
class FileOutputStream … {
FileOutputStream(String fn) {
…

Relaxing Type Restrictions of Around Advice
in Aspect-Oriented Programming

Hidehiko Masuhara (University of Tokyo)

• We dynamically profiled type usages of objects
in 5 real world Java applications

• Usages are classified by usage type is
more general than, more specific than,
incompatible to, or same to creation type

• Result: 15‒30% of locations can be relaxed

Observation:
AspectJ's type system is

too restrictive wrt around advice
Proposal:

A less restrictive weaving algorithm
based on type inference

Observation:
AspectJ's type system is

too restrictive wrt around advice
Proposal:

A less restrictive weaving algorithm
based on type inference

650

2499

576

315

177

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Xerces/205/3490

jEdit/140/8524

JHotDraw/71/3558

ANTLR/77/1827

Javassist/43/862

Note: a few classes are excluded from jEdit and ANTLR due to "too large code size". / Javassist 3.4 with two sample programs.
/ ANTLR 2.7.7 generating a Java parser. / JHotDraw 6.0b1 standalone application with manual operations. / jEdit 4.2 final with
manual operations. / Xerces 2.9.0 with 8 DOM&SAX samples.

Preliminary assessment:
15‒30% locations can be
relaxed in real world apps

Introduction to AOP
and around advice

AOP can modularize crosscutting concerns
(e.g., security, logging) by defining aspects

AspectJ is an AOP language based on Java
Around advice
– runs aspect code instead of matching join points

aka method interceptors
– is useful for e.g.

object pooling: “upon new Session(),
return an object from the object pool”
injecting augmented/different functionality:
“return a stream to console
instead of creating a file stream”

‒ is type checked (in AspectJ)

w/o AOP with AOP

: module
: security code

Problem: AspectJ compiler rejects
around advice that returns objects of
different type
– even if it is safe to do so by editing text

Analysis: too strict typing rules
– AspectJ’s typing rules require Ta <: Tj

– But we want to allow Ta <: Tu
if return values are used as Tu object

Proposal: Type Relaxed Weaving
• as an extended AspectJ weaver
• while preserving type safety

– Weaving algorithm Is to
• infer most specific type usage (Tu)
• apply advice only when Ta <: Tu

OutputStream s = new FileOutputStream(fn) System.out;
StorableOutput output = new StorableOutput(s);
output.writeStorable(d);

When is Type Relaxed Weaving useful?
– In OO-based AOP languages

• Many chances (see below)
• Often in practice, when creating anonymous objects

like event handlers

– Could also be useful in non-AOP languages with
interceptor-like mechanisms

button1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
/* do sometihng */ }

});
Compiled into creation of a class that

implements ActionListener

pointcut openFile(String fn):
call(FileOutputStream.new(String)) && args(fn);

OutputStream around(String fn) : openFile(fn) {
if (fn.equals("stdout"))

return System.out;
else return proceed(fn); }

pointcut openFile(String fn):
call(FileOutputStream.new(String)) && args(fn);

OutputStream around(String fn) : openFile(fn) {
if (fn.equals("stdout"))

return System.out;
else return proceed(fn); }

OutputStream s = new FileOutputStream(fn);
StorableOutput output = new StorableOutput(s);
output.writeStorable(d);

FileOutput
Stream

Output
Stream

FileOutput
Stream

Print
Stream

constructor call

Print
Stream
Print

Stream
join point (return type: Tj)

advice return
type (Ta)

used as OutputStream (Tu) a code fragment in JHotDraw that stores figures into a file

Ta, Tu

Tj

