitJ is as expressive as AspectJ in typical use cases.

We also gave a formal semantics of Pitλ, which simplified from PitJ. It is a
denotational semantics in a continuation passing style, and symmetrically repre-
sents beginnings and ends of actions as join points. With the aid of the semantics,
we investigated integration of advanced language features with the point-in-time
join point model.

Our future work includes the following topics. We will integrate more ad-
vanced features, such as dflow pointcut[17], first-class continuation and tail-call
elimination. We will also plan to implement compiler for PitJ languages.
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