
Compilation Semantics for a Programming
Language with Versions

Yudai Tanabe1[0000−0002−7990−0989] #,
Luthfan Anshar Lubis2[0000−0002−1498−7788],
Tomoyuki Aotani3[0000−0003−4538−0230], and
Hidehiko Masuhara2[0000−0002−8837−5303]

1 Kyoto University, Kyoto, Japan #
⋆⋆yudaitnb@fos.kuis.kyoto-u.ac.jp

2 Tokyo Institute of Technology, Tokyo, Japan
{luthfanlubis@prg.is.titech.ac.jp | masuhara@acm.org}

3 Sanyo-Onoda City University, Yamaguchi, Japan aotani@rs.socu.ac.jp

Abstract. Programming with versions is a paradigm that allows a pro-
gram to use multiple versions of a module so that the programmer can
selectively use functions from both older and newer versions of a single
module. Previous work formalized λVL, a core calculus for programming
with versions, but it has not been integrated into practical program-
ming languages. In this paper, we propose VL, a Haskell-subset sur-
face language for λVL along with its compilation method. We formally
describe the core part of the VL compiler, which translates from the
surface language to the core language by leveraging Girard’s translation,
soundly infers the consistent version of expressions along with their types,
and generates a multi-version interface by bundling specific-version in-
terfaces. We conduct a case study to show how VL supports practical
software evolution scenarios and discuss the method’s scalability.

Keywords: Type system · Type inference · Version control system.

1 Introduction

Updating dependent software packages is one of the major issues in software
development. Even though a newer version of a package brings improvements,
it also brings the risk of breaking changes, which can make the entire software
defective.

We argue that this issue originates from the principle of most programming
languages that only allow the use of one version of a package at a time. Due to
this principle, developers are faced with the decision to either update to a new,
improved version of a package that requires many changes or to remain with an
older version. The problem gets worse when a package is indirectly used. This
dilemma often results in delays in adopting upgrades, leading to stagnation in
software development and maintenance [16,2].

⋆⋆
Corresponding author

ar
X

iv
:2

31
0.

00
29

8v
1

 [
cs

.P
L

]
 3

0
Se

p
20

23

2 Y. Tanabe et al.

Programming with versions [28,29,15,30] is a recent proposal that allows pro-
gramming languages to support multiple versions of programming elements at a
time so that the developer can flexibly cope with incompatible changes. λVL is
the core calculus in which a versioned value encapsulates multiple versions of a
value (including a function value). The λVL type system checks the consistency
of each term so that a value produced in a version is always passed to functions in
the same version. The calculus and the type system design are based on coeffect
calculus [3,20].

While λVL offers the essential language constructs to support multiple ver-
sions in a program, the language is far from practical. For example, with multiple
versions of a module, each version of the function must be manually represented
inside a versioned value (i.e., a record-like expression). λVL is as simple as lambda
calculus, yet it has a verbose syntax due to the coeffect calculus. In short, there
are aspects of versioning in λVL that a surface language compiler can automate.

We propose the functional language VL as a surface language for λVL along
with its compilation method. In VL, a function name imported from an ex-
ternal module represents a multi-version term, where each occurrence of the
function name can reference a different version of the function. The VL compiler
translates a program into an intermediate language VLMini, a version-label-free
variant of λVL, determines the version for each name occurrence based on a type
and version inference algorithm, and translates it back into a version-specialized
Haskell program. VL also offers the constructs to explicitly control versions of
expressions, which are useful to keep using an older version for some reason.

This paper presents the following techniques in VL: (a) an application of
Girard’s translation for translating VL into VLMini, (b) the bundling for mak-
ing a top-level function act as a versioned value, and (c) a type and version
inference algorithm for identifying the version of each expression with respect
to the λVL type system. Finally, we prove the soundness of the inference system
and implement a VL compiler. Code generation converts a VL program into a
version-specialized Haskell program using the solution obtained from z3 [18].

Paper Organization. Section 2 introduces incompatibility issues and fundamen-
tal concepts in programming with versions with λVL and VL. Section 3 intro-
duces bundling and Girard’s transformation. Section 4 presents an algorithmic
version inference for VL. Section 5 features an implementation of VL, and Sec-
tion 6 introduces a case study that simulates an incompatible update made in
a Haskell library. Finally, Section 7 discusses further language development and
concludes the paper by presenting related work and a conclusion.

2 Overview

2.1 Motivating Example

First, we will explain a small example to clarify incompatibility issues. Con-
sider a scenario where an incompatible change is made to a dependent package.

Compilation Semantics for a Programming Language with Versions 3

1 module App where
2 import Dir
3 import Hash
4 main () =
5 let s = getArg ()

6 digest = mkHash s in
7 if exists digest

8 then print "Found"

9 else error "Not found"

module Dir where
import Hash
-- version 1.0.0

exists hash =
let fs = getFiles () in
foldLeft

(\(acc, f) ->
acc || match f hash)

false fs

module Hash where
-- version 1.0.0

mkHash s = {- MD5 hash -}

match s hash =
mkHash s == hash

module Hash where
-- version 2.0.0

mkHash s = {- SHA-3 hash -}

match s hash =
mkHash s == hash

version 2.0.0 version 1.0.0

The exists provided from Dir (which depends on version 1 of Hash) expects
an MD5 hash as an argument. However, after the dependency update of App
on Hash, the value assigned to digest is a SHA-3 hash.

Fig. 1. Minimal module configuration before and after the dependency update causing
an error due to inconsistency expected to the dependent package.

Figure 1 shows the package dependencies in a file explorer App based on a hash-
based file search. This function is developed using the system library Dir and
the cryptography library Hash. For simplicity, we equate packages and modules
here (each package consists of a single module), and we only focus on the version
of Hash. The pseudocode is written in a Haskell-like language.

Before its update, App depends on version 1.0.0 of Hash (denoted by 99K).
The App’s main function implements file search by a string from standard input
using mkHash and exists. The function mkHash is in version 1.0.0 of Hash,
and it generates a hash value using the MD5 algorithm from a given string. Hash
also provides a function match that determines if the argument string and hash
value match under mkHash. The function exists is in version 1.0.0 of Dir,
which is also dependent on version 1.0.0 of Hash, and it determines if a file with
a name corresponding to a given hash exists.

Due to security issues, the developer of App updated Hash to version 2.0.0
(denoted by −→). In version 2.0.0 of Hash, SHA-3 is adopted as the new hash
algorithm. Since Dir continues to use version 1.0.0 of Hash, App needs two
different versions of Hash. Various circumstances can lead to this situation: Dir
may have already discontinued maintenance, or functions in Dir, other than
exists, might still require the features provided by version 1.0.0 of Hash.

4 Y. Tanabe et al.

Although the update does not modify App, it causes errors within App. Even
if a file with an input filename exists, the program returns Not Found error
contrary to the expected behavior. The cause of the unexpected output lies in the
differences between the two versions required for main. In line 6 of App, an SHA-
3 hash value is generated by mkHash and assigned to digest. Since exists
evaluates hash equivalence using MD5, exists digest compares hashes gen-
erated by different algorithms, evaluating to false.

This example highlights the importance of version compatibility when dealing
with functions provided by external packages. Using different versions of Hash
in separate program parts is fine, but comparing results may be semantically
incorrect. Even more subtle changes than those shown in Figure 1 can lead to
significant errors, especially when introducing side effects or algorithm modifi-
cations that break the application’s implicit assumptions. Manually managing
version compatibility for all external functions is unfeasible.

In practical programming languages, dependency analysis is performed before
the build process to prevent such errors, and package configurations requiring
multiple versions of the same package are rejected. However, this approach tends
towards conservative error reporting. In cases where a core package, which many
other libraries depend on, receives an incompatible change, no matter how mi-
nuscule, it requires coordinated updates of diverse packages across the entire
package ecosystem [2,29,31].

2.2 λVL

λVL [28,29] is a core calculus designed to follow the principles: (1) enabling simul-
taneous usage of multiple versions of a package, (2) ensuring version consistency
within a program. λVL works by encapsulating relevant terms across multiple
versions into a record-like term, tagged with a label indicating the specific mod-
ule version. Record-like terms accessible to any of its several versions are referred
to as versioned values, and the associated labels are called version labels.

Version Labels Figure 2 shows the syntax of λVL. Given modules and their
versions, the corresponding set of version labels characterizes the variation of
programs of a versioned value. In λVL, version labels are implicitly generated
for all external module-version combinations, in which Mi is unique, with the
universal set of these labels denoted by L. Specifically, in the example illustared
in Figure 1, L = {l1, l2} and l1 = {Hash = 1.0.0, Dir = 1.0.0}, l2 = {Hash =
2.0.0, Dir = 1.0.0}. The size of L is proportional to V M where M is the number
of modules and V is the maximum number of versions.

Syntax of λVL λVL extends ℓRPCF [3] and GrMini [20] with additional terms
that facilitate introducing and eliminating versioned values. Versioned values
can be introduced through versioned records {li = ti} and promotions [t]. A ver-
sioned record encapsulates related definitions t1, . . . , tn across multiple versions

Compilation Semantics for a Programming Language with Versions 5

λVL syntax

t ::= n | x | t1 t2 | λx.t | let [x] = t1 in t2 | u.l | ⟨li = ti | lk⟩ | u (terms)

u ::= [t] | {li = ti} (versioned values)

A,B ::= Int | A → B | 2rA (types)

r ::= ⊥ | { li } (resources)

L ∋ l ::= {Mi = Vi} (version labels)

Mi and Vi are metavariables over module names and versions of Mi, respectively.

Fig. 2. The syntax of λVL.

and their version labels l1, . . . , ln. For instance, the two versions of mkHash in
Figure 1 can be bundled as the following version record.

mkHash :=
{l1 = λs.{- make MD5 hash -},

l2 = λs.{- make SHA-3 hash -}}

In λVL, programs are constructed via function application of versioned values.
A function application of mkHash to the string s can be written as follows.

app :=
let [mkHash ′] = mkHash in

let [s] = [“compiler.vl”] in [mkHash ′ s]

This program (app hereafter) makes a hash for the string “compiler.vl”
and is available for both l1 and l2. The contextual let-binding let [x] = t1 in t2
provides the elimination of version values by binding a versioned value for t1
to x, thus making it accessible in t2. Promotion [x] offers an alternative way to
introduce versioned values, making any term t act as a versioned value.

The evaluation of terms ti stored in a versioned value {li = ti} and [t] is
postponed until a specific version label is later specified. To proceed with a
postponed evaluation of a versioned value, we use extraction u.lk. Extraction
specifies one versioned label lk for the versioned value u and recursively extracts
the inner term tk corresponding to lk from {li = ti}, and t from [t] as follows.

app#l1 :=
let [mkHash ′] = mkHash in

let [s] = [“compiler.vl”] in [mkHash ′ s].l1

−→∗ (λs.{- make MD5 hash -}) “compiler.vl”

−→ 4dcb6ebe3c6520d1f57c906541cf3823

Consequently, app#l1 evaluates into an MD5 hash corresponding to l1.

Type of Versioned Values The type of a versioned value is expressed as
2rA, assigning a set of version labels r, called version resources, to a type A.
Intuitively, the type of a versioned value represents the versions available to that
versioned value. For example, mkHash and app are typed as follows.

mkHash : 2{l1,l2} (String → String) app : 2{l1,l2} (String → String)

6 Y. Tanabe et al.

1 module App where
2 import Dir
3 import Hash
4 main () =
5 let s = getArg ()

6 digest = mkHash s in
7 if exists digest

8 then print "Found"

9 else error "Not found"

module Dir where
-- version 1.0.0

import Hash
exists hash =
let fs = getFiles () in
foldLeft

(\(acc, f) ->
acc || match f hash)

false fs

module Hash where
-- version 1.0.0

mkHash s = {- MD5 hash -}

match s hash =
mkHash s == hash

module Hash where
-- version 2.0.0

mkHash s = {- SHA-3 hash -}

match s hash =
mkHash s == hash

Bundled Dir

Bundled Hash

The versions of each external module are bundled. Programs using a bundled
module can refer to the definitions of all versions of the bundled module.

Fig. 3. The programs in Figure 1 in VL.

The types have {l1, l2} as their version resource, illustrating that the ver-
sioned values have definitions of l1 and l2. For function application, the type
system computes the intersection of the version resource of subterms. Since the
promoted term is considered to be available in all versions, the version resource
of the entire function application indicates {l1, l2} = {l1, l2} ∩ L.

For extractions, the type system verifies if the version resource contains the
specified version as follows.

app#l1 : String → String app#l3 : (rejected)

Assuming L = {l1, l2, l3}, app#l3 is rejected by type checking because the
version resource of app does not contain l3. Conversely, app#l1 is well-typed,
but note that the resultant type lost its version resource. It is attributed to the
design principle that it could be used in other versions upon extraction.

The λVL type system incorporates the notion of version consistency in ad-
dition to the standard notions of preservation and progress. Proofs of these
theorems can be found in Appendix C.

2.3 Programming with Versions in VL

Our contributions enjoy the benefits of programming with versions on a λ-
calculus-based functional language VL. To achieve this, we develop a compilation

Compilation Semantics for a Programming Language with Versions 7

VL
program

VL
program

VLMini
program
VLMini
program

VLMini
interface
VLMini
interface

VLMini
interface
(bundled)

Constraints

Girard’s
translation

(version-wise)

Type
inference

Bundling

Import modules

Fig. 4. The translation phases for a single module with multiple versions.

method between lambda calculus and VLMini, a version-label free variant of λVL,
and a version inference algorithm to infer the appropriate version of expressions.

In VL, (1) all versions are available for every module, and (2) the version
of each expression is determined by expression-level dependency analysis. This
approach differs from existing languages that determine one version for each
dependent package. Figure 3 shows how the programs in Figure 1 are interpreted
in VL. The VL compiler bundles the interfaces of multiple versions and generates
a cross-version interface to make external functions available in multiple versions.
The VL type system enforces version consistency in main and selects a newer
version if multiple versions are available. Thus it gives the version label {Hash =
2.0.0, Dir = 1.0.0} to dependent expressions of main. As a result, since Hash
version referenced from Dir is no longer limited to 1.0.0, exists digest is
evaluated using SHA-3 under the context of Hash version 2.0.0.

Furthermore, VL provides version control terms to convey the programmer’s
intentions of versions to the compiler. For example, to enforce the evaluation in
Figure 3 to MD5, a programmer can rewrite line 7 of App as follows.

7 if ver [Hash=1.0.0] of (exists digest)

The program dictates that exists digest is evaluated within the context of
the Hash version 1.0.0. Consequently, both mkHash and match, which depend
on exists digest, are chosen to align with version 1.0.0 of Hash. Moreover,
VL provides unversion t. It eliminates the dependencies associated with term
t, facilitating its collaboration with other versions under the programmer’s re-
sponsibility, all while maintaining version consistency within its subterm. Thus,
VL not only ensures version consistency but also offers the flexibility to control
the version of a particular part of the program.

3 Compilation

The entire translation consists of three parts: (1) Girard’s translation, (2) an
algorithmic type inference, and (3) bundling. Figure 4 shows the translation pro-
cess of a single module. First, through Girard’s translation, each version of the

8 Y. Tanabe et al.

VL program undergoes a version-wise translation into the VLMini program.
Second, the type inference synthesizes types and constraints for top-level sym-
bols. Variables imported from external modules reference the bundled interface
generated in the subsequent step. Finally, to make the external variables act as
multi-version expressions, bundling consolidates each version’s interface into one
VLMini interface. These translations are carried out in order from downstream
of the dependency tree. By resolving all constraints up to the main module, the
appropriate version for every external variable is determined.

It is essential to note that the translations focus on generating constraints
for dispatching external variables into version-specific code. While implementing
versioned records in λVL presents challenges, such as handling many version la-
bels and their code clones, our method is a constraint-based approach in VLMini
that enables static inference of version labels without their explicit declaration.

In the context of coeffect languages, constraint generation in VL can be seen
as the automatic generation of type declarations paired with resource constraints.
Granule[20] can handle various resources as coeffects, but it requires type dec-
larations to indicate resource constraints. VL restricts its resources solely to the
version label set. This specialization enables the automatic collection of version
information from external sources outside the codebase.

3.1 An Intermediate Language, VLMini

Syntax of VLMini Figure 5 shows the syntax of VLMini. VLMini encom-
passes all the terms in λVL except for versioned records {li = ti}, intermediate
term ⟨li = ti | lk⟩, and extractions t.lk. As a result, its terms are analogous to
those in ℓRPCF[3] and GrMini[20]. However, VLMini is specialized to treat ver-
sion resources as coeffects. We also introduce data constructors by introduction
C t1, ..., tn and elimination case t of pi 7→ ti for lists and pairs, and version
control terms unversion t and version {Mi = Vi} of t. Here, contextual-let in
λVL is a syntax sugar of lambda abstraction applied to a promoted pattern.

let [x] = t1 in t2 ≜ (λ[x].t2) t1

Types, version labels, and version resources are almost the same as λVL. Type
constructors are also added to the type in response to the VLMini term having
a data constructor. The remaining difference from λVL is type variables α. Since
VLMini is a monomorphic language, type variables act as unification variables;
type variables are introduced during the type inference and are expected to be
either concrete types or a set of version labels as a result of constraint resolution.
To distinguish those two kinds of type variables, we introduce kinds κ. The kind
Labels is given to type variables that can take a set of labels {li} and is used to
distinguish them from those of kind Type during algorithmic type inference.

Constraints The lower part of Figure 5 shows constraints generated through
bundling and type inference. Dependency constraints comprise variable depen-
dencies and label dependencies in addition to propositional formulae. Variable

Compilation Semantics for a Programming Language with Versions 9

VLMini syntax (w/o data constructors and version control terms)

t ::= n | x | t1 t2 | λp.t | [t] (terms)

p ::= x | [x] (patterns)

A,B ::= Int | α | A → B | 2rA (types)

κ ::= Type | Labels (kinds)

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Σ ::= ∅ | Σ,α : κ (type variable kinds)

R ::= − | r (resource contexts)

Extended with data constructors

t ::= . . . | C ti | case t of pi 7→ ti (terms)

p ::= . . . | C pi (patterns)

C ::= (,) | [,] (constructors)

A,B ::= ... | KAi (types)

K ::= (,) | [,] (type constructors)

Extended with version control terms

t ::= . . . | version {Mi = Vi} of t | unversion t (terms)

VLMini constraints

C ::= ⊤ | C1 ∧ C2 | C1 ∨ C2︸ ︷︷ ︸
propositional

formulae

| α ⪯ α′︸ ︷︷ ︸
variable

dependencies

| α ⪯ D︸ ︷︷ ︸
label

dependencies

(dependency constraints)

D ::= ⟨⟨Mi = Vi⟩⟩ (dependent labels)

Θ ::= ⊤ | Θ1 ∧Θ2 | {A ∼ B} (type constraints)

Fig. 5. The syntax of VLMini.

dependencies α ⊑ α′ require that if a version label for α′ expects a specific version
for a module, then α also expects the same version. Similarly, label dependencies
α ⪯ ⟨⟨Mi = Vi⟩⟩ require that a version label expected for α must be Vi for Mi.
For example, assuming that versions 1.0.0 and 2.0.0 exist for both modules A and
B, the minimal upper bound set of version labels satisfying α ⪯ ⟨⟨A 7→ 1.0.0⟩⟩ is
α = {{A = 1.0.0,B = 1.0.0}, {A = 1.0.0,B = 2.0.0}}. If the constraint resolution
is successful, α will be specialized with either of two labels. Θ is a set of type
equations resolved by the type unification.

