Relaxing Type Restrictions of Around Advice

In Aspect-Oriented Programming
Hidehiko Masuhara (University of Tokyo)

Observation:
AspectJ's type system is
too restrictive wrt around advice

Proposal:

A less restrictive weaving algorithm

based on type inference

Introduction to AOP
and around advice

AOP can modularize crosscutting concerns
(e.g., security, logging) by defining aspects
,~ == w/oAOP-=--~

== security code

Around advice

» aka method interceptors

,— == with AOP - - - ~

Aspectd is an AOP language based on Java

— runs aspect code instead of matching join pomts

— is useful for e.g.

“return a stream to console
instead of creating a file stream”

— is type checked (in AspectJ)

join point (return type: T;)

OutputStream s = new FileOutputStream(fn);
StorableOutput output = new StorableOutput(s);
output.writeStorable(d);

used as OutputStream (T ,) ‘

fa dvice rowrm | POINTCUT openFile(String fn):

onstructor call ¢|qss FileOutputStream ... {

Problem: AspectJ compiler rejects
around advice that returns objects of
different type

—even if it is safe to do so by editing text

OutputStream s =

StorableOutput output = new StorableOutput(s);
output.writeStorable(d);

Analysis: too strict typing rules
— AspectJ'’s typing rules require T, < T,
— But we want to allow T,<T,

\ , \ if return values are used as T, object
1 1 I . i i .
[| | : Proposal: Type Relaxed Weaving Preliminary a_ssessment.
[| - | 15-30% locations can be
! 1 | 1 as an extended AspectJ weaver .
! i ! | _ _ relaxed in real world apps
N I) ! while preserving type safety

——————————— 4]: module —_————m ==

— Weaving algorithm Is to
« infer most specific type usage (T,)
* apply advice only when T, <: T,

- /\
FileOutput
Stream

Print
Stream

call(FileOutput Stream.new(String)) && args(fn):;

> object pooling: “upon new Session(), type (T,) Javassist/43/862
t bject f the object [-
return an object from the object poo OutputStream around(String fn) : openFlle(fn){
» injecting augmented/different funchonahty /7 if (fn. equals(“s‘rdou‘r")) ANTLR/77/1827

return System.out:
Ise return proceed(fn); }

Fil eOut ut
Stream

Sysfem .out;

FileOutputStream(String fn) {

a code fragment in JHotDraw that stores figures into a file

When is Type Relaxed Weaving useful?
— In OO-based AOP languages
< Many chances (see below)

 Often in practice, when creating anonymous objects
like event handlers

Compiled into creation of a class that
implements ActionListener
— Could also be useful in non-AOP languages with
interceptor-like mechanisms

» We dynamically profiled type usages of objects
in 5 real world Java applications

» Usages are classified by usage type is
1more general than, ymore specific than,
mincompatible to, or msame to creation type

» Result: 15-30% of locations can be relaxed

JHotDraw/71/3558

jEdit/140/8524

Xerces/205/3490

0%

10% 20%
Note: a few classes are excluded from jEdit and ANTLR due to "too large code size". / Javassist 3.4 with two sample programs.
/ ANTLR 2.7.7 generating a Java parser. / JHotDraw 6.0b1 standalone application with manual operations. / jEdit 4.2 final with
manual operations. / Xerces 2.9.0 with 8 DOM&SAX samples.

30% 40% 50% 60% 70% 80% 90% 100%