3.2 Girard’s Translation for VLMini

We extend Girard’s translation between VL (lambda calculus) to VLMini fol-
lowing Orchard’s approach [20].

JnK ≡ n JxK ≡ x Jλx.tK ≡ λ[x].JtK Jt sK ≡ JtK [JsK]

The translation replaces lambda abstractions and function applications of
VL by lambda abstraction with promoted pattern and promotion of VLMini,
respectively. From the aspect of types, this translation replaces all occurrences
of A → B with 2rA → B with a version resource r. This translation inserts a
syntactic annotation [∗] at each location where a version resource needs to be

10 Y. Tanabe et al.

addressed. Subsequent type inference will compute the resource at the specified
location and produce constraints to ensure version consistency at that point.

The original Girard’s translation [11] is well-known as a translation between
the simply-typed λ-calculus and an intuitionistic linear calculus. The approach
involves replacing every intuitionistic arrow A → B with !A ⊸ B, and subse-
quently unboxing via let-in abstraction and promoting during application [20].

3.3 Bundling

Bundling produces an interface encompassing types and versions from every
module version, allowing top-level symbols to act as multi-version expressions.
During this process, bundling reviews interfaces from across module versions,
identifies symbols with the same names and types after removing □r using Gi-
rard’s transformation, and treats them as multiple versions of a singular symbol
(also discussed in Section 7). In a constraint-based approach, bundling integrates
label dependencies derived from module versions, ensuring they align with the
version information in the typing rule for versioned records of λVL.

For example, assuming that the id that takes an Int value as an argument is
available in version 1.0.0 and 2.0.0 of M as follows:

id : 2α1(2α2 Int → Int) | C1 (version 1.0.0)

id : 2β1(2β2 Int → Int) | C2 (version 2.0.0)

where α1 and α2 are version resource variables given from type inference. They
capture the version resources of id and its argument value in version 1.0.0. C1
is the constraints that resource variables of version 1.0.0 will satisfy. Likewise
for β1, β2, and C2. Since the types of id in both versions become Int → Int via
Girard’s translation, they can be bundled as follows:

id : 2γ1
(2γ2

Int → Int) | C1 ∧ C2 ∧
(
(γ1 ⪯ ⟨⟨M = 1.0.0⟩⟩ ∧ γ1 ⪯ α1 ∧ γ2 ⪯ α2)

∨ (γ1 ⪯ ⟨⟨M = 2.0.0⟩⟩ ∧ γ1 ⪯ β1 ∧ γ2 ⪯ β2)
)

where γ1 and γ2 are introduced by this conversion for the bundled id interface,
with label and variable dependencies that they will satisfy. γ1 captures the ver-
sion resource of the bundled id . The generated label dependencies γ1 ⪯ ⟨⟨M =
1.0.0⟩⟩ and γ1 ⪯ ⟨⟨M = 2.0.0⟩⟩ indicate that id is available in either version 1.0.0 or
2.0.0 of M. These label dependencies are exclusively4 generated during bundling.
The other new variable dependencies indicate that the id bundled interface de-
pends on one of the two version interfaces. The dependency is made apparent by
pairing the new resource variables with their respective version resource variable
for each version. These constraints are retained globally, and the type definition
of the bundled interface is used for type-checking modules importing id .

4 In the type checking rules for version l of t, type inference exceptionally generates
label dependencies. Please see Appendix B.4

Compilation Semantics for a Programming Language with Versions 11

VLMini pattern type synthesis Σ,R ⊢ p : A� Γ ;Σ′;Θ; C

Σ;− ⊢ x : A� x : A;Σ;⊤;⊤
(pVar)

Σ; r ⊢ x : A� x : [A]r;Σ;⊤;⊤
([pVar])

Σ,α : Labels, β : Type;α ⊢ x : β �∆;Σ′;Θ; C
Σ;− ⊢ [x] : A�∆;Σ′;Θ ∧ {A ∼ 2αβ}; C

(p□)

VLMini type synthesis (excerpt) Σ;Γ ⊢ t ⇒ A;Σ′;Θ; C

x : A ∈ Γ

Σ;Γ ⊢ x ⇒ A;Σ;x : A;⊤;⊤
(⇒lin)

x : [A]r ∈ Γ

Σ;Γ ⊢ x ⇒ A;Σ;x : [A]1;⊤;⊤
(⇒gr)

Σ1, α : Type;− ⊢ p : α� Γ ′;Σ2;Θ1 Σ2;Γ, Γ
′ ⊢ t ⇒ B;Σ3;∆;Θ2; C

Σ1;Γ ⊢ λp.t ⇒ α → B;Σ3;∆\Γ ′;Θ1 ∧Θ2; C
(⇒abs)

Σ1 ⊢ [Γ ∩ FV(t)]Labels � Γ ′ Σ1;Γ
′ ⊢ t ⇒ A;Σ2;∆;Θ; C1

Σ3 = Σ2, α : Labels Σ3 ⊢ α ⊑c Γ ′ � C2

Σ1;Γ ⊢ [t] ⇒ 2αA;Σ3;α ·∆;Θ; C1 ∧ C2

(⇒pr)

VLMini constraints generation Σ ⊢ α ⊑c Γ � C

Σ ⊢ α ⊑c ∅�⊤
(∅)

Σ ⊢ α ⊑c Γ � C
Σ ⊢ α ⊑c (x : [A]r, Γ)� (α ⪯ r ∧ C)

(α)

Fig. 6. VLMini algorithmic typing.

4 Algorithmic Type Inference

We develop the algorithmic type inference for VLMini derived from the declar-
ative type system of λVL [28,29]. The type inference consists of two judgments:
type synthesis and pattern type synthesis. The judgment forms are similar to
Gr [20], which is similarly based on coeffect calculus. While Gr provides type-
checking rules in a bidirectional approach [8,9] to describe resource constraint
annotations and performs unifications inside the type inference, VLMini only
provides synthesis rules and unification performs after the type inference. In
addition, Gr supports user-defined data types and multiple computational re-
sources, while VLMini supports only built-in data structures and specializes in
version resources. The inference system is developed to be sound for declarative
typing in λVL, with the proof detailed in Appendix D.

Type synthesis takes type variable kinds Σ, a typing context Γ of term
variables, and a term t as inputs. Type variable kinds Σ are added to account
for distinct unification variables for types and version resources. The synthesis
produces as outputs a type A, type variable kinds Σ′, type constraints Θ, and
dependency constraints C. The type variable kinds Σ and Σ′ always satisfy
Σ ⊆ Σ′ due to the additional type variables added in this phase.

Pattern type synthesis takes a pattern p, type variable kinds Σ, and resource
environment R as inputs. It synthesizes outputs, including typing context Γ ,
type variable kinds Σ′, and type and dependency constraints Θ and C. Pattern

12 Y. Tanabe et al.

type synthesis appears in the inference rules for λ-abstractions and case expres-
sions. It generates a typing context from the input pattern p for typing λ-bodies
and branch expressions in case statements. When checking a nested promoted
pattern, the resource context R captures version resources inside a pattern.

4.1 Pattern Type Synthesis

Pattern type synthesis conveys the version resources captured by promoted pat-
terns to the output typing context. The rules are classified into two categories,
whether or not it has resources in the input resource context R. The base rules
are pVar, p2, while the other rules are resource-aware versions of the corre-
sponding rules. The resource-aware rules assume they are triggered within the
promoted pattern and collect version resource r in the resource context.

The rules for variables pVar and [pVar] differ in whether the variable pat-
tern occurs within a promoted pattern. pVar has no resources in the resource
context because the original pattern is not inside a promoted pattern. There-
fore, this pattern produces typing context x : A. [pVar] is for a variable pattern
within the promoted pattern, and a resource r is recorded in the resource con-
text. The rule assigns the collected resource r to the type A and outputs it as a
versioned assumption x : [A]r.

The rules for promoted patterns p□ propagate version resources to the sub-
pattern synthesis. The input type A is expected to be a versioned type, so the
rule generates the fresh type variables α and β, then performs the subpattern
synthesis considering A as 2αβ. Here, the resource α captured by the promoted
pattern is recorded in the resource context. Finally, the rule unifies A and 2αβ
and produces the type constraints Θ′ for type refinement.

4.2 Type Synthesis

The algorithmic typing rules for VLMini, derived from declarative typing rules
for λVL, are listed in Figure 6. We explain a few important rules in excerpts.

The rule ⇒abs generates a type variable α, along with the binding pattern p
of the λ-abstraction generating the typing context Γ ′. Then the rule synthesizes
a type B for the λ-body under Γ ′, and the resulting type of the λ-abstraction is
α → B with the tentatively generated α. With the syntax sugar, the type rules of
the contextual-let are integrated into ⇒abs. Instead, λ-abstraction does not just
bind a single variable but is generalized to pattern matching, which leverages
pattern typing, as extended by promoted patterns and data constructors.

The rule ⇒pr is the only rule that introduces constraints in the entire type
inference algorithm. This rule intuitively infers consistent version resources for
the typing context Γ . Since we implicitly allow for weakening, we generate a
constraint from Γ ′ that contains only the free variables in t, produced by context
grading denoted as [Γ]Labels. Context grading converts all assumptions in the
input environment into versioned assumptions by assigning the empty set for
the assumption with no version resource.

Compilation Semantics for a Programming Language with Versions 13

Finally, the rule generates constraints from Γ ′ and a fresh type variable α
by constraints generation defined in the lower part of Figure 6. The rules assert
that the input type variable α is a subset of all the resources of the versioned
assumptions in the input environment Γ . The following judgment is the simplest
example triggered by the type synthesis of [f x].

r : Labels, s : Labels ⊢ α ⊑c f : [Int → Int]r, x : [Int]s � α ⪯ r ∧ α ⪯ s

The inputs are type variable α and the type environment (f : [Int → Int]r, x :
[Int]s). In this case, the rules generate variable dependencies for r and s, each
resource of the assumptions, and return a constraint combined with ∧.

4.3 Extensions

Version Control Terms The rule for version l of t uses the same trick as
(⇒pr), and generates label dependencies from the input environment Γ to ⟨⟨l⟩⟩.
Since version l of t only instructs the type inference system, the resulting type
is the same as t. unversion t removes the version resource from the type of
t, which is assumed to be a versioned value. We extend Girard’s translation so
that t is always a versioned value. Since a new resource variable is given to the
term by the promotion outside of unversion, the inference system guarantees
the version consistency inside and outside the boundary of unversion. The list
of the rules is provided in Appendix B.4.

Data Structures To support data structures, Hughes et al. suggest that coef-
fectful data types are required to consider the interaction between the resources
inside and outside the constructor [13]. They introduce the derivation algorithm
for push and pull for an arbitrary type constructor K to address this.

push : ∀{a b: Type, r: Labels}. (a,b)[r] -> (a[r],b[r])

push [(x, y)] = ([x], [y])

pull : ∀{a b: Type, m n: Labels}. (a[n],b[m]) -> (a,b)[n⊓m]
pull ([x], [y]) = [(x, y)]

Following their approach, we developed inference rules for pairs and lists.
When a data structure value p is applied to a function f , the function application
f p is implicitly interpreted as f (pull p). As a dual, a pattern match for a data
structure value case p of pi 7→ ti is interpreted as case (push p) of pi 7→ ti.
Appendix B.5 provides the complete set of extended rules.

5 Implementation

We implement the VL compiler5 on GHC (v9.2.4) with haskell-src-exts6 as its
parser with an extension of versioned control terms, and z3 [18] as its constraint

5 https://github.com/yudaitnb/vl
6 https://hackage.haskell.org/package/haskell-src-exts

https://github.com/yudaitnb/vl
https://hackage.haskell.org/package/haskell-src-exts

14 Y. Tanabe et al.

version join vjoin udot, sortVector, roundVector
< 0.15 available undefined undefined
≥ 0.16 deleted available available

Table 1. Availability of functions in hmatrix before and after tha update.

solver. The VL compiler performs the code generation by compiling VLMini
programs back into λ-calculus via Girard’s translation and then translating them
into Haskell ASTs using the version in the result version labels.

Ad-hoc Version Polymorphism via Duplication The VL compiler repli-
cates external variables to assign individual versions to homonymous external
variables. Duplication is performed before type checking of individual versions
and renames every external variable along with the type and constraint envi-
ronments generated from the import declarations. Such ad hoc conversions are
necessary because VLMini is monomorphic, and the type inference of VLMini
generates constraints by referring only to the variable’s name in the type environ-
ment. Therefore, assigning different versions to homonymous variables requires
manual renaming in the preliminary step of the type inference. A further dis-
cussion on version polymorphism can be found in Section 7.

Constraints Solving with z3 We use sbv7 as the binding of z3. The sbv
library internally converts constraints into SMT-LIB2 scripts [1] and supplies it
to z3. Dependency constraints are represented as vectors of symbolic integers,
where the length of the vector equals the number of external modules, and the
elements are unique integers signifying each module’s version number. Constraint
resolution identifies the expected vectors for symbolic variables, corresponding
to the label on which external identifiers in VL should depend. If more than one
label satisfies the constraints, the default action is to select a newer one.

6 Case Study and Evaluation

6.1 Case Study

We demonstrate that VL programming achieves the two benefits of program-
ming with versions. The case study simulated the incompatibility of hmatrix,8

a popular Haskell library for numeric linear algebra and matrix computations,
in the VL module Matrix. This simulation involved updating the applications
Main depending on Matrix to reflect incompatible changes.

Table 1 shows the changes introduced in version 0.16 of hmatrix. Before ver-
sion 0.15, hmatrix provided a join function for concatenating multiple vectors.
The update from version 0.15 to 0.16 replaced join with vjoin. Moreover,

7 https://hackage.haskell.org/package/sbv-9.0
8 https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/
CHANGELOG

https://hackage.haskell.org/package/sbv-9.0
https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/CHANGELOG
https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/CHANGELOG

Compilation Semantics for a Programming Language with Versions 15

module Main where
import Matrix
import List
main = let
vec = [2, 1]

sorted = sortVector vec

m22 = join -- [[1,2],[2,1]]

(singleton sorted)

(singleton vec)

in determinant m22

-- error: version inconsistent

module Main where
import Matrix
import List
main = let
vec = [2, 1]

sorted = unversion
(sortVector vec)

m22 = join -- [[1,2],[2,1]]

(singleton sorted)

(singleton vec)

in determinant m22 -- ->* -3

Fig. 7. Snippets of Main before (left) and after (right) rewriting.

several new functions were introduced. We implement two versions of Matrix
to simulate backward incompatible changes in VL. Also, due to the absence of
user-defined types in VL, we represent Vector a and Matrix a as List Int
and List (List Int) respectively, using List, a partial port of Data.List
from the Haskell standard library.

We implement Main working with two conflicting versions of Matrix. The
left side of Figure 7 shows a snippet of Main in the process of updating Matrix
from version 0.15.0 to 0.16.0. main uses functions from both versions of Matrix
together: join and sortVector are available only in version 0.15.0 and 0.16.0
respectively, hence Main has conflicting dependencies on both versions of Matrix.
Therefore, it will be impossible to successfully build this program in existing lan-
guages unless the developer gives up using either join or sortVector.

– Detecting Inconsistent Version: VL can accept Main in two stages. First,
the compiler flags a version inconsistency error. It is unclear which Matrix
version the main function depends on as join requires version 0.15.0 while
sortVector requires version 0.16.0. The error prevents using such incom-
patible version combinations, which are not allowed in a single expression.

– Simultaneous Use of Multiple Versions: In this case, using join and
sortVector simultaneously is acceptable, as their return values are vec-
tors and matrices. Therefore, we apply unversion t for t to collaborate
with other versions. The right side of Figure 7 shows a rewritten snippet of
Main, where sortVector vec is replaced by unversion (sortVector
vec). Assuming we avoid using programs that depend on a specific version
elsewhere in the program, we can successfully compile and execute main.

6.2 Scalability of Constraint Resolution

We conducted experiments on the constraint resolution time of the VL compiler.
In the experiment, we duplicated a VL module, renaming it to #mod like List i,

16 Y. Tanabe et al.

Fig. 8. Constraint resolution time for the duplicated List by #mod × #ver.

and imported each module sequentially. Every module had the same number of
versions, denoted as #ver. Each module version was implemented identically
to List, with top-level symbols distinguished by the module name, such as
concat List i. The experiments were performed ten times on a Ryzen 9 7950X
running Ubuntu 22.04, with #mod and #ver ranging from 1 to 5.

Figure 8 shows the average constraint resolution time. The data suggests
that the resolution time increases polynomially (at least square) for both #mod
and #ver. Several issues in the current implementation contribute to this in-
efficiency: First, we employ sbv as a z3 interface, generating numerous redun-
dant variables in the SMT-Lib2 script. For instance, in a code comprising 2600
LOC (with #mod = 5 and #ver = 5), the VL compiler produces 6090 version
resource variables and the sbv library creates SMT-Lib2 scripts with approxi-
mately 210,000 intermediate symbolic variables. Second, z3 solves versions for all
AST nodes, whereas the compiler’s main focus should be on external variables
and the subterms of unversion. Third, the current VL nests the constraint
network, combined with ∨, #mod times at each bundling. This approach results
in an overly complex constraint network for standard programs. Hence, to ac-
celerate constraint solving, we can develop a more efficient constraint compiler
for SMT-Lib2 scripts, implement preprocess to reduce constraints, and employ
a greedy constraint resolution for each module.

7 Related Work, Future Work, and Conclusion

Managing Dependency Hell Mainstream techniques for addressing depen-
dency hell stand in stark contrast to our approach, which seeks to manage de-
pendencies at a finer granularity. Container [17] encapsulates each application

Compilation Semantics for a Programming Language with Versions 17

with all its dependencies in an isolated environment, a container, facilitating
multiple library versions to coexist on one physical machine. However, it does
not handle internal dependencies within the container. Monorepository [21,10]
versions logically distinct libraries within a single repository, allowing updates
across multiple libraries with one commit. It eases testing and bug finding but
can lower the system modularity.

Toward a Language Considering Compatibility The next step in this
research is to embed compatibility tracking within the language system. The
current VL considers different version labels incompatible unless a programmer
uses unversion. Since many updates maintain backward compatibility and
change only minor parts of the previous version, the existing type system is
overly restrictive.

To illustrate, consider Figure 3 again with more version history. The mod-
ule Hash uses the MD5 algorithm for mkHash and match in the 1.x.x series.
However, it adopts the SHA-3 algorithm in version 2.0.0, leaving other functions
the same. The hash by mkHash version 1.0.1 (an MD5 hash) aligns with any
MD5 hash from the 1.x.x series. Therefore, we know that comparing the hash
using match version 1.0.0 is appropriate. However, the current VL compiler
lacks mechanisms to express such compatibility in constraint resolution. The
workaround involves using unversion, risking an MD5 hash’s use with match
version 2.0.0.

One promising approach to convey compatibilities is integrating semantic
versioning [22] into the type system. If we introduce semantics into version labels,
the hash generated in version 1.0.1 is backward compatible with version 1.0.0.
Thus, by constructing a type system that respects explicitly defined version
compatibilities, we can improve VL to accept a broader range of programs.

It is important to get reliable versions to achieve this goal. Lam et al. [14]
emphasize the need for tool support to manage package modifications and the
importance of analyzing compatibility through program analysis. Delta-oriented
programming [26,25,24] could complement this approach by facilitating the way
modularizing addition, overriding, and removal of programming elements and
include application conditions for those modifications. This could result in a
sophisticated package system that provides granular compatibility information.

Such a language could be an alternative to existing technologies for automatic
update, collectively known as adoptation. These methods generate replacement
rules based on structural similarities [5,32] and extract API replacement pat-
terns from migrated code bases [27]. Some techniques involve library maintain-
ers recording refactorings [7,12] and providing annotations [4] to describe how
to update client code. However, the reported success rate of these techniques is
less than 20% on average [6].

Supporting Type Incompatibility One of the apparent problems with the
current VL does not support type incompatibilities. VL forces terms of different
versions to have the same type, both on the theoretical (typing rules in λVL)

18 Y. Tanabe et al.

and implementation (bundling in VLMini) aspects. Supporting type incompat-
ibility is important because type incompatibility is one of the top reasons for
error-causing incompatibilities [23]. The current VL is designed in such a way
because it retains the principle that equates the types of promotions and ver-
sioned records in λVL, easing the formalization of the semantics.

A promising approach to address this could be to decouple version inference
from type inference and develop a version inference system on the polymorphic
record calculus [19]. The idea stems from the fact that versioned types 2{l1,l2}A

are structurally similar to record types {l1 : A, l2 : A} of Λ∀,•. Since Λ∀,• al-
lows different record-element types for different labels and has concrete inference
algorithms with polymorphism, implementing version inference on top of Λ∀,•

would also make VL more expressive.

Adequate Version Polymorphism In the current VL, there is an issue
that the version label of top-level symbols in imported modules must be spec-
ified one, whereas users can select specific versions of external variables using
unversion within the importing module. Consider using a generic function
like List.concat in Figure 7. If it is used in one part of the program within
the context of Matrix version 1.0.0, the solution of the resource variable of
List.concat version 1.0.0 becomes confined to {Matrix = 1.0.0,List =
. . .}. As a result, it is impossible to utilize List.concat version 1.0.0 with
Matrix version 2.0.0 elsewhere in the program. This problem becomes appar-
ent when we define a generic module like a standard library.

It is necessary to introduce full-version polymorphism in the core calculus
instead of duplication to address this problem. The idea is to generate a type
scheme by solving constraints for each module during bundling and instanti-
ate each type and resource variable at each occurrence of an external variable.
Such resource polymorphism is similar to that already implemented in Gr [20].
However, unlike Gr, VLMini provides a type inference algorithm that collects
constraints on a per-module basis, so we need the well-defined form of the prin-
cipal type. This extension is future work.

Conclusion This paper proposes a method for dependency analysis and version
control at the expression level by incorporating versions into language semantics,
which were previously only identifiers of packages. This enables the simultaneous
use of multiple versions and identifies programs violating version consistency at
the expression level, which is impossible with conventional languages.

Our next step is to extend the version label, which currently only identi-
fies versions, to semantic versions and to treat the notion of compatibility with
language semantics. Like automatic updates by modern build tools based on
semantic versioning, it would be possible to achieve incremental updates, which
would be done step-by-step at the expression level. Working with existing pack-
age managers to collect compatibility information at the expression level would
be more feasible to realize the goal.

Compilation Semantics for a Programming Language with Versions 19

References

1. Barrett, C., Stump, A., Tinelli, C., et al.: The smt-lib standard: Version 2.0. In:
Proceedings of the 8th international workshop on satisfiability modulo theories
(Edinburgh, UK). vol. 13, p. 14 (2010)

2. Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., Panichella, S.: How the apache
community upgrades dependencies: An evolutionary study. Empirical Software En-
gineering 20(5), 1275–1317 (Oct 2015). https://doi.org/10.1007/s10664-014-9325-
9, https://doi.org/10.1007/s10664-014-9325-9

3. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coef-
fect calculus. In: Proceedings of the 23rd European Symposium on Programming
Languages and Systems - Volume 8410. p. 351–370. Springer-Verlag, Berlin, Hei-
delberg (2014). https://doi.org/10.1007/978-3-642-54833-8 19, https://doi.org/10.
1007/978-3-642-54833-8 19

4. Chow, Notkin: Semi-automatic update of applications in response to li-
brary changes. In: 1996 Proceedings of International Conference on
Software Maintenance. pp. 359–368. IEEE, New York, USA (1996).
https://doi.org/10.1109/ICSM.1996.565039

5. Cossette, B., Walker, R., Cottrell, R.: Using structural generaliza-
tion to discover replacement functionality for api evolution (2014).
https://doi.org/10.11575/PRISM/10182, https://prism.ucalgary.ca/handle/
1880/49996

6. Cossette, B.E., Walker, R.J.: Seeking the ground truth: A retroactive study
on the evolution and migration of software libraries. In: Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. FSE ’12, Association for Computing Machinery, New York, NY,
USA (2012). https://doi.org/10.1145/2393596.2393661, https://doi.org/10.1145/
2393596.2393661

7. Dig, D., Johnson, R.: How do APIs evolve? a story of refactoring. Journal
of Software Maintenance and Evolution: Research and Practice 18(2), 83–107
(2006). https://doi.org/https://doi.org/10.1002/smr.328, https://onlinelibrary.
wiley.com/doi/abs/10.1002/smr.328

8. Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional type-
checking for higher-rank polymorphism. SIGPLAN Not. 48(9), 429–442
(9 2013). https://doi.org/10.1145/2544174.2500582, https://doi.org/10.1145/
2544174.2500582

9. Dunfield, J., Krishnaswami, N.R.: Sound and complete bidirectional typechecking
for higher-rank polymorphism with existentials and indexed types. Proc. ACM
Program. Lang. 3(POPL) (1 2019). https://doi.org/10.1145/3290322, https://doi.
org/10.1145/3290322

10. Durham Goode: Facebook Engineering: Scaling Mercurial at Facebook.
https://code.fb.com/core-data/scaling-mercurial-at-facebook/ (Jan 2014)

11. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (Jan 1987).
https://doi.org/10.1016/0304-3975(87)90045-4, https://doi.org/10.1016/
0304-3975(87)90045-4

12. Henkel, J., Diwan, A.: Catchup! capturing and replaying refactorings to sup-
port API evolution. In: Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. pp. 274–283. IEEE, New York, USA (2005).
https://doi.org/10.1109/ICSE.2005.1553570

https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1109/ICSM.1996.565039
https://doi.org/10.11575/PRISM/10182
https://prism.ucalgary.ca/handle/1880/49996
https://prism.ucalgary.ca/handle/1880/49996
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/2393596.2393661
https://doi.org/https://doi.org/10.1002/smr.328
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.328
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.328
https://doi.org/10.1145/2544174.2500582
https://doi.org/10.1145/2544174.2500582
https://doi.org/10.1145/2544174.2500582
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3290322
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1109/ICSE.2005.1553570

20 Y. Tanabe et al.

13. Hughes, J., Vollmer, M., Orchard, D.: Deriving distributive laws for graded
linear types. In: Dal Lago, U., de Paiva, V. (eds.) Proceedings Second Joint
International Workshop on Linearity & Trends in Linear Logic and Applica-
tions, Online, 29-30 June 2020. Electronic Proceedings in Theoretical Com-
puter Science, vol. 353, pp. 109–131. Open Publishing Association (2021).
https://doi.org/10.4204/EPTCS.353.6

14. Lam, P., Dietrich, J., Pearce, D.J.: Putting the Semantics into Semantic Versioning,
p. 157–179. Association for Computing Machinery, New York, NY, USA (2020),
https://doi.org/10.1145/3426428.3426922

15. Lubis, L.A., Tanabe, Y., Aotani, T., Masuhara, H.: Batakjava: An object-
oriented programming language with versions. In: Proceedings of the 15th
ACM SIGPLAN International Conference on Software Language Engineering.
p. 222–234. SLE 2022, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3567512.3567531, https://doi.org/10.1145/
3567512.3567531

16. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and
adoption in the Android ecosystem. In: 2013 IEEE International Conference
on Software Maintenance, ICSM. pp. 70–79. IEEE, New York, USA (09 2013).
https://doi.org/10.1109/ICSM.2013.18

17. Merkel, D.: Docker: Lightweight linux containers for consistent development and
deployment. Linux J. 2014(239) (Mar 2014)

18. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

19. Ohori, A.: A polymorphic record calculus and its compilation.
ACM Trans. Program. Lang. Syst. 17(6), 844–895 (11 1995).
https://doi.org/10.1145/218570.218572, https://doi.org/10.1145/218570.218572

20. Orchard, D., Liepelt, V.B., Eades III, H.: Quantitative program reasoning
with graded modal types. Proc. ACM Program. Lang. 3(ICFP) (Jul 2019).
https://doi.org/10.1145/3341714, https://doi.org/10.1145/3341714

21. Potvin, R., Levenberg, J.: Why google stores billions of lines of
code in a single repository. Commun. ACM 59(7), 78–87 (Jun 2016).
https://doi.org/10.1145/2854146, https://doi.org/10.1145/2854146

22. Preston-Werner, T.: Semantic versioning 2.0.0 (2013), http://semver.org
23. Raemaekers, S., van Deursen, A., Visser, J.: Semantic versioning and impact of

breaking changes in the maven repository. Journal of Systems and Software 129,
140 – 158 (2017). https://doi.org/https://doi.org/10.1016/j.jss.2016.04.008, http:
//www.sciencedirect.com/science/article/pii/S0164121216300243

24. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for
delta-oriented programming. In: Proceedings of the Tenth International
Conference on Aspect-Oriented Software Development. p. 43–56. AOSD
’11, Association for Computing Machinery, New York, NY, USA (2011).
https://doi.org/10.1145/1960275.1960283, https://doi.org/10.1145/1960275.
1960283

25. Schaefer, I., Bettini, L., Damiani, F., Tanzarella, N.: Delta-oriented programming
of software product lines. In: Proceedings of the 14th International Conference
on Software Product Lines: Going Beyond. p. 77–91. SPLC’10, Springer-Verlag,
Berlin, Heidelberg (2010)

26. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings
of the 2nd International Workshop on Feature-Oriented Software Development.

https://doi.org/10.4204/EPTCS.353.6
https://doi.org/10.1145/3426428.3426922
https://doi.org/10.1145/3567512.3567531
https://doi.org/10.1145/3567512.3567531
https://doi.org/10.1145/3567512.3567531
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2854146
http://semver.org
https://doi.org/https://doi.org/10.1016/j.jss.2016.04.008
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://www.sciencedirect.com/science/article/pii/S0164121216300243
https://doi.org/10.1145/1960275.1960283
https://doi.org/10.1145/1960275.1960283
https://doi.org/10.1145/1960275.1960283

Compilation Semantics for a Programming Language with Versions 21

p. 49–56. FOSD ’10, Association for Computing Machinery, New York, NY,
USA (2010). https://doi.org/10.1145/1868688.1868696, https://doi.org/10.1145/
1868688.1868696

27. Schäfer, T., Jonas, J., Mezini, M.: Mining framework usage changes from in-
stantiation code. In: Proceedings of the 30th International Conference on Soft-
ware Engineering. p. 471–480. ICSE ’08, Association for Computing Machin-
ery, New York, NY, USA (2008). https://doi.org/10.1145/1368088.1368153, https:
//doi.org/10.1145/1368088.1368153

28. Tanabe, Y., Aotani, T., Masuhara, H.: A context-oriented programming ap-
proach to dependency hell. In: Proceedings of the 10th International Work-
shop on Context-Oriented Programming: Advanced Modularity for Run-
time Composition. pp. 8–14. COP ’18, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3242921.3242923, http://doi.acm.org/10.1145/
3242921.3242923

29. Tanabe, Y., Lubis, L.A., Aotani, T., Masuhara, H.: A functional programming
language with versions. The Art, Science, and Engineering of Programming 6(1),
5:1–5:30 (Jul 2021). https://doi.org/10.22152/programming-journal.org/2022/6/5,
https://doi.org/10.22152%2Fprogramming-journal.org%2F2022%2F6%2F5

30. Tanabe, Y., Lubis, L.A., Aotani, T., Masuhara, H.: A step toward programming
with versions in real-world functional languages. In: Proceedings of the 14th ACM
International Workshop on Context-Oriented Programming and Advanced Modu-
larity. p. 44–51. COP ’22, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3570353.3570359, https://doi.org/10.1145/
3570353.3570359

31. Tolnay, D.: The semver trick. https://github.com/dtolnay/semver-trick (Jul 2017)
32. Wu, W.: Modeling framework api evolution as a multi-objective optimization prob-

lem. In: 2011 IEEE 19th International Conference on Program Comprehension. pp.
262–265. IEEE, New York, USA (2011). https://doi.org/10.1109/ICPC.2011.43

https://doi.org/10.1145/1868688.1868696
https://doi.org/10.1145/1868688.1868696
https://doi.org/10.1145/1868688.1868696
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1145/3242921.3242923
http://doi.acm.org/10.1145/3242921.3242923
http://doi.acm.org/10.1145/3242921.3242923
https://doi.org/10.22152/programming-journal.org/2022/6/5
https://doi.org/10.22152%2Fprogramming-journal.org%2F2022%2F6%2F5
https://doi.org/10.1145/3570353.3570359
https://doi.org/10.1145/3570353.3570359
https://doi.org/10.1145/3570353.3570359
https://doi.org/10.1109/ICPC.2011.43

22 Y. Tanabe et al.

A λVL Definitions

A.1 λVL Syntax

λVL syntax

t ::= n | x | t1 t2 | λp.t |
let [x] = t1 in t2 | u.l | ⟨li = ti | lj⟩ | u (terms)

p ::= x | [x] (patterns)

u ::= [t] | {li = ti} (versioned values)

v ::= λp.t | n | u (values)

A,B ::= Int | A → B | 2rA (types)

r ::= ⊥ | {li} (version resources)

L ∋ l ::= {Mi = Vi} (version labels)

where Mi ∈ M and Vi ∈ VMi
are metavariables over module names and versions

of Mi, respectively.

λVL contexts

Γ,∆ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

R ::= − | r (resource contexts)

E ::= [·] | E t | E.l | let [x] = E in t (evaluation contexts)

A.2 λVL Well-formedness

Type well-formedness ⊢ A

⊢ Int
(TwInt)

⊢ A ⊢ B

⊢ A → B
(Tw→)

⊢ r ⊢ A

⊢ 2rA
(Tw□)

Resource well-formedness ⊢ r

⊢ ⊥
(Rw⊥)

li ∈ L
⊢ {li}

(RwLabel)

Type environment well-formedness ⊢ Γ

⊢ ∅
(Tew∅)

⊢ Γ ⊢ A x /∈ dom(Γ)

⊢ Γ, x : A
(TewLin)

⊢ Γ ⊢ A ⊢ r x /∈ dom(Γ)

⊢ Γ, x : [A]r
(TewGr)

Compilation Semantics for a Programming Language with Versions 23

Resource environment well-formedness ⊢ R

⊢ −
(Rew−)

⊢Rw r

⊢Rew r
(Rewr)

where we use the notations ⊢Rw and ⊢Rew in (Rewr) to represent the judgements
of resource and resource environment well-formedness respectively, to avoid am-
biguity between two syntactically indistinguishable judgements.

A.3 λVL Type System (Declarative)

λVL typing Γ ⊢ t : A

∅ ⊢ n : Int
(int)

⊢ A

x : A ⊢ x : A
(var)

− ⊢ p : A�∆ Γ,∆ ⊢ t : B

Γ ⊢ λp.t : A → B
(abs)

Γ1 ⊢ t1 : 2rA Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(let)

Γ1 ⊢ t1 : A → B Γ2 ⊢ t2 : A

Γ1 + Γ2 ⊢ t1 t2 : B
(app)

Γ ⊢ t : A ⊢ ∆

Γ, [∆]0 ⊢ t : A
(weak)

Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
(der)

[Γ] ⊢ t : A ⊢ r

r · [Γ] ⊢ [t] : 2rA
(pr)

Γ, x : [A]r, Γ
′ ⊢ t : B r ⊑ s ⊢ s

Γ, x : [A]s, Γ
′ ⊢ t : B

(sub)
Γ ⊢ u : 2rA l ∈ r

Γ ⊢ u.l : A
(extr)

[Γi] ⊢ ti : A ⊢ {li}⋃
{li} · [Γi] ⊢ {li = ti} : 2{li}A

(ver)
[Γi] ⊢ ti : A ⊢ {li} lk ∈ {li}⋃

{li} · [Γi] ⊢ ⟨li = ti | lk⟩ : A
(veri)

where 0 = ⊥, 1 = ∅ and ⊑=⊆.

λVL pattern typing R ⊢ p : A�∆

⊢ A

− ⊢ x : A� x : A
(pVar)

⊢ r ⊢ A

r ⊢ x : A� x : [A]r
([pVar])

r ⊢ x : A�∆

− ⊢ [x] : 2rA�∆
(p□)

A.4 λVL Dynamic Semantics

Evaluation t −→ t′

t ; t′

E[t] −→ E[t′]

24 Y. Tanabe et al.

Reduction t ; t′

(λx.t) t′ ; (t′ � x)t
(E-abs1)

(λ[x].t) t′ ; let [x] = t′ in t
(E-abs2)

[t].l ; t@l
(E-ex1)

{li = ti}.li ; ti@li
(E-ex2)

let [x] = u in t ; (u� [x])t
(E-clet)

⟨li = ti | lk⟩ ; tk@lk
(E-veri)

Substitutions

(t′ � x)t = [t′/x]t

([t′]� [x])t = (t′ � x)t

({li = ti}� [x])t = [⟨li = ti | lk⟩/x]t (lk ∈ {li})

Default version overwriting

n@l = n

x@l = x

(λp.t)@l = λp.(t@l)

(t u)@l = (t@l) (u@l)

(let [x] = t1 in t2)@l = let [x] = (t1@l) in (t2@l)

[t]@l = [t]

{li = ti}@l = {li = ti}
(u.l′)@l = (u@l).l′

⟨li = ti | li⟩@l′ =

{
⟨li = ti | l′⟩ (l′ ∈ {li})
⟨li = ti | li⟩ (l′ /∈ {li})

Compilation Semantics for a Programming Language with Versions 25

B VLMini Definitions

B.1 VLMini Syntax (w/o version control terms/data constructors)

VLMini syntax

t ::= n | x | t1 t2 | λp.t | [t] (terms)

p ::= x | [x] (patterns)

A,B ::= α | Int | A → B | 2rA (types)

κ ::= Type | Labels (kinds)

r ::= α | ⊥ | {li} (version resources)

L ∋ l ::= {Mi = Vi} (version labels)

where Mi ∈ M and Vi ∈ VMi are metavariables over module names and versions
of Mi, respectively.

VLMini contexts

Γ,∆ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Σ ::= ∅ | Σ,α : κ (type variable kinds)

R ::= − | r (resource contexts)

VLMini constraints

C ::= ⊤ | C1 ∧ C2 | C1 ∨ C2 | α ⪯ α′ | α ⪯ D (dependency constraints)

D ::= ⟨⟨Mi = Vi⟩⟩ (dependent labels)

Θ ::= ⊤ | Θ1 ∧Θ2 | {A ∼ B} (type constraints)

VLMini type substitutions

θ ::= ∅ | θ ◦ [α 7→ A] | θ ◦ [α 7→ r] (type substitutions)

η ::= ∅ | η ◦ [α 7→ {l}] (label substituions)

B.2 VLMini Well-formedness and Kinding

Type variable kinds well-formedness ⊢ Σ

⊢ ∅
(Kw∅)

⊢ Σ κ ∈ {Type, Labels} α /∈ dom(Σ)

⊢ Σ,α : κ
(Kwα)

26 Y. Tanabe et al.

VLMini kinding Σ ⊢ A : κ

⊢ Σ

Σ ⊢ Int : Type
(κInt)

Σ ⊢ A : Type Σ ⊢ B : Type

Σ ⊢ A → B : Type
(κ→)

Σ ⊢ r : Labels Σ ⊢ A : Type

Σ ⊢ 2rA : Type
(κ□)

⊢ Σ Σ(α) = κ

Σ ⊢ α : κ
(κα)

⊢ Σ

Σ ⊢ ⊥ : Labels
(κ⊥)

⊢ Σ li ∈ L
Σ ⊢ {li} : Labels

(κLabel)

Type environment well-formedness Σ ⊢ A

⊢ Σ

Σ ⊢ ∅
(Tew∅)

Σ ⊢ Γ Σ ⊢ A : Type x /∈ dom(Γ)

Σ ⊢ Γ, x : A
(TewLin)

Σ ⊢ Γ Σ ⊢ A : Type Σ ⊢ r : Labels x /∈ dom(Γ)

Σ ⊢ Γ, x : [A]r
(TewGr)

Resource environment well-formedness Σ ⊢ R

⊢ Σ

Σ ⊢ −
(Rew−)

⊢ Σ Σ ⊢ r : Labels

Σ ⊢ r
(Rewr)

Type substitutions well-formedness Σ ⊢ θ

⊢ Σ

Σ ⊢ ∅
(Sw∅)

Σ ⊢ θ Σ ⊢ α : Type Σ ⊢ A : Type

Σ ⊢ θ ◦ [α 7→ A]
(SwTy)

Σ ⊢ θ Σ ⊢ α : Labels Σ ⊢ r : Labels

Σ ⊢ θ ◦ [α 7→ r]
(SwRes)

B.3 VLMini Algorithmic Type Inference System

VLMini type synthesis Σ;Γ ⊢ t ⇒ A;Σ′;∆;Θ; C

⊢ Σ Σ ⊢ Γ

Σ;Γ ⊢ n ⇒ Int;Σ; ∅;⊤;⊤
(⇒int)

⊢ Σ Σ ⊢ Γ x : A ∈ Γ

Σ;Γ ⊢ x ⇒ A;Σ;x : A;⊤;⊤
(⇒lin)

⊢ Σ Σ ⊢ Γ x : [A]r ∈ Γ

Σ;Γ ⊢ x ⇒ A;Σ;x : [A]1;⊤;⊤
(⇒gr)

Σ1, α : Type;− ⊢ p : α� Γ ′;Σ2;Θ1 Σ2;Γ, Γ
′ ⊢ t ⇒ B;Σ3;∆;Θ2; C

Σ1;Γ ⊢ λp.t ⇒ α → B;Σ3;∆\Γ ′;Θ1 ∧Θ2; C
(⇒abs)

Compilation Semantics for a Programming Language with Versions 27

Σ1;Γ ⊢ t1 ⇒ A1;Σ2;∆1;Θ1; C1 Σ2;Γ ⊢ t2 ⇒ A2;Σ3;∆2;Θ2; C2
Σ1;Γ ⊢ t1 t2 ⇒ β;Σ3, β : Type;∆1 +∆2;

Θ1 ∧Θ2 ∧ {A1 ∼ A2 → β}; C1 ∧ C2

(⇒app)

Σ1 ⊢ [Γ ∩ FV(t)]Labels � Γ ′ Σ1;Γ
′ ⊢ t ⇒ A;Σ2;∆;Θ; C1

Σ3 = Σ2, α : Labels Σ3 ⊢ α ⊑c Γ
′ � C2

Σ1;Γ ⊢ [t] ⇒ 2αA;Σ3;α ·∆;Θ; C1 ∧ C2
(⇒pr)

VLMini pattern type synthesis Σ;R ⊢ p : A� Γ ;Σ′;Θ; C

⊢ Σ Σ ⊢ A : Type

Σ;− ⊢ x : A� x : A;Σ;⊤;⊤
(pVar)

⊢ Σ Σ ⊢ A : Type Σ ⊢ r : Labels

Σ; r ⊢ x : A� x : [A]r;Σ;⊤;⊤
([pVar])

Σ,α : Labels, β : Type;α ⊢ x : β �∆;Σ′;Θ; C
Σ;− ⊢ [x] : A�∆;Σ′;Θ ∧ {A ∼ 2αβ}; C

(p□)

VLMini context grading Σ ⊢ [Γ]Labels � Γ ′

Σ ⊢ [∅]Labels � ∅
(∅)

Σ ⊢ [Γ]Labels � Γ ′

Σ ⊢ [Γ, x : A]Labels � Γ ′, x : [A]1
([lin])

Σ ⊢ [Γ]Labels � Γ ′

Σ ⊢ [Γ, x : [A]r]Labels � Γ ′, x : [A]r
([gr])

where 1 = ∅.

VLMini constraints generation Σ ⊢ α ⊑c [Γ]� C

Σ ⊢ α ⊑c ∅�⊤
(⊑VD

∅)
Σ ⊢ α ⊑c [Γ]� C

Σ ⊢ α ⊑c ([Γ], x : [A]r)� (C ∧ (α ⪯ r))
(⊑VD

Γ)

VLMini type unification Σ ⊢ A ∼ B � θ

Σ ⊢ α : Type Σ ⊢ A : Type

Σ ⊢ α ∼ A� α 7→ A
(Uα)

Σ ⊢ A : Type

Σ ⊢ A ∼ A� ∅
(U=)

Σ ⊢ A′ ∼ A� θ1 Σ ⊢ θ1B ∼ θ1B
′ � θ2

Σ ⊢ A → B ∼ A′ → B′ � θ1 ⊎ θ2
(U→)

Σ ⊢ A ∼ A′ � θ1 Σ ⊢ θ1r ∼ θ1r
′ � θ2

Σ ⊢ 2rA ∼ 2r′A
′ � θ1 ⊎ θ2

(U2)

otherwise fail.

28 Y. Tanabe et al.

VLMini unification Σ ⊢ Θ � θ

Σ ⊢ ⊤� ∅
(U∅)

Σ ⊢ Θ � θ1 Σ ⊢ θ1A ∼ θ1B � θ2

Σ ⊢ Θ ∧ {A ∼ B}� θ1 ⊎ θ2
(UΘ)

Type substitutions

θInt = Int

θα =

{
A (θ(α) = A)

α (otherwise)

θ(A → B) = θA → θB

θ(2rA) = 2(θr)(θA)

θ⊥ = ⊥
θ{li} = {li}

Substitution compositions

∅ ⊎ θ2 = θ2

(θ1, α 7→ A) ⊎ θ2 =

{
(θ1 ⊎ (θ2\α) ⊎ θ), α 7→ θA θ2(α) = B ∧Σ ⊢ A ∼ B � θ

(θ1 ⊎ θ2), α 7→ A α /∈ dom(θ2)

B.4 Extensions for Version Control Terms

VLMini syntax

t ::= . . . | version l of t | unversion t (terms)

VLMini algorithmic type synthesis Σ;Γ ⊢ t ⇒ A;Σ′;∆;Θ; C

l ∈ L Σ1 ⊢ [Γ ∩ FV(t)]Labels � Γ ′

Σ1 ⊢ Γ ′ ⊑c ⟨⟨l⟩⟩� C2 Σ1;Γ
′ ⊢ t ⇒ A;Σ2;∆1;Θ1; C1

Σ1;Γ ⊢ version l of t ⇒ A;Σ2;∆1;Θ1; C1 ∧ C2
(⇒Ver)

Σ1;Γ ⊢ t ⇒ A;Σ2;∆;Θ; C
A = 2rA

′ Σ3 = Σ2, α : Labels ⊢ Σ3

Σ1;Γ ⊢ unversion t ⇒ 2αA
′;Σ3;∆;Θ; C

(⇒Unver)

VLMini constraints generation Σ ⊢ [Γ] ⊑c D � C

Σ ⊢ ∅ ⊑c D �⊤
(⊑LD

∅)
Σ ⊢ [Γ] ⊑c D � C

Σ ⊢ ([Γ], x : [A]r) ⊑c D � (C ∧ (r ⪯ D))
(⊑LD

Γ)

Note that type environment resources in VLMini always contain only type vari-
ables, so r = α (∃α).

Compilation Semantics for a Programming Language with Versions 29

B.5 Extensions for Data Constructors

VLMini syntax

t ::= . . . | C ti | case t of pi 7→ ti (terms)

p ::= . . . | C pi (patterns)

C ::= (,) | [,] (constructors)

A,B ::= . . . | KAi (types)

K ::= (,) | [,] (type constructors)

VLMini algorithmic type synthesis Σ;Γ ⊢ t ⇒ A;Σ′;∆;Θ; C

Σi−1;Γ ⊢ ti ⇒ Ai;Σi;∆i;Θi; Ci
Σ0;Γ ⊢ (t1, .. , tn) ⇒ (A1, .. , An);Σn;∆1, ..∆n;

∧
Θi;
∧
Ci

(⇒(,))

Σi−1;Γ ⊢ ti ⇒ A;Σi;∆i;Θi; Ci
Σ0;Γ ⊢ [t1, .. , tn] ⇒ [A];Σn;∆1, ..∆n;

∧
Θi;
∧
Ci

(⇒[,])

Σ0;Γ ⊢ t ⇒ A;Σ1;Γ
′
1;Θ0; C0

Σi−1;− ⊢ pi : A�∆i;Σ
′
i;Θ

′
i Σ′

i;Γ,∆i ⊢ ti ⇒ B;Σi;∆
′
i;Θi; Ci

Σ0;Γ ⊢ case t of pi 7→ ti ⇒ B;Σn;Γ
′
1 +

⋃
(∆′

i\∆i);
∧

Θi;
∧

Ci
(⇒case)

VLMini pattern type synthesis Σ;R ⊢ p : A� Γ ;Σ′;Θ; C

Σ′
i−1 = Σi−1, αi : Type Σ′

i−1;− ⊢ pi : αi � Γi;Σi;Θi; C
Σ0;− ⊢ C p1 .. pn : A� Γi, .., Γn;Σn; {K αi ∼ A} ∧

∧
Θi; C

(pCon)

Σ′
i−1 = Σi−1, αi : Type

Σ′
i−1; r ⊢ pi : αi � Γi;Σi;Θi; C Σ′

i ⊢ r : Labels

Σ0; r ⊢ C p1 .. pn : A� Γi, .., Γn;Σn; {K αi ∼ A} ∧
∧

Θi; C
([pCon])

VLMini type unification Σ ⊢ A ∼ B � θ

Σ ⊢ A1 ∼ B1 � θ1 Σ ⊢ θi−1Ai ∼ θi−1Bi � θi (i ≥ 2)

Σ ⊢ KAi ∼ KBi �
⊎
θi

(UCon)

Type substitutions

θ(KAi) = K θAi

30 Y. Tanabe et al.

C λVL Type Safety

C.1 Resource Properties

Definition 1 (Version resource semiring). The version resource semiring
is given by the structural semiring (semiring with preorder) (R,⊕, 0,⊗, 1,⊑),
defined as follows.

0 = ⊥ 1 = ∅ ⊥ ⊑ r
r1 ⊆ r2

r1 ⊑ r2

r1 ⊕ r2 =


r1 r2 = ⊥
r2 r1 = ⊥
r1 ∪ r2 otherwise

r1 ⊗ r2 =


⊥ r1 = ⊥
⊥ r2 = ⊥
r1 ∪ r2 otherwise

where ⊥ is the smallest element of R, and r1 ⊆ r2 is the standard subset relation
over sets defined only when both r1 and r2 are not ⊥.

Lemma 1 (Version resource semiring is a structural semiring).

Proof. Version resource semiring (R,⊕,⊥,⊗, ∅,⊑) induces a semilattice with ⊕
(join).

– (R,⊕,⊥,⊗, ∅) is a semiring, that is:
• (R,⊕,⊥) is a commutative monoid, i.e., for all p, q, r ∈ R

∗ (Associativity) (p ⊕ q) ⊕ r = p ⊕ (q ⊕ r) holds since ⊕ is defined in
associative manner with ⊥.

∗ (Commutativity) p⊕q = q⊕p holds since⊕ is defined in commutative
manner with ⊥.

∗ (Identity element) ⊥⊕ p = p⊕⊥ = p
• (R,⊗, ∅) is a monoid, i.e., for all p, q, r ∈ R

∗ (Associativity) (p ⊗ q) ⊗ r = p ⊗ (q ⊗ r) holds since ⊕ is defined in
associative manner with ⊥.

∗ (Identity element) ∅ ⊗ p = p⊗ ∅ = p
· if p = ⊥ then ∅ ⊗ ⊥ = ⊥⊗ ∅ = ⊥
· otherwise if p ̸= ⊥ then ∅ ⊗ p = ∅ ∪ p = p and p⊗ ∅ = p ∪ ∅ = p

• multiplication ⊗ distributes over addition ⊕, i.e., for all p, q, r ∈ R, r ⊗
(p⊕ q) = (r ⊗ p)⊕ (r ⊗ q) and (p⊕ q)⊗ r = (p⊗ r)⊕ (q ⊗ r)

∗ if r = ⊥ then r ⊗ (p⊕ q) = ⊥ and (r ⊗ p)⊕ (r ⊗ q) = ⊥⊕⊥ = ⊥.
∗ otherwise if r ̸= ⊥ and p = ⊥ and q ̸= ⊥ then r ⊗ (p⊕ q) = r ⊗ q =
r ∪ q = (r ∪ r)∪ q = r ∪ (r ∪ q) = (r⊕ p)∪ (r ∪ q) = (r⊗ p)⊕ (r⊗ q)

∗ otherwise if r ̸= ⊥ and p = ⊥ and q = ⊥ then r⊗(p⊕q) = r⊗⊥ = ⊥
and (r ⊗ p)⊕ (r ⊗ q) = ⊥⊕⊥ = ⊥.

∗ otherwise if r ̸= ⊥ and p ̸= ⊥ and q ̸= ⊥ then r⊗(p⊕q) = r∪(p∪q) =
(r ∪ p) ∪ (r ∪ q) = (r ⊗ p)⊕ (r ⊗ q)

The other cases are symmetrical cases.
• ⊥ is absorbing for multiplication: p⊗⊥ = ⊥⊗ p = ⊥ for all p ∈ R

Compilation Semantics for a Programming Language with Versions 31

– (R,⊑) is a bounded semilattice, that is
• ⊑ is a partial order on R such that the least upper bound of every two

elements p, q ∈ R exists and is denoted by p⊕ q.
• there is a least element; for all r ∈ R, ⊥ ⊑ r.

– (Motonicity of ⊕) p ⊑ q implies p⊕ r ⊑ q ⊕ r for all p, q, r ∈ R
• if r = ⊥ then p⊕ r ⊑ q ⊕ r ⇔ p ⊆ q, so this case is trivial.
• otherwise if r ̸= ⊥, p = q = ⊥ then p⊕ r ⊑ q⊕ r ⇔ r ⊆ r, so this case is
trivial.

• otherwise if r ̸= ⊥, p = ⊥, q ̸= ⊥ then p ⊕ r ⊑ q ⊕ r ⇔ r ⊆ q ∪ r, and
r ⊆ q ∪ r holds in standard subset relation.

• otherwise if r ̸= ⊥, p ̸= ⊥, q ̸= ⊥ then p⊕ r ⊑ q⊕ r ⇔ p∪ r ⊆ q ∪ r, and
p ⊆ q implies p ∪ r ⊆ q ∪ r.

– (Motonicity of ⊗) p ⊑ q implies p⊗ r ⊑ q ⊗ r for all p, q, r ∈ R
• if r = ⊥ then p⊗ r ⊑ q ⊗ r ⇔ ⊥ ⊆ ⊥, so this case is trivial.
• otherwise if r ̸= ⊥, p = q = ⊥ then p⊗ r ⊑ q ⊗ r ⇔ ⊥ ⊆ ⊥, so this case
is trivial.

• otherwise if r ̸= ⊥, p = ⊥, q ̸= ⊥ then p⊗ r ⊑ q⊗ r ⇔ ⊥ ⊆ q ∪ r, so this
case is trivial.

• otherwise if r ̸= ⊥, p ̸= ⊥, q ̸= ⊥ then p⊗ r ⊑ q⊗ r ⇔ p∪ r ⊆ q ∪ r, and
p ⊆ q implies p ∪ r ⊆ q ∪ r.

Definition 2 (Version resource summation). Using the addition + of ver-
sion resource semiring, summation of version resouce is defined as follows:∑

i

ri = r1 ⊕ · · · ⊕ rn

C.2 Context Properties

Definition 3 (Context concatenation). Two typing contexts can be concate-
nated by ”,” if they contain disjoint assumptions. Furthermore, the versioned
assumptions appearing in both typing contexts can be combined using the context
concatenation + defined with the addition ⊕ in the version resource semiring as
follows.

∅+ Γ = Γ

(Γ, x : A) + Γ ′ = (Γ + Γ ′), x : A iff x /∈ dom(Γ ′)

Γ + ∅ = Γ

Γ + (Γ ′, x : A) = (Γ + Γ ′), x : A iff x /∈ dom(Γ)

(Γ, x : [A]r) + (Γ ′, x : [A]s) = (Γ + Γ ′), x : [A]r⊕ s

Definition 4 (Context multiplication by version resource). Assuming
that a context contains only version assumptions, denoted [Γ] in typing rules,
then Γ can be multiplied by a version resource r ∈ R by using the product ⊗ in
the version resource semiring, as follows.

r · ∅ = ∅ r · (Γ, x : [A]s) = (r · Γ), x : [A]r⊗ s

32 Y. Tanabe et al.

Definition 5 (Context summation). Using the context concatenation +, sum-
mation of typing contexts is defined as follows:

n⋃
i=1

Γi = Γ1 + · · ·+ Γn

Definition 6 (Context partition). For typing contexts Γ1 and Γ2, we define
Γ1|Γ2

and Γ1|Γ2
as follows.

Γ1|Γ2
≜ {x : A | x ∈ dom(Γ1) ∧ x ∈ dom(Γ2)}

Γ1|Γ2
≜ {x : A | x ∈ dom(Γ1) ∧ x /∈ dom(Γ2)}

Γ1|Γ2
is a subsequence of Γ1 that contains all the term variables that are included

in Γ2, and Γ1|Γ2
is a subsequence of Γ1 that contains all the term variables that

are not included in Γ2.

Using Γ1|Γ2
and Γ1|Γ2

, we state some corollaries about typing contexts. These
theorems follow straightforwardly from the definitions of 6.

Lemma 2 (Context collapse). For typing contexts Γ1 and Γ2,

Γ1|Γ2
+ Γ1|Γ2

= Γ1

Lemma 3 (Context shuffle). For typing contexts Γ1, Γ2, Γ3 and Γ4, and
variable x and type A:

(Γ1, x : A,Γ ′
1) + Γ2 = (Γ1 + Γ2|Γ1

), x : A, (Γ ′
1 + Γ2|Γ1

) (1)

Γ1 + (Γ2, x : A,Γ ′
2) = (Γ1|Γ ′

2
+ Γ2), x : A, (Γ1|Γ ′

2
+ Γ ′

2) (2)

(Γ1, Γ2) + (Γ3, Γ4) =
(
(Γ1 + Γ3|Γ1

+ Γ4|Γ1
), (Γ2 + Γ3|Γ1

+ Γ4|Γ1
)
)

(3)

Lemma 4 (Composition of context shuffle). For typing contexts Γi and Γ ′
i

for i ∈ N, there exixts typing contexts Γ and Γ ′ such that:⋃
i

(Γi, Γ
′
i) = Γ, Γ ′ ∧

⋃
i

(Γi + Γ ′
i) = Γ + Γ ′

Lemma 5 (Distribution of version resouce over context addition). For
a typing context Γ and resources ri ∈ R:

(r1 · Γ) + (r2 · Γ) = (r1 ⊕ r2) · Γ⋃
i

(ri · Γ) = (
∑
i

ri) · Γ

Lemma 6 (Disjoint context collapse). Given typing contexts Γ1, ∆, and Γ2

such that Γ1 and Γ2 are disjoint, then we can conclude the following.

(Γ1 +∆+ Γ2) = (Γ1 +∆|Γ1
), ∆|(Γ1,Γ2)

, (Γ2 +∆|Γ2
)

Compilation Semantics for a Programming Language with Versions 33

C.3 Substituions Properties

Lemma 7 (Well-typed linear substitution).

∆ ⊢ t′ : A

Γ, x : A,Γ ′ ⊢ t : B

}
=⇒ Γ +∆+ Γ ′ ⊢ [t′/x]t : B

Proof. This proof is given by induction on the structure of Γ, x : A,Γ ′ ⊢ t : B
(assumption 2). Consider the cases for the last rule used in the typing derivation
of assumption 2.

– Case (int)

∅ ⊢ n : Int
(int)

In this case, the above typing context is empty (= ∅), so this case holds
trivially.

– Case (var)

⊢ B

y : B ⊢ y : B
(var)

We are given

Γ = Γ ′ = ∅, x = t = y, A = B .

Now the conclusion of the lemma is

∆ ⊢ [t′/y]y : B .

Since [t′/y]y = t′ from the definition of substitution, the conclusion of the
lemma is assumption 1 itself.

– Case (abs)

− ⊢ p : B1 �∆′ Γ, x : A,Γ ′, ∆′ ⊢ t : B2

Γ, x : A,Γ ′ ⊢ λp.t : B1 → B2

(abs)

In this case, by applying the induction hypothesis to the second premise, we
know the following:

Γ +∆+ (Γ ′, ∆′) ⊢ [t′/x]t : B2

where y : B is disjoint with Γ , ∆, and Γ ′. Thus, Γ +∆ + (Γ ′, ∆′) = (Γ +
∆ + Γ ′), ∆′ from Lemma 3 (2), the typing derivation above is equal to the
following:

(Γ +∆+ Γ ′), ∆′ ⊢ [t′/x]t : B2

We then reapply (abs) to obtain the following:

34 Y. Tanabe et al.

− ⊢ p : B1 �∆′ (Γ +∆+ Γ ′), ∆′ ⊢ [t′/x]t : B2

Γ +∆+ Γ ′ ⊢ λp.[t′/x]t : B1 → B2

(abs)

By the definition of substitution λp.[t′/x]t = [t′/x](λp.t), and we obtain the
conclusion of the lemma.

– Case (let)

Γ1 ⊢ t1 : 2rA Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(let)

This case is similar to the case (app).

– Case (app)

Γ1 ⊢ t1 : B1 → B2 Γ2 ⊢ t2 : B1

Γ1 + Γ2 ⊢ t1 t2 : B2

(app)

We are given

Γ, x : A,Γ ′ = Γ1 + Γ2, t = t1 t2, B = B2 .

By the definition of the context addition +, the linear assumption x : A is
contained in only one of Γ1 or Γ2.

• Suppose (x : A) ∈ Γ1 and (x : A) /∈ Γ2.
Let Γ ′

1 and Γ ′′
1 be typing contexts such that they satisfy Γ1 = (Γ ′

1, x :
A,Γ ′′

1). The last typing derivation of (app) is rewritten as follows.

Γ ′
1, x : A,Γ ′′

1 ⊢ t1 : B1 → B2

Γ2 ⊢ t2 : B1

(Γ ′
1, x : A,Γ ′′

1) + Γ2 ⊢ t1 t2 : B2

(app)

Now, we compare the typing contexts between the lemma and the above
conclusion as follows:

(Γ, x : A,Γ ′) = (Γ1 + Γ2)

= (Γ ′
1, x : A,Γ ′′

1) + Γ2 (∵ Γ1 = (Γ ′
1, x : A,Γ ′′

1))

= (Γ ′
1 + Γ2|Γ ′

1
), x : A, (Γ ′′

1 + Γ2|Γ ′
1
) (∵ Lemma 3 (1))

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that
they satisfy the above equation. So here we know Γ = (Γ ′

1 + Γ2|Γ ′
1
) and

Γ ′ = (Γ ′′
1 + Γ2|Γ ′

1
).

We then apply the induction hypothesis to each of the two premises and
reapply (app) as follows:

Γ ′
1 +∆+ Γ ′′

1 ⊢ [t′/x]t1 : B1 → B2

Γ2 ⊢ t2 : B1

(Γ ′
1 +∆+ Γ ′′

1) + Γ2 ⊢ ([t′/x]t1) t2 : B2

(app)

Compilation Semantics for a Programming Language with Versions 35

Since ([t′/x]t1) t2 = [t′/x](t1 t2) if x /∈ FV (t2), the conclusion of the
above derivation is equivalent to the conclusion of the lemma except for
the typing contexts.
Finally, we must show that (Γ +∆+ Γ ′) = ((Γ1 +∆+ Γ ′′

1) + Γ2). This
holds from the following reasoning:

(Γ +∆+ Γ ′) = (Γ ′
1 + Γ2|Γ ′

1
) +∆+ (Γ ′′

1 + Γ2|Γ ′
1
)

(∵ Γ = (Γ ′
1 + Γ2|Γ ′

1
) and Γ ′ = (Γ ′′

1 + Γ2|Γ ′
1
))

= Γ ′
1 + Γ2|Γ ′

1
+∆+ Γ ′′

1 + Γ2|Γ ′
1

(∵ + associativity)

= Γ ′
1 +∆+ Γ ′′

1 + Γ2|Γ ′
1
+ Γ2|Γ ′

1
(∵ + commutativity)

= (Γ ′
1 +∆+ Γ ′′

1) + (Γ2|Γ ′
1
+ Γ2|Γ ′

1
) (∵ + associativity)

= (Γ ′
1 +∆+ Γ ′′

1) + Γ2 (∵ Lemma 2)

Thus, we obtain the conclusion of the lemma.
• Suppose (x : A) /∈ Γ1 and (x : A) ∈ Γ2

Let Γ ′
2 and Γ ′′

2 be typing contexts such that they satisfy Γ2 = (Γ ′
2, x :

A,Γ ′′
2). The last typing derivation of (app) is rewritten as follows.

Γ1 ⊢ t1 : B1 → B2 Γ ′
2, x : A,Γ ′′

2 ⊢ t2 : B1

Γ1 + (Γ ′
2, x : A,Γ ′′

2) ⊢ t1 t2 : B2

(app)

This case is similar to the case (x : A) ∈ Γ1, but using 3 (2) instead of 3
(1).

– Case (weak)

Γ1, x : A,Γ2 ⊢ t : B ⊢ ∆′

(Γ1, x : A,Γ2) + [∆′]0 ⊢ t : B
(weak)

In this case, the linear assumption x : A is not contained in versioned context
[∆′]0. We then compare the typing contexts between the conclusion of the
lemma and that of (weak) as follows:

(Γ, x : A,Γ ′) = (Γ1, x : A,Γ2) + [∆′]0

= (Γ1 + ([∆′]0)|Γ1
), x : A, (Γ2 + ([∆′]0)|Γ1

) (∵ Lemma 3 (1))

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that they
satisfy the above equation. So here we obtain Γ = Γ1 + ([∆′]0)|Γ1

and Γ ′ =
Γ2+([∆′]0)|Γ1

. We then apply the induction hypothesis to each of the premise

and reapply (weak) as follows:

Γ1 +∆+ Γ2 ⊢ [t′/x]t : B ⊢ ∆′

(Γ1 +∆+ Γ2) + [∆′]0 ⊢ [t′/x]t : B
(weak)

Since ([t′/x]t1) ([t
′/x]t2) = [t′/x](t1 t2), the conclusion of the above deriva-

tion is equivalent to the conclusion of the lemma except for typing contexts.

36 Y. Tanabe et al.

Finally, we must show that (Γ1 +∆+ Γ2) + [∆′]0 = Γ +∆+ Γ ′. This holds
from the following reasoning:

(Γ +∆+ Γ ′) = (Γ1 + ([∆′]0)|Γ1
) +∆+ (Γ2 + ([∆′]0)|Γ1

)

(∵ Γ = Γ1 + ([∆′]0)|Γ1
and Γ ′ = Γ2 + ([∆′]0)|Γ1

)

= Γ1 + ([∆′]0)|Γ1
+∆+ Γ2 + ([∆′]0)|Γ1

(∵ + associativity)

= Γ1 +∆+ Γ2 + ([∆′]0)|Γ1
+ ([∆′]0)|Γ1

(∵ + commutativity)

= (Γ1 +∆+ Γ2) + (([∆′]0)|Γ1
+ ([∆′]0)|Γ1

)

(∵ + associativity)

= (Γ1 +∆+ Γ2) + [∆′]0 (∵ Lemma 2)

Thus, we obtain the conclusion of the lemma.

– Case (der)

Γ, x : A,Γ ′′, y : B1 ⊢ t : B2

Γ, x : A,Γ ′′, y : [B1]1 ⊢ t : B2

(der)

In this case, a linear assumption x : A cannot be a versioned assumption
y : [B1]1. Applying the induction hypothesis to the premise, we obtain the
following:

Γ +∆+ (Γ ′′, y : B1) ⊢ [t′/x]t : B2

Note that Γ +∆+ (Γ ′′, y : B1) = (Γ +∆+ Γ ′′), y : B1 holds because y : B1

is a linear assumption and is disjoint with Γ , ∆, and Γ ′′. Thus, the above
judgement is equivalent to the following:

(Γ +∆+ Γ ′′), y : B1 ⊢ [t′/x]t : B2

We then reapply (der) to obtain the following:

(Γ +∆+ Γ ′′), y : B1 ⊢ [t′/x]t : B2

(Γ +∆+ Γ ′′), y : [B1]1 ⊢ [t′/x]t : B2

(der)

Finally, since y : [B1]1 is disjoint with Γ+∆+Γ ′′, ((Γ+∆+Γ ′′), y : [B1]1) =
Γ +∆ + (Γ ′′, y : [B1]1) holds. Thus, the conclusion of the above derivation
is equivalent to the following:

Γ +∆+ (Γ ′′, y : [B1]1) ⊢ [t′/x]t : B2

Thus, we obtain the conclusion of the lemma.

– Case (pr)

[Γ] ⊢ t : B ⊢ r

r · [Γ] ⊢ [t] : 2rB
(pr)

Compilation Semantics for a Programming Language with Versions 37

This case holds trivially, because the typing context [Γ] contains only ver-
sioned assumptions and does not contain any linear assumptions.

– Case (ver)

[Γi] ⊢ ti : A ⊢ {li}⋃
i({li} · [Γi]) ⊢ {li = ti} : 2{li}A

(ver)

This case holds trivially, because the typing context of the conclusion con-
tains only versioned assumptions (by [Γi] in the premise) and does not con-
tain any linear assumptions.

– Case (veri)

[Γi] ⊢ ti : A ⊢ {li} lk ∈ {li}⋃
i({li} · [Γi]) ⊢ ⟨li = ti | lk⟩ : A

(veri)

This case holds trivially, because the typing context of the conclusion con-
tains only versioned assumptions (by [Γi] in the premise) and does not con-
tain any linear assumptions.

– Case (extr)

Γ ⊢ t : 2rA l ∈ r

Γ ⊢ t.l : A
(extr)

In this case, we apply the induction hypothesis to the premise and then
reapply (extr), we obtain the conclusion of the lemma.

– Case (sub)

Γ, y : [B′]r, Γ
′ ⊢ t : B r ⊑ s ⊢ s

Γ, y : [B′]s, Γ
′ ⊢ t : B

(sub)

In this case, a linear assumption x : A cannot be a versioned assumption
y : [B1]s, and only one of (x : A) ∈ Γ or (x : A) ∈ Γ ′ holds. In either case,
applying the induction hypothesis to the premise and reappling (sub), we
obtain the conclusion of the lemma.

Lemma 8 (Well-typed versioned substitution).

[∆] ⊢ t′ : A

Γ, x : [A]r, Γ
′ ⊢ t : B

}
=⇒ Γ + r ·∆+ Γ ′ ⊢ [t′/x]t : B

Proof. This proof is given by induction on structure of Γ, x : [A]r, Γ
′ ⊢ t : B

(assumption 2). Consider the cases for the last rule used in the typing derivation
of assumption 2.

38 Y. Tanabe et al.

– Case (int)

∅ ⊢ n : Int
(int)

This case holds trivially because the typing context of (int) is empty (= ∅).

– Case (var)

⊢ B

y : B ⊢ y : B
(var)

In this case, x : [A]r is a versioned assumption and y : B is a linear assump-
tion, so x ̸= y holds, and yet the typing context besides y : B is empty. Thus,
there are no versioned variables to be substituted, so this case holds trivially.

– Case (abs)

− ⊢ p : B1 �∆′ Γ, x : [A]r, Γ
′, ∆′ ⊢ t : B2

Γ, x : [A]r, Γ
′ ⊢ λp.t : B1 → B2

(abs)

In this case, we know the following by applying induction hypothesis to the
partial derivation of (abs):

Γ + r ·∆+ (Γ ′, ∆′) ⊢ [t′/x]t : B2

where ∆′ (dom(∆′) = {y}) is disjoint with Γ , ∆, and Γ ′. Thus, Γ + r ·∆+
(Γ ′, ∆′) = (Γ+r ·∆+Γ ′), ∆′ from Lemma 3 (2), the typing derivation above
is equal to the following:

(Γ + r ·∆+ Γ ′), ∆′ ⊢ [t′/x]t : B2

We then reapply (abs) to obtain the following:

− ⊢ p : B1 �∆′ (Γ + r ·∆+ Γ ′), ∆′ ⊢ [t′/x]t : B2

Γ + r ·∆+ Γ ′ ⊢ λp.[t′/x]t : B1 → B2

(abs)

Since λp.[t′/x]t = [t′/x](λp.t) from the definition of substitution, we obtain
the conclusion of the lemma.

– Case (app)

Γ1 ⊢ t1 : B1 → B2 Γ2 ⊢ t2 : B1

Γ1 + Γ2 ⊢ t1 t2 : B2

(app)

We are given

Γ, x : [A]r, Γ
′ = Γ1 + Γ2, t = t1 t2, B = B2 .

By the definition of the context addition +, the linear assumption x : A is
contained in either or both of the typing context Γ1 or Γ2.

Compilation Semantics for a Programming Language with Versions 39

• Suppose (x : [A]r) ∈ Γ1 and x /∈ dom(Γ2)
Let Γ ′

1 and Γ ′′
1 be typing contexts such that they satisfy Γ1 = (Γ ′

1, x :
[A]r, Γ

′′
1). The last derivation of (app) is rewritten as follows:

Γ ′
1, x : [A]r, Γ

′′
1 ⊢ t1B1 → B2 Γ2 ⊢ t2 : B1

(Γ ′
1, x : [A]r, Γ

′′
1) + Γ2 ⊢ t1 t2 : B2

(app)

We compare the typing contexts between the conclusion of the lemma
and that of the above derivation to obtain the following:

(Γ, x : [A]r, Γ
′) = (Γ ′

1, x : [A]r, Γ
′′
1) + Γ2

= (Γ ′
1 + Γ2|Γ ′

1
), x : [A]r, (Γ

′′
1 + Γ2|Γ ′

1
) (∵ Lemma 3 (1))

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that
they satisfy the above equation. So here we know Γ = (Γ ′

1 + Γ2|Γ ′
1
) and

Γ ′ = (Γ ′′
1 + Γ2|Γ ′

1
).

We then apply the induction hypothesis to each of the two premises of
the last derivation and reapply (app) as follows:

Γ ′
1 + r ·∆+ Γ ′′

1 ⊢ [t′/x]t1 : B1 → B2

Γ2 ⊢ [t′/x]t2 : B1

(Γ ′
1 + r ·∆+ Γ ′′

1) + Γ2 ⊢ ([t′/x]t1) ([t
′/x]t2) : B2

(app)

Since ([t′/x]t1) ([t
′/x]t2) = [t′/x](t1 t2), the conclusion of the above deriva-

tion is equivalent to the conclusion of the lemma except for the typing
contexts. Finally, we must show that (Γ + r ·∆ + Γ ′) = ((Γ1 + r ·∆ +
Γ ′′
1) + Γ2). This holds from the following reasoning:

(Γ + r ·∆+ Γ ′) = (Γ ′
1 + Γ2|Γ ′

1
) + r ·∆+ (Γ ′′

1 + Γ2|Γ ′
1
)

(∵ Γ = (Γ ′
1 + Γ2|Γ ′

1
) & Γ ′ = (Γ ′′

1 + Γ2|Γ ′
1
))

= Γ ′
1 + Γ2|Γ ′

1
+ r ·∆+ Γ ′′

1 + Γ2|Γ ′
1

(∵ + associativity)

= Γ ′
1 + r ·∆+ Γ ′′

1 + Γ2|Γ ′
1
+ Γ2|Γ ′

1

(∵ + commutativity)

= (Γ ′
1 + r ·∆+ Γ ′′

1) + (Γ2|Γ ′
1
+ Γ2|Γ ′

1
)

(∵ + associativity)

= (Γ ′
1 + r ·∆+ Γ ′′

1) + Γ2 (∵ Lemma 2)

Thus, we obtain the conclusion of the lemma.
• Suppose x /∈ dom(Γ1) and (x : [A]r) ∈ Γ2

Let Γ ′
2 and Γ ′′

2 be typing contexts such that they satisfy Γ2 = (Γ ′
2, x :

[A]r, Γ
′′
2). The last typing derivation of (app) is rewritten as follows:

Γ1 ⊢ t1 : B1 → B2 Γ ′
2, x : [A]r, Γ

′′
2 ⊢ t2 : B1

Γ1 + (Γ ′
2, x : [A]r, Γ

′′
2) ⊢ t1 t2 : B2

(app)

This case is similar to the case (x : [A]r) ∈ Γ1 and x /∈ dom(Γ2), but
using 3 (2) instead of 3 (1).

40 Y. Tanabe et al.

• Suppose (x : [A]r1) ∈ Γ1 and (x : [A]r2) ∈ Γ2 where r = r1 ⊕ r2.
Let Γ ′

1, Γ
′′
1 , Γ

′
2, and Γ ′′

2 be typing contexts such that they satisfy Γ1 =
(Γ ′

1, x : [A]r1 , Γ
′′
1) and Γ2 = (Γ ′

2, x : [A]r2 , Γ
′′
2). The last derivation of

(app) is rewritten as follows:
Γ ′
1, x : [A]r1 , Γ

′′
1 ⊢ t1 : B1 → B2

Γ ′
2, x : [A]r2 , Γ

′′
2 ⊢ t2 : B1

(Γ ′
1, x : [A]r1 , Γ

′′
1) + (Γ ′

2, x : [A]r2 , Γ
′′
2) ⊢ t1 t2 : B2

(app)

Now, we compare the typing contexts between the lemma and the above
conclusion as follows:

(Γ, x : [A]r, Γ
′) = (Γ ′

1, x : [A]r1 , Γ
′′
1) + (Γ ′

2, x : [A]r2 , Γ
′′
2)

= (Γ ′
1, Γ

′′
1 , x : [A]r1) + (Γ ′

2, Γ
′′
2 , x : [A]r2)

(∵ , commutativity)

= ((Γ ′
1, Γ

′′
1) + (Γ ′

2, Γ
′′
2)), x : [A]r1⊕r2 (∵ + definiton)

= ((Γ ′
1 + Γ ′

2|Γ ′
1
+ Γ ′′

2 |Γ ′
1
), (Γ ′′

1 + Γ ′
2|Γ ′

1
+ Γ ′′

2 |Γ ′
1
)), x : [A]r1⊕r2

(∵ Lemma 3 (3))

= (Γ ′
1 + Γ ′

2|Γ ′
1
+ Γ ′′

2 |Γ ′
1
), (Γ ′′

1 + Γ ′
2|Γ ′

1
+ Γ ′′

2 |Γ ′
1
), x : [A]r1⊕r2

(∵ , associativity)

= (Γ ′
1 + Γ ′

2|Γ ′
1
+ Γ ′′

2 |Γ ′
1
), x : [A]r1⊕r2 , (Γ

′′
1 + Γ ′

2|Γ ′
1
+ Γ ′′

2 |Γ ′
1
)

(∵ , commutativity)

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that
they satisfy the above equation. So here we know Γ = (Γ ′

1+Γ ′
2|Γ ′

1
+Γ ′′

2 |Γ ′
1
)

and Γ ′ = (Γ ′′
1 + Γ ′

2|Γ ′
1
+ Γ ′′

2 |Γ ′
1
).

We then apply the induction hypothesis to each of the two premises of
the last derivation and reapply (app) as follows:

Γ ′
1 + r1 ·∆+ Γ ′′

1 ⊢ [t′/x]t1 : B1 → B2

Γ ′
2 + r2 ·∆+ Γ ′′

2 ⊢ [t′/x]t2 : B1

(Γ ′
1 + r1 ·∆+ Γ ′′

1) + (Γ ′
2 + r2 ·∆+ Γ ′′

2) ⊢ ([t′/x]t1) ([t
′/x]t2) : B2

(app)

Since ([t′/x]t1) ([t
′/x]t2) = [t′/x](t1 t2), the conclusion of the above deriva-

tion is equivalent to the conclusion of the lemma except for the typing
contexts. Finally, we must show that Γ + r · ∆ + Γ ′ = (Γ ′

1 + r1 · ∆ +
Γ ′′
1) + (Γ ′

2 + r2 ·∆+ Γ ′′
2).

(Γ + r ·∆+ Γ ′) = (Γ ′
1 + Γ ′

2|Γ ′
1
+ Γ ′′

2 |Γ ′
1
) + (r1 ⊕ r2) ·∆+ (Γ ′′

1 + Γ ′
2|Γ ′

1
+ Γ ′′

2 |Γ ′
1
)

(∵ r = r1 ⊕ r2 & Γ = (Γ ′
1 + Γ ′

2|Γ ′
1
+ Γ ′′

2 |Γ ′
1
) & Γ ′ = (Γ ′′

1 + Γ ′
2|Γ ′

1
+ Γ ′′

2 |Γ ′
1
))

= Γ ′
1 + (r1 ⊕ r2) ·∆+ Γ ′′

1 + (Γ ′
2|Γ ′

1
+ Γ ′

2|Γ ′
1
) + (Γ ′′

2 |Γ ′
1
+ Γ ′′

2 |Γ ′
1
)

(∵ + associativity & commutativity)

= Γ ′
1 + (r1 ⊕ r2) ·∆+ Γ ′′

1 + Γ ′
2 + Γ ′′

2 (∵ Lemma 2)

= Γ ′
1 + r1 ·∆+ r2 ·∆+ Γ ′′

1 + Γ ′
2 + Γ ′′

2 (∵ Lemma 5)

= (Γ ′
1 + r1 ·∆+ Γ ′′

1) + (Γ ′
2 + r2 ·∆+ Γ ′′

2)
(∵ + associativity and commutativity)

Compilation Semantics for a Programming Language with Versions 41

Thus, we obtain the conclusion of the lemma.

– Case (weak)

Γ ′′ ⊢ t : B ⊢ ∆′

Γ ′′ + [∆′]0 ⊢ t : B
(weak)

In this case, we know (Γ, x : [A]r, Γ
′) = Γ ′′+[∆′]0. There are two cases where

the versioned assumption x : [A]r is contained in [∆′]0 and not included.

• Suppose (x : [A]r) ∈ [∆′]0
We know r = 0. Let∆1 and∆2 be typing context such that∆′ = (∆1, x :
[A]0, ∆2). The last derivation is rewritten as follows:

Γ ′′ ⊢ t : B ⊢ ∆1 +∆+∆2

Γ ′′ + [∆1, x : [A]0, ∆2]0 ⊢ t : B
(weak)

We compare the typing contexts between the conclusion of the lemma
and that of the above derivation to obtain the following:

(Γ, x : [A]0, Γ
′) = Γ ′′ + [∆1, x : [A]0, ∆2]0 (∵ ∆′ = (∆1, x : [A]0, ∆2))

= Γ ′′ + ([∆1]0, x : [A]0, [∆2]0) (∵ definiton of [Γ]0)

= (Γ ′′
|[∆2]0 + [∆1]0), x : [A]0, (Γ

′′
|[∆2]0

+ [∆2]0)

(∵ Lemma 3 (2))

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that
they satisfy the above equation. So here we know Γ = (Γ ′′

|[∆2]0 +[∆1]0)
and Γ ′ = (Γ ′′

|[∆2]0
+ [∆2]0).

We then apply the induction hypothesis to the premise of the last deriva-
tion and reapply (weak) as follows:

Γ ′′ ⊢ [t′/x]t : B ⊢ ∆1 +∆+∆2

Γ ′′ + [∆1 +∆+∆2]0 ⊢ [t′/x]t : B
(weak)

where we choose ∆1 +∆+∆2 as the newly added typing context. Since
x is unused by t, thus note that [t′/x]t = t, the conclusion of the above
derivation is equivalent to the conclusion of the lemma except for typing
contexts.
Finally, we must show that (Γ + r ·∆+ Γ ′) = Γ ′′ + [∆1 +∆+∆2]0.

(Γ + r ·∆+ Γ ′) = (Γ ′′
|[∆2]0 + [∆1]0) + [∆]0 + (Γ ′′

|[∆2]0
+ [∆2]0)

(∵ r = 0 & Γ = (Γ ′′
|[∆2]0 + [∆1]0) & Γ ′ = (Γ ′′

|[∆2]0
+ [∆2]0))

= (Γ ′′
|[∆2]0 + Γ ′′

|[∆2]0
) + ([∆1]0 + [∆]0 + [∆2]0)

(∵ + associativity and commutativity)

= Γ ′′ + ([∆1]0 + [∆]0 + [∆2]0) (∵ Lemma 2)

= Γ ′′ + [∆1 +∆+∆2]0 (∵ definition of [Γ]0)

Thus, we obtain the conclusion of the lemma.

42 Y. Tanabe et al.

• Suppose (x : [A]r) /∈ [∆′]0
Let Γ1 and Γ2 be typing context such that Γ ′′ = (Γ1, x : [A]r, Γ2). The
last typing derivation of (weak) is rewritten as follows:

(Γ1, x : [A]r, Γ2) ⊢ t : B ⊢ ∆′

(Γ1, x : [A]r, Γ2) + [∆′]0 ⊢ t : B
(weak)

We then compare the typing context between the conclusion of the
lemma and that of the that of above derivation as follows:

(Γ, x : [A]r, Γ
′) = (Γ1, x : [A]r, Γ2) + [∆′]0

= (Γ1 + ([∆′]0)|Γ1
), x : [A]r, (Γ2 + ([∆′]0)|Γ1

)

(∵ Lemma 3 (1))

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that
they satisfy the above equation. So here we know Γ = (Γ1 + ([∆′]0)|Γ1

)
and Γ ′ = (Γ2 + ([∆′]0)|Γ1

). We then apply the induction hypothesis to

the premise of the last derivation and reapply (weak) as follows:

Γ1 + r ·∆+ Γ2 ⊢ [t′/x]t : B ⊢ ∆′

(Γ1 + r ·∆+ Γ2) + [∆′]0 ⊢ [t′/x]t : B
(weak)

The conclusion of the above derivation is equivalent to the conclusion of
the lemma except for the typing contexts. Finally, we must show that
(Γ + r ·∆+ Γ ′) = (Γ1 + r ·∆+ Γ2) + [∆′]0.

(Γ + r ·∆+ Γ ′) = (Γ1 + ([∆′]0)|Γ1
) + r ·∆+ (Γ2 + ([∆′]0)|Γ1

)

(∵ Γ = (Γ1 + ([∆′]0)|Γ1
) & Γ ′ = (Γ2 + ([∆′]0)|Γ1

))

= (Γ1 + r ·∆+ Γ2) + ([∆′]0|Γ1
+ [∆′]0|Γ1

)

(∵ + associativity and commutativity)

= (Γ1 + r ·∆+ Γ2) + [∆′]0 (∵ Lemma 2)

Thus, we obtain the conclusion of the lemma.

– Case (der)

Γ ′′, y : B1 ⊢ t : B2

Γ ′′, y : [B1]1 ⊢ t : B2

(der)

In this case, we know (Γ ′′, y : [B1]1) = (Γ, x : [A]r, Γ
′). There are two cases

in which the versioned assumption x : [A]r is equivalent to y : [B1]1 and not
equivalent to.

• Suppose x : [A]r = y : [B1]1
We know x = y, A = B1, r = 1, Γ = Γ ′′, and Γ ′ = ∅. The last derivation
is rewritten as follows:

Γ ′′, x : A ⊢ t : B2

Γ ′′, x : [A]1 ⊢ t : B2

(der)

Compilation Semantics for a Programming Language with Versions 43

We then apply Lemma 7 to the premise to obtain the following:

Γ ′′ +∆ ⊢ [t′/x]t : B2

Note that ∆ is a versioned assumption by the assumption 1 and thus
Γ ′′+∆ = Γ ′′+r ·∆ where r = 1, we obtain the conclusion of the lemma.

• Suppose x : [A]r ̸= y : [B1]1
Let Γ1 and Γ2 be typing contexts such that Γ ′′ = (Γ1, x : [A]r, Γ

′
1). The

last derivation is rewritten as follows:
(Γ1, x : [A]r, Γ

′
1), y : B1 ⊢ t : B2

(Γ1, x : [A]r, Γ
′
1), y : [B1]1 ⊢ t : B2

(der)

We then apply the induction hypothesis to the premise of the last deriva-
tion and reapply (der) to obtain the following:

(Γ + r ·∆+ Γ ′′), y : B1 ⊢ [t′/x]t : B2

(Γ + r ·∆+ Γ ′′), y : [B1]1 ⊢ [t′/x]t : B2

(der)

Since y : [B1]1 is desjoint with Γ+r ·∆+Γ ′′ and thus ((Γ+r ·∆+Γ ′′), y :
[B1]1) = Γ+r·∆+(Γ ′′, y : [B1]1), we obtain the conclusion of the lemma.

– Case (pr)

[Γ1] ⊢ t : B ⊢ r′

r′ · [Γ1] ⊢ [t] : 2r′B
(pr)

Let r′′ be a version resouce and Γ ′
1 and Γ ′′

1 be typing contexts such that
r′′ ⊑ r′ and [Γ1] = [Γ ′

1, x : [A]r′′ , Γ
′′
1]. The last derivation is rewritten as

follows:

[Γ ′
1, x : [A]r′′ , Γ

′′
1] ⊢ t : B

r′ · [Γ ′
1, x : [A]r′′ , Γ

′′
1] ⊢ [t] : 2r′B

(pr)

We then compare the conclusion of the lemma and the above conclusion.

(Γ, x : [A]r, Γ
′) = r′ · [Γ1]

= r′ · [Γ ′
1, x : [A]r′′ , Γ

′′
1] (∵ [Γ1] = [Γ ′

1, x : [A]r′′ , Γ
′′
1])

= r′ · [Γ ′
1], x : [A]r′′⊗r′ , r′ · [Γ ′′

1] (∵ · definition)
= r′ · [Γ ′

1], x : [A]r′ , r′ · [Γ ′′
1] (∵ r′′ ⊑ r′)

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that they
satisfy the above equation. So here we know Γ = (r′ ·[Γ ′

1]) and Γ ′ = (r′ ·[Γ ′′
1]).

We then apply the induction hypothesis to the premise of the last derivation
and reapply (pr) to obtain the following:

[Γ ′
1 + r′′ ·∆+ Γ ′′

1] ⊢ [t′/x]t : B ⊢ r′

r′ · [Γ ′
1 + r′′ ·∆+ Γ ′′

1] ⊢ [[t′/x]t] : 2r′B
(pr)

where we use [Γ ′
1, x : [A]r′′ , Γ

′′
1] = [Γ ′

1], x : [A]r′′ , [Γ
′′
1] and [Γ ′

1+r′′ ·∆+Γ ′′
1] =

[Γ ′
1] + r′′ ·∆+ [Γ ′′

1] before applying (pr).

44 Y. Tanabe et al.

Since [[t′/x]t] = [t′/x][t] by the definiton of substitution, the above conclusion
is equivalent to the conclusion of the lemma except for the typing contexts.
Finally, we must show that (Γ + r′ ·∆+ Γ ′) = r′ · [Γ ′

1 + r′′ ·∆+ Γ ′′
1] by the

following reasoning:

(Γ + r′ ·∆+ Γ ′) = r′ · [Γ ′
1] + r′ ·∆+ r′ · [Γ ′

1]
(∵ Γ = (r′ · [Γ ′

1]) & Γ ′ = (r′ · [Γ ′′
1]))

= r′ · [Γ ′
1] + (r′ ⊗ r′′) ·∆+ r′ · [Γ ′

1] (∵ r′′ ⊑ r′)

= r′ · [Γ ′
1] + r′ · (r′′ ·∆) + r′ · [Γ ′

1] (∵ ⊗ associativity)

= r′ · [Γ ′
1 + r′′ ·∆+ Γ ′

1] (∵ · distributive law over +)

Thus, we obtain the conclusion of the lemma.

– Case (ver)

[Γi] ⊢ ti : B ⊢ {li}⋃
i({li} · [Γi]) ⊢ {li = ti} : 2{li}B

(ver)

We compare the typing contexts between the lemma and the above conclu-
sion as follows:

(Γ, x : [A]r, Γ
′) =

⋃
i

({li} · [Γi])

=
⋃
i∈Ix

({li} · [Γ ′
i , x : [A]ri , Γ ′′

i]) +
⋃
i∈Jx

({li} · [Γ ′
i , Γ ′′

i])

(∵ Ix = {i |x ∈ dom(Γi)} and Jx = {i |x /∈ dom(Γi)})

We then reorganise the typing context
⋃

i∈Ix
({li} · [Γ ′

i , x : [A]ri , Γ ′′
i]) as

follows:⋃
i∈Ix

({li} · [Γ ′
i , x : [A]ri , Γ ′′

i])

=
⋃
i∈Ix

({li} · [x : [A]ri , Γ ′
i , Γ ′′

i]) (∵ , associativity)

=
⋃
i∈Ix

({li} · (x : [A]ri), {li} · [Γ ′
i], {li} · [Γ ′′

i]) (∵ · distributive law)

=
⋃
i∈Ix

({li} · (x : [A]ri)) ,
⋃
i∈Ix

({li} · [Γ ′
i], {li} · [Γ ′′

i])

(∵ Sum of each disjoint sub context)

=
⋃
i∈Ix

(
x : [A]{li}⊗ri

)
,
⋃
i∈Ix

({li} · [Γ ′
i], {li} · [Γ ′′

i]) (∵ · definition)

= x : [A]∑
i∈Ix

{li}⊗ri ,
⋃
i∈Ix

({li} · [Γ ′
i], {li} · [Γ ′′

i]) (∵
⋃

and + definition)

Compilation Semantics for a Programming Language with Versions 45

Thus, we obtain the following:

(Γ, x : [A]r, Γ
′)

=

(
x : [A]∑

i∈Ix
{li}⊗ri ,

⋃
i∈Ix

({li} · [Γ ′
i], {li} · [Γ ′′

i])

)
+
⋃
i∈Jx

({li} · [Γ ′
i , Γ ′′

i])

= x : [A]∑
i∈Ix

{li}⊗ri ,
⋃
i

({li} · [Γ ′
i], {li} · [Γ ′′

i])

(∵
⋃

i∈Jx
({li} · [Γ ′

i , Γ ′′
i]) are disjoint with x : [A]∑

i∈Ix
{li}⊗ri)

Therefore, By Lemma 4, there exists typing contexts Γ ′
i
and Γ ′′

i
such that:

Γ ′
i
, Γ ′′

i
=
⋃
i

({li} · [Γ ′
i], {li} · [Γ ′′

i])

Γ ′
i
+ Γ ′′

i
=
⋃
i

({li} · [Γ ′
i] + {li} · [Γ ′′

i])

Thus, we obtain the following:

(Γ, x : [A]r, Γ
′) = x : [A]∑

i∈Ix
{li}⊗ri , Γ ′

i
, Γ ′′

i

= Γ ′
i
, x : [A]∑

i∈Ix
{li}⊗ri , Γ ′′

i
(∵ , commutativity)

By the commutativity of ”,”, we can take Γ and Γ ′ arbitrarily so that they
satisfy the above equation. So here we know Γ = Γ ′

i
, Γ ′ = Γ ′′

i
, and r =∑

i∈Ix
({li} ⊗ ri). We then apply the induction hypothesis to the premise

whose typing context contains x. Here, we define a typing context ∆i as
follows:

∆i =

{
∆ (i ∈ Ix)

∅ (i ∈ Jx)

By using ∆i, we reapply (ver) as follows:

[Γ ′
i + ri ·∆i + Γ ′′

i] ⊢ [t′/x]ti : B ⊢ {li}⋃
i({li} · [Γ ′

i + ri ·∆i + Γ ′′
i]) ⊢ {li = [t′/x]ti} : 2{li}B

(ver)

Since {li = [t′/x]ti | lk} = [t′/x]{li = ti | lk} by the definition of substitution,
the above conclusion is equivalent to the conclusion of the lemma except for
typing contexts. Finally, we must show that (Γ +r ·∆+Γ ′) =

⋃
i({li} · [Γ ′

i +

46 Y. Tanabe et al.

ri ·∆i + Γ ′′
i]).

(Γ + r ·∆+ Γ ′) = Γ ′
i
+ r ·∆+ Γ ′′

i
(∵ Γ = Γ ′

i
& Γ ′ = Γ ′′

i
)

= r ·∆+ (Γ ′
i
+ Γ ′′

i
) (+ associativity & commutativity)

= r ·∆+
⋃
i

({li} · [Γ ′
i] + {li} · [Γ ′′

i])

(∵ Γ ′
i
+ Γ ′′

i
=
⋃

i ({li} · [Γ ′
i] + {li} · [Γ ′′

i]))

= (
∑
i∈Ix

({li} ⊗ ri)) ·∆+
⋃
i

({li} · [Γ ′
i] + {li} · [Γ ′′

i])

(∵ r =
∑

i∈Ix
({li} ⊗ ri))

=
⋃
i∈Ix

({li} · (ri ·∆)) +
⋃
i

({li} · [Γ ′
i] + {li} · [Γ ′′

i])

(∵
⋃

definition)

=
⋃
i

({li} · (ri ·∆i)) +
⋃
i

({li} · [Γ ′
i] + {li} · [Γ ′′

i])

(∵ ∆i definition)

=
⋃
i

({li} · (ri ·∆i) + {li} · [Γ ′
i] + {li} · [Γ ′′

i])

(∵ + commutativity & associativity)

=
⋃
i

({li} · ((ri ·∆i) + [Γ ′
i] + [Γ ′′

i])) (∵ districutive law)

=
⋃
i

({li} · ([Γ ′
i] + (ri ·∆i) + [Γ ′′

i]))

(∵ + commutativity)

=
⋃
i

({li} · [Γ ′
i + ri ·∆i + Γ ′′

i]) (∵ [·] definition)

Thus, we obtain the conclusion of the lemma.

– Case (veri)

[Γi] ⊢ ti : B ⊢ {li} lk ∈ {li}⋃
i({li} · [Γi]) ⊢ ⟨li = ti | lk⟩ : B

(veri)

This case is similar to the case of (ver).

– Case (extr)

Γ ⊢ t : 2rA l ∈ r

Γ ⊢ t.l : A
(extr)

In this case, we apply the induction hypothesis to the premise and then
reapply (extr), we obtain the conclusion of the lemma.

Compilation Semantics for a Programming Language with Versions 47

– Case (sub)

Γ1, y : [B′]r1 , Γ2 ⊢ t : B r1 ⊑ r2 ⊢ r2

Γ1, y : [B′]r2 , Γ2 ⊢ t : B
(sub)

In this case, we know (Γ, x : [A]r, Γ
′) = (Γ, y : [B′]r2 , Γ

′). There are three
cases where the versioned assumption x : [A]r is included in Γ1, included in
Γ2, or equal to y : [B′]r2 .
• Suppose (x : [A]r) ∈ Γ1.
Let Γ ′

1 and Γ ′′
1 be typing contexts such that Γ1 = (Γ ′

1, x : [A]r, Γ
′′
1). The

last derivation is rewritten as follows:
Γ ′
1, x : [A]r, Γ

′′
1 , y : [B′]r1 , Γ2 ⊢ t : B r1 ⊑ r2 ⊢ r2

Γ ′
1, x : [A]r, Γ

′′
1 , y : [B′]r2 , Γ2 ⊢ t : B

(sub)
We then apply the induction hypothesis to the premise of the last deriva-
tion to obtain the following:

Γ ′
1 + r ·∆+ (Γ ′′

1 , y : [B′]r1 , Γ2) ⊢ [t′/x]t : B (1)

The typing context of the above conclusion can be transformed as follows:

Γ ′
1 + r ·∆+ (Γ ′′

1 , y : [B′]r1 , Γ2)

= (Γ ′
1 + (r ·∆)|Γ ′

1
), (r ·∆)|(Γ ′

1,(Γ
′′
1 ,y:[B′]r1 ,Γ2))

,(
(Γ ′′

1 , y : [B′]r1 , Γ2) + (r ·∆)|(Γ ′′
1 ,y:[B′]r1 ,Γ2)

)
(∵ Lemma 6)

= (Γ ′
1 + (r ·∆)|Γ ′

1
), (r ·∆)|(Γ ′

1,(Γ
′′
1 ,y:[B′]r1 ,Γ2))

,(
(Γ ′′

1 , y : [B′]r1 , Γ2) +
(
(r ·∆)|Γ ′′

1
, (r ·∆)|(y:[B′]r1)

, (r ·∆)|Γ2
)
))

(∵ 6)

= (Γ ′
1 + (r ·∆)|Γ ′

1
), (r ·∆)|(Γ ′

1,(Γ
′′
1 ,y:[B′]r1 ,Γ2))

,(
Γ ′′
1 + (r ·∆)|Γ ′′

1

)
,
(
y : [B′]r1 + (r ·∆)|(y:[B′]r1)

)
,
(
Γ2 + (r ·∆)|Γ2

)
(∵ Lemma 3)

= Γ3, y : [B′]r1⊕r3 , Γ
′
3

The last equational transformation holds by the following equation 2.
Let Γ3 and Γ ′

3 be typing contexts that satisfy the following:

Γ3 = (Γ ′
1 + (r ·∆)|Γ ′

1
), (r ·∆)|(Γ ′

1,(Γ
′′
1 ,y:[B′]r1 ,Γ2))

,
(
Γ ′′
1 + (r ·∆)|Γ ′′

1

)
Γ ′
3 =

(
Γ2 + (r ·∆)|Γ2

)
For (r ·∆)|(y:[B′]r1)

, Let r3 and r′3 be typing contexts such that r3 = r⊗r′3
and stisfy the following:

(r ·∆)|(y:[B′]r1)
=

{
r · (y : [B′]r′3) = y : [B′]r⊗r′3

= y : [B′]r3 (y ∈ dom(∆))

∅ (y /∈ dom(∆))

48 Y. Tanabe et al.

Thus, we obtain the following equation.

y : [B′]r1 + (r ·∆)|(y:[B′]r1)
=

{
y : [B′]r1⊕r3 (y ∈ dom(∆))

y : [B′]r1⊕r3 = y : [B′]r1 (y /∈ dom(∆))

(2)

Applying all of the above transformations and reapplying (sub) to the
expression 1, we obtain the following:

Γ3, y : [B′]r1⊕r3 , Γ
′
3 ⊢ [t′/x]t : B (r1 ⊕ r3) ⊑ (r2 ⊕ r3) ⊢ r2 ⊕ r3

Γ3, y : [B′]r2⊕r3 , Γ
′
3 ⊢ [t′/x]t : B

(sub)
The conclusion of the above derivation is equivalent to the conclusion of
the lemma except for the typing contexts.
Finally, we must show that Γ ′

1 + r · ∆ + (Γ ′′
1 , y : [B′]r2 , Γ2) = (Γ3, y :

[B′]r2⊕r3 , Γ
′
3).

Γ ′
1 + r ·∆+ (Γ ′′

1 , y : [B′]r2 , Γ2)

= (Γ ′
1 + (r ·∆)|Γ ′

1
), (r ·∆)|(Γ ′

1,(Γ
′′
1 ,y:[B′]r2 ,Γ2))

,(
(Γ ′′

1 , y : [B′]r2 , Γ2) + (r ·∆)|(Γ ′′
1 ,y:[B′]r2 ,Γ2)

)
(∵ Lemma 6)

= (Γ ′
1 + (r ·∆)|Γ ′

1
), (r ·∆)|(Γ ′

1,(Γ
′′
1 ,y:[B′]r2 ,Γ2))

,(
(Γ ′′

1 , y : [B′]r2 , Γ2) +
(
(r ·∆)|Γ ′′

1
, (r ·∆)|(y:[B′]r2)

, (r ·∆)|Γ2
)
))

(∵ 6)

= (Γ ′
1 + (r ·∆)|Γ ′

1
), (r ·∆)|(Γ ′

1,(Γ
′′
1 ,y:[B′]r2 ,Γ2))

,(
Γ ′′
1 + (r ·∆)|Γ ′′

1

)
,
(
y : [B′]r2 + (r ·∆)|(y:[B′]r2)

)
,
(
Γ2 + (r ·∆)|Γ2

)
(∵ Lemma 3)

= Γ3, y : [B′]r2⊕r3 , Γ
′
3

The last transformation is based on the following equation that can be
derived from the definition 6.

(r ·∆)|(Γ ′
1,(Γ

′′
1 ,y:[B′]r1 ,Γ2))

= (r ·∆)|(Γ ′
1,(Γ

′′
1 ,y:[B′]r2 ,Γ2))

(r ·∆)|(y:[B′]r1)
= (r ·∆)|(y:[B′]r2)

Thus, we obtain the conclusion of the lemma.
• Suppose (x : [A]r) ∈ Γ2.
This case is similar to the case of (x : [A]r) ∈ Γ1.

• Suppose (x : [A]r) = y : [B′]r2 .
The last derivation is rewritten as follows:

Γ1, x : [A]r′ , Γ2 ⊢ t : B r′ ⊑ r ⊢ r

Γ1, x : [A]r, Γ2 ⊢ t : B
(sub)

We apply the induction hypothesis to the premise and then reapply
(sub), we obtain the conclusion of the lemma.

Compilation Semantics for a Programming Language with Versions 49

C.4 Type Safety

Lemma 9 (Inversion lemma). Let v be a value such that Γ ⊢ v : A. The
followings hold for a type A.

– A = Int =⇒ v = n for some integer constant n.
– A = 2rB =⇒ v = [t′] for some term t′, or v = {li = ti} for some terms ti

and some labels li ∈ r.
– A = B → B′ =⇒ v = λp.t for some pattern p and term t.

Lemma 10 (Type safety for default version overwriting).
For any version label l:

Γ ⊢ t : A =⇒ Γ ⊢ t@l : A

Proof. The proof is given by induction on the typing derivation of Γ ⊢ t : A.
Consider the cases for the last rule used in the typing derivation of assumption.

– Case (int)

∅ ⊢ n : Int
(int)

This case holds trivially because n@l ≡ n for any labels l.

– Case (var)

⊢ A

x : A ⊢ x : A
(var)

This case holds trivially because x@l = x for any labels l.

– Case (abs)

− ⊢ p : B1 �∆′ Γ,∆′ ⊢ t1 : A2

Γ ⊢ λp.t1 : A1 → A2

(abs)

By induction hypothesis, there exists a term t1@l such that:

Γ,∆′ ⊢ t1@l : A2

We then reapply (abs) to obtain the following:

− ⊢ p : B1 �∆′ Γ,∆′ ⊢ t1@l : A2

Γ ⊢ λp.(t1@l) : A1 → A2

(abs)

Thus, note that (λp.t1)@l ≡ λp.(t1@l), we obtain the conclusion of the
lemma.

50 Y. Tanabe et al.

– Case (app)

Γ1 ⊢ t1 : B → A Γ2 ⊢ t2 : B

Γ1 + Γ2 ⊢ t1 t2 : A
(app)

By induction hypothesis, there exists terms t1@l and t2@l such that:

Γ1 ⊢ t1@l : B → A

Γ2 ⊢ t2@l : B

We then reapply (app) to obtain the following:

Γ1 ⊢ t1@l : B → A Γ2 ⊢ t2@l : B

Γ1 + Γ2 ⊢ (t1@l) (t2@l) : A
(app)

Thus, note that (t1 t2)@l ≡ (t1@l) (t2@l), we obtain the conclusion of the
lemma.

– Case (let)

Γ1 ⊢ t1 : 2rA Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(let)

By induction hypothesis, there exists terms t1@l and 2@l such that:

Γ1 ⊢ t1@l : 2rA

Γ2, x : [A]r ⊢ t2@l : B

We then reapply (let) to obtain the following:

Γ1 ⊢ t1@l : 2rA Γ2, x : [A]r ⊢ t2@l : B

Γ1 + Γ2 ⊢ let [x] = (t1@l) in (t2@l) : B
(let)

Thus, note that (let [x] = t1 in t2)@l ≡ let [x] = (t1@l) in (t2@l), we ob-
tain the conclusion of the lemma.

– Case (weak)

Γ1 ⊢ t : A ⊢ ∆′

Γ1 + [∆′]0 ⊢ t : A
(weak)

By induction hypothesis, we know the following:

Γ1 ⊢ t@l : A

We then reapply (weak) to obtain the following:

Γ1 ⊢ t@l : A

Γ1 + [∆′]0 ⊢ t@l : A
(weak)

Compilation Semantics for a Programming Language with Versions 51

Thus, we obtain the conclusion of the lemma.

– Case (der)

Γ1, x : B ⊢ t : A

Γ1, x : [B]1 ⊢ t : A
(der)

By induction hypothesis, there exists terms t@l such that:

Γ1, x : B ⊢ t@l : A

We then reapply (der) to obtain the following:

Γ1, x : B ⊢ t@l : A

Γ1, x : [B]1 ⊢ t@l : A
(der)

Thus, we obtain the conclusion of the lemma.

– Case (pr)

[Γ] ⊢ t : B ⊢ r

r · [Γ] ⊢ [t] : 2rB
(pr)

This case holds trivially because [t]@l ≡ [t] for any labels l.

– Case (ver)

[Γi] ⊢ ti : A ⊢ {li}⋃
i({li} · [Γi]) ⊢ {li = ti} : 2{li}A

(ver)

This case holds trivially because {li = ti}@l ≡ {li = ti} for any labels l.

– Case (veri)

[Γi] ⊢ ti : A ⊢ {li} lk ∈ {li}⋃
i({li} · [Γi]) ⊢ ⟨li = ti | lk⟩ : A

(veri)

In this case, there are two possibilities for the one step evaluation of t.
• Suppose l ∈ {li}.

We can apply the default version overwriting as follows:
l ∈ {li}

⟨li = ti | lk⟩@l ≡ ⟨li = ti | l⟩
In this case, we can derive the type of ⟨li = ti | l⟩ as follows:

[Γi] ⊢ ti : A⋃
i({li} · [Γi]) ⊢ ⟨li = ti | l⟩ : A

(veri)

Thus, we obtain the conclusion of the lemma.
• Suppose l /∈ {li}.
We can apply the default version overwriting as follows:

52 Y. Tanabe et al.

l /∈ {li}
⟨li = ti | lk⟩@l ≡ ⟨li = ti | lk⟩

This case holds trivially because ⟨li = ti | lk⟩@l = ⟨li = ti | lk⟩.

– Case (extr)

Γ ⊢ t1 : 2rA lk ∈ r

Γ ⊢ t1.lk : A
(extr)

By induction hypothesis, there exists a term t1@l such that:

Γ ⊢ t1@l : 2rA

We then reapply (extr) to obtain the following:

Γ ⊢ t1@l : 2rA lk ∈ r

Γ ⊢ (t1@l).lk : A
(extr)

Thus, note that (t1.lk)@l ≡ (t1@l).lk, we obtain the conclusion of the lemma.

– Case (sub)

Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s ⊢ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(sub)

By induction hypothesis, there exists a term t@l such that:

Γ1, x : [B]r, Γ2 ⊢ t@l : A

We then reapply (sub) to obtain the following:

Γ1, x : [B]r, Γ2 ⊢ t@l : A r ⊑ s ⊢ s

Γ1, x : [B]s, Γ2 ⊢ t@l : A
(sub)

Thus, we obtain the conclusion of the lemma.

Lemma 11 (Type-safe extraction for versioned values).

[Γ] ⊢ u : 2rA =⇒ ∀lk ∈ r. ∃t′.

{
u.lk −→ t′ (progress)

[Γ] ⊢ t′ : A (preservation)

Proof. By inversion lemma (9), u has either a form [t′′] or {li = ti}.

– Suppose u = [t′′].
We can apply (E-ex1) as follows:

[t′′].lk ; t′′@lk
(E-ex1)

Compilation Semantics for a Programming Language with Versions 53

Also, we get the following derivation for v.

[Γ ′] ⊢ t′′ : A ⊢ r
(pr)

r · [Γ ′] ⊢ [t′′] : 2rA
(weak) or (sub)

... (weak) or (sub)
[Γ] ⊢ [t′′] : 2rA

By Lemma 10, we know the following:

[Γ ′] ⊢ t′′@lk : A

Finally, we can rearrange the typing context as follows:

[Γ ′] ⊢ t′′@lk : A
(weak) or (sub)

... (weak) or (sub)
[Γ] ⊢ t′′@lk : A

Here, we follow the same manner as for the derivation of [t′′] (which may use
(weak) and (sub)) to get [Γ] from r · [Γ ′].
Thus, we obtain the conclusion of the lemma.

– Suppose u = {li = ti}.
We can apply (E-ex2) as follows:

{li = ti}.lk ; tk@lk
(E-ex2)

Also, we get the following derivation for v.

[Γ ′
i] ⊢ ti : A ⊢ {li}

(ver)⋃
i({li} · [Γ ′

i]) ⊢ {li = ti} : 2{li}A
(weak) or (sub)

... (weak) or (sub)
[Γ] ⊢ {li = ti} : 2{li}A

By Lemma 10, we know the following:

[Γ ′
k] ⊢ tk@lk : A

Finally, we can rearrange the typing context as follows:

[Γ ′
k] ⊢ tk@lk : A rkj ⊑ rkj ⊗ {lk}

(sub) ∗ |Γ ′
k|{lk} · [Γ ′

k] ⊢ tk@lk : A︸ ︷︷ ︸
P

P rkj ⊗ {lk} ⊑
∑

i(rij ⊗ {li})
(sub) ∗ |Γ ′

k|⋃
i({li} · [Γ ′

i]) ⊢ tk@lk : A
(weak) or (sub)

... (weak) or (sub)
[Γ] ⊢ tk@lk : A

54 Y. Tanabe et al.

Here in the multiple application of (sub), the second premise compares the
resources of j-th versioned assumption between the first premise and con-
clusion. Also, we follow the same manner as for the derivation of {li = ti}
(which may use (weak) and (sub)) to get [Γ] from

⋃
i({li} · [Γ ′

i]).
Thus, we obtain the conclusion of the lemma.

Theorem 1 (Type preservation for reductions).

Γ ⊢ t : A

t ; t′

}
=⇒ Γ ⊢ t′ : A

Proof. The proof is given by induction on the typing derivation of t. Consider
the cases for the last rule used in the typing derivation of the first assumption.

– Case (int)

∅ ⊢ n : Int
(int)

This case holds trivially because there are no reduction rules that can be
applied to n.

– Case (var)

⊢ A

x : A ⊢ x : A
(var)

This case holds trivially because there are no reduction rules that can be
applied to x.

– Case (abs)

− ⊢ p : B1 �∆′ Γ,∆′ ⊢ t1 : A2

Γ ⊢ λp.t1 : A1 → A2

(abs)

This case holds trivially because there are no reduction rules that can be
applied to λp.t1.

– Case (app)

Γ1 ⊢ t1 : B → A Γ2 ⊢ t2 : B

Γ1 + Γ2 ⊢ t1 t2 : A
(app)

We perform case analysis for the ruduction rule applied last.
• Case (E-abs1)

(λx.t′1) t2︸ ︷︷ ︸
t

; (t2 � x) t′1
(E-abs1)

Compilation Semantics for a Programming Language with Versions 55

where t1 = λx.t′1 for a term t′1. Then we can apply (�var) to obtain the
following:

(t2 � x) t′1 = [t2/x]t
′
1

(�var)

In this case, we know the typing derivation of t has the following form:

Γ ′
1, x : B ⊢ t′1 : A

(abs)
Γ ′
1 ⊢ λx.t′1 : B → A

(weak), (der), or (sub)
... (weak), (der), or (sub)

Γ1 ⊢ λx.t′1 : B → A Γ2 ⊢ t2 : B
(app)

Γ1 + Γ2 ⊢ (λx.t′1) t2 : A

By Lemma 7, we know the following:

Γ2 ⊢ t2 : B

Γ ′
1, x : B ⊢ t′1 : A

}
=⇒ Γ ′

1 + Γ2 ⊢ [t2/x]t
′
1 : A

Finally, we can rearrange the typing context as follows:

Γ ′
1 + Γ2 ⊢ [t2/x]t

′
1 : A

(weak), (der), or (sub)
... (weak), (der), or (sub)

Γ1 + Γ2 ⊢ [t2/x]t
′
1 : A

Here, there exists a derive tree to get Γ1 + Γ2 from Γ ′
1 + Γ2 as for the

derivation of λx.t′1 which may use (weak), (der) and (sub).
By choosing t′ = [t2/x]t

′
1, we obtain the conclusion of the theorem.

• Case (E-abs2)

(λ[x].t′1) t2︸ ︷︷ ︸
t

; let [x] = t2 in t′1︸ ︷︷ ︸
t′

(E-abs2)

In this case, we know the typing derivation of t has the following form:
([pVar])

r ⊢ x : B � x : [B]r
(p□)− ⊢ [x] : 2rB � x : [B]r Γ1, x : [B]r ⊢ t′1 : A

(abs)
Γ1 ⊢ λ[x].t′1 : 2rB → A︸ ︷︷ ︸

P

P Γ2 ⊢ t2 : 2rB (app)
Γ1 + Γ2 ⊢ (λ[x].t′1) t2 : A

Therefore, we can construct the derivation tree for t′ as follows.

Γ2 ⊢ t2 : 2rB Γ1, x : [B]r ⊢ t′1 : A
(app)

Γ1 + Γ2 ⊢ let [x] = t2 in t′1 : A

Hence, we have the conclusion of the theorem.

– Case (let)

56 Y. Tanabe et al.

Γ1 ⊢ t1 : 2rA Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(let)

The only reduction rule we can apply is (E-clet) with two substitution
rules, depending on whether t1 has the form [t′1] or {li = t′′i }.
• Suppose t1 = [t′1].

We can apply (E-clet) to obtain the following.

let [x] = [t′1] in t2︸ ︷︷ ︸
t

; ([t′1]� [x])t2
(E-clet)

Thus, we can apply (�□) and (�var) to obtain the following.
(�var)

(t′1 � x)t2 = [t′1/x]t2 (�□)
([t′1]� [x])t2 = [t′1/x]t2

In this case, we know the typing derivation of t has the following form:

[Γ ′
1] ⊢ t′1 : A ⊢ r

(pr)
r · [Γ ′

1] ⊢ [t′1] : 2rA
(weak) or (sub)

... (weak) or (sub)
Γ1 ⊢ [t′1] : 2rA Γ2, x : [A]r ⊢ t2 : B

(let)
Γ1 + Γ2 ⊢ let [x] = [t′1] in t2 : B

By Lemma 8, we know the following:

[Γ ′
1] ⊢ t′1 : A

Γ2, x : [A]r ⊢ t2 : B

}
=⇒ Γ2 + r · [Γ ′

1] ⊢ [t′1/x]t2 : B

Finally, we can rearrange the typing context as follows:

Γ2 + r · [Γ ′
1] ⊢ [t′1/x]t2 : B

(weak) or (sub)
... (weak) or (sub)

Γ2 + Γ1 ⊢ [t′1/x]t2 : B

Here, there exists a derive tree to get Γ2 + Γ1 from Γ2 + r · [Γ ′
1] as for

the derivation of [t′1] which may use (weak) and (sub).
Thus, by choosing t′ = [t′1/x]t2, we obtain the conclusion of the theorem.

• Suppose t1 = {li = t′′i }.
We can apply (E-clet) to obtain the following:

let [x] = {li = t′′i } in t2︸ ︷︷ ︸
t

; ({li = t′′i }� [x])t2
(E-clet)

Thus, we can apply (�ver) and (�var) to obtain the following.
(�var)

(⟨li = t′′i | lk⟩� x)t2 = [⟨li = t′′i | lk⟩/x]t2 (�ver)
({li = t′′i }� [x])t2 = [⟨li = t′′i | lk⟩/x]t2

In this case, we know the typing derivation of t has the following form:

Compilation Semantics for a Programming Language with Versions 57

[Γ ′
i] ⊢ t′′i : A ⊢ {li}

(ver)⋃
i({li} · [Γ ′

i]) ⊢ {li = t′′i } : 2{li}A
(weak) or (sub)

... (weak) or (sub)
Γ1 ⊢ {li = t′′i } : 2{li}A︸ ︷︷ ︸

P

P

Γ2, x : A ⊢ t2 : B
(der)

Γ2, x : [A]1 ⊢ t2 : B
(sub)∗|{li}|Γ2, x : [A]{li} ⊢ t2 : B

(let)
Γ1 + Γ2 ⊢ let [x] = {li = t′′i } in t2 : B

Then we can derive the type of ⟨li = t′′i | lk⟩ as follows:
[Γ ′

i] ⊢ t′′i : A⋃
i({li} · [Γ ′

i]) ⊢ ⟨li = t′′i | lk⟩ : A
(veri)

By Lemma 7, we know the following:⋃
i({li} · [Γ ′

i]) ⊢ ⟨li = t′′i | lk⟩ : A
Γ2, x : A ⊢ t2 : B

}
=⇒

Γ2+
⋃

i({li} · [Γ ′
i])

⊢ [⟨li = t′′i | lk⟩/x]t2 : B

Finally, we can rearrange the typing context as follows:

Γ2 +
⋃

i({li} · [Γ ′
i]) ⊢ [⟨li = t′′i | lk⟩/x]t2 : B

(weak) or (sub)
... (weak) or (sub)

Γ2 + Γ1 ⊢ [⟨li = t′′i | lk⟩/x]t2 : B

Here, there exists a derive tree to get Γ2 + Γ1 from Γ2 +
⋃

i({li} · [Γ ′
i])

as for the derivation of {li = t′′i } which may use (weak) and (sub).

Thus, by choosing t′ = [⟨li = t′′i | lk⟩/x]t2, we obtain the conclusion of
the theorem.

– Case (weak)

Γ1 ⊢ t : A ⊢ ∆′

Γ1 + [∆′]0 ⊢ t : A
(weak)

In this case, t does not change between before and after the last derivation.
The induction hypothesis implies that there exists a term t′′ such that:

t ; t′′ ∧ Γ1 ⊢ t′′ : A (ih)

We then reapply (weak) to obtain the following:

Γ1 ⊢ t′′ : A ⊢ ∆′

Γ1 + [∆′]0 ⊢ t′′ : A
(weak)

58 Y. Tanabe et al.

Thus, by choosing t′ = t′′, we obtain the conclusion of the theorem.

– Case (der)

Γ1, x : B ⊢ t : A

Γ1, x : [B]1 ⊢ t : A
(der)

In this case, t does not change between before and after the last derivation.
The induction hypothesis implies that there exists a term t′′ such that:

t ; t′′ ∧ Γ1, x : B ⊢ t′′ : A (ih)

We then reapply (der) to obtain the following:

Γ1, x : B ⊢ t′′ : A

Γ1, x : [B]1 ⊢ t′′ : A
(der)

Thus, by choosing t′ = t′′, we obtain the conclusion of the theorem.

– Case (pr)

[Γ] ⊢ t′′ : B ⊢ r

r · [Γ] ⊢ [t′′] : 2rB
(pr)

This case holds trivially because there are no reduction rules that can be
applied to [t′′].

– Case (ver)

[Γi] ⊢ ti : A ⊢ {li}⋃
i({li} · [Γi]) ⊢ {li = ti} : 2{li}A

(ver)

This case holds trivially because there are no reduction rules that can be
applied to {li = ti}.

– Case (veri)

[Γi] ⊢ ti : A ⊢ {li} lk ∈ {li}⋃
i({li} · [Γi]) ⊢ ⟨li = ti | lk⟩ : A

(veri)

In this case, the only reduction rule we can apply is (E-veri).

⟨li = ti | lk⟩︸ ︷︷ ︸
t

; tk@lk
(E-veri)

By Lemma 10, we obtain the following:

[Γk] ⊢ tk : A =⇒ [Γk] ⊢ tk@lk : A

Finally, we can rearrange the typing context as follows:

Compilation Semantics for a Programming Language with Versions 59

[Γk] ⊢ tk@lk : A
(weak), (der) or (sub)

... (weak), (der) or (sub)⋃
i({li} · [Γi]) ⊢ tk@lk : A

Thus, by choosing t′ = tk@lk, we obtain the conclusion of the theorem.

– Case (extr)

Γ ⊢ t1 : 2rA lk ∈ r

Γ ⊢ t1.lk : A
(extr)

In this case, there are two reduction rules that we can apply to t, dependenig
on whether t1 has the form [t′1] or {li = t′′i }.
• Suppose t1 = [t′1].
We know the typing derivation of t has the following form:

[Γ ′] ⊢ t′1 : A ⊢ r
(pr)

r · [Γ ′] ⊢ [t′1] : 2rA
(weak) or (sub)

... (weak) or (sub)
Γ ⊢ [t′1] : 2rA lk ∈ r

(extr)
Γ ⊢ [t′1].lk : A

By Lemma 11, we know the following:

r · [Γ ′] ⊢ [t′1] : 2rA =⇒ ∃t′.

{
[t′1].lk −→ t′

r · [Γ ′] ⊢ t′ : A

Finally, we can rearrange the typing context as follows:

r · [Γ ′] ⊢ t′ : A
(weak) or (sub)

... (weak) or (sub)
Γ ⊢ t′ : A

Here, we follow the same manner as for the derivation of [t′1] (which may
use (weak) and (sub)) to get Γ from r · [Γ ′].
Thus, we obtain the conclusion of the theorem.

• Suppose t1 = {li = ti}.
The last derivation is rewritten as follows:

[Γ ′
i] ⊢ ti : A ⊢ {li}

(ver)⋃
i{li} · [Γ ′

i] ⊢ {li = ti} : 2{li}A
(weak) or (sub)

... (weak) or (sub)
Γ ⊢ {li = ti} : 2{li}A lk ∈ {li}

(extr)
Γ ⊢ {li = ti}.lk : A

60 Y. Tanabe et al.

By Lemma 11, we know the following:

⋃
i{li} · [Γ ′

i] ⊢ {li = ti} : 2{li}A =⇒ ∃t′.

{
{li = ti}.lk −→ t′⋃

i{li} · [Γ ′
i] ⊢ t′ : A

Finally, we can rearrange the typing context as follows:⋃
i{li} · [Γ ′

i] ⊢ t′ : A
(weak) or (sub)

... (weak) or (sub)
Γ ⊢ t′ : A

Here, we follow the same manner as for the derivation of {li = ti} (which
may use (weak) and (sub)) to get Γ from

⋃
i{li} · [Γ ′

i].
Thus, we obtain the conclusion of the theorem.

– Case (sub)

Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s ⊢ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(sub)

In this case, t does not change between before and after the last derivation.
The induction hypothesis implies that there exists a term t′′ such that:

t ; t′′ ∧ Γ1, x : [B]r, Γ2 ⊢ t′′ : A (ih)

We then reapply (sub) to obtain the following:

Γ1, x : [B]r, Γ2 ⊢ t′′ : A r ⊑ s ⊢ s
(sub)

Γ1, x : [B]s, Γ2 ⊢ t′′ : A

Thus, by choosing t′ = t′′, we obtain the conclusion of the theorem.

Theorem 2 (Type preservation for evaluations).

Γ ⊢ t : A

t −→ t′

}
=⇒ Γ ⊢ t′ : A

Proof. The proof is given by induction on the typing derivation of t. Consider
the cases for the last rule used in the typing derivation of the first assumption.

– Case (int)

∅ ⊢ n : Int
(int)

This case holds trivially because there are no evaluation rules that can be
applied to n.

– Case (var)

Compilation Semantics for a Programming Language with Versions 61

⊢ A

x : A ⊢ x : A
(var)

This case holds trivially because there are no evaluation rules that can be
applied to x.

– Case (abs)

− ⊢ p : B1 �∆′ Γ,∆′ ⊢ t1 : A2

Γ ⊢ λp.t1 : A1 → A2

(abs)

This case holds trivially because there are no evaluation rules that can be
applied to λp.t1.

– Case (app)

Γ1 ⊢ t1 : B → A Γ2 ⊢ t2 : B

Γ1 + Γ2 ⊢ t1 t2 : A
(app)

In this case, there are two evaluation rules that can be applied to t.

• Suppose the evaluation rule matches to [·].
We perform the case analysis for the last ruduction rule.

∗ Case (E-abs1) We know the evaluation of the assumption has the
following form:

E-abs1
(λx.t′1) t2 ; (t2 � x) t′1
(λx.t′1) t2︸ ︷︷ ︸

t

−→ (t2 � x) t′1︸ ︷︷ ︸
t′

By Lemma 1, we know the following:

Γ1 + Γ2 ⊢ (λx.t′1) t2 : A

(λx.t′1) t2 ; (t2 � x) t′1

}
=⇒ Γ1 + Γ2 ⊢ (t2 � x) t′1 : A

Thus, we obtain the conclusion of the theorem.
∗ Case (E-abs2)

E-abs2
(λ[x].t′1) t2 ; let [x] = t2 in t′1
(λ[x].t′1) t2︸ ︷︷ ︸

t

−→ let [x] = t2 in t′1︸ ︷︷ ︸
t′

In this case, we know the typing derivation of t has the following
form:

([pVar])
r ⊢ x : B � x : [B]r

(p□)− ⊢ [x] : 2rB � x : [B]r Γ1, x : [B]r ⊢ t′1 : A
(abs)

Γ1 ⊢ λ[x].t′1 : 2rB → A︸ ︷︷ ︸
P

62 Y. Tanabe et al.

P Γ2 ⊢ t2 : 2rB (app)
Γ1 + Γ2 ⊢ (λ[x].t′1) t2 : A

Therefore, we can construct the derivation tree for t′ as follows.

Γ2 ⊢ t2 : 2rB Γ1, x : [B]r ⊢ t′1 : A
(app)

Γ1 + Γ2 ⊢ let [x] = t2 in t′1 : A

Hence, we have the conclusion of the theorem.

• Suppose the evaluation rule matches to E t.
We know the evaluation of the assumption has the following form:

t′1 ; t′′1
E[t′1] t2︸ ︷︷ ︸

t

−→ E[t′′1] t2

where t1 = E[t′1].
By induction hypothesis, we know the following:

Γ1 ⊢ E[t′1] : B → A

E[t′1] −→ E[t′′1]

}
=⇒ Γ1 ⊢ E[t′′1] : B → A (ih)

We then reapply (app) to obtain the following:
Γ1 ⊢ E[t′′1] : B → A Γ2 ⊢ t2 : B

Γ1 + Γ2 ⊢ E[t′′1] t2 : A
(app)

Thus, we obtain the conclusion of the theorem.

– Case (let)

Γ1 ⊢ t1 : 2rA Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
(let)

In this case, there are two evaluation rules that we can apply to t.

• Suppose the evaluation rule matches to [·].
We know the evaluation of the assumption has the following form:

(E-clet)
let [x] = [t′1] in t2 ; ([t′1]� [x])t2

let [x] = [t′1] in t2︸ ︷︷ ︸
t

−→ ([t′1]� [x])t2

By Lemma 1, we know the following:

Γ1 + Γ2 ⊢ let [x] = [t′1] in t2 : B

let [x] = [t′1] in t2 ; ([t′1]� [x])t2

}
=⇒ Γ1 + Γ2 ⊢ ([t′1]� [x])t2 : B

Thus, we obtain the conclusion of the theorem.
• Suppose the evaluation rule matches to let [x] = E in t.
We know the evaluation of the assumption has the following form:

Compilation Semantics for a Programming Language with Versions 63

t′1 ; t′′1
let [x] = E[t′1] in t2︸ ︷︷ ︸

t

−→ let [x] = E[t′′1] in t2

where t1 = E[t′1].
By induction hypothesis, we know the following:

Γ1 ⊢ E[t′1] : 2rA

E[t′1] −→ E[t′′1]

}
=⇒ Γ1 ⊢ E[t′′1] : 2rA (ih)

We then reapply (let) to obtain the following:
Γ1 ⊢ E[t′′1] : 2rA Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = E[t′′1] in t2 : B
(let)

Thus, we obtain the conclusion of the theorem.

– Case (weak)

Γ1 ⊢ t : A ⊢ ∆′

Γ1 + [∆′]0 ⊢ t : A
(weak)

In this case, t does not change between before and after the last derivation.
The induction hypothesis implies that there exists a term t′ such that:

t −→ t′ ∧ Γ1 ⊢ t′ : A (ih)

We then reapply (weak) to obtain the following:

Γ1 ⊢ t′ : A ⊢ ∆′

Γ1 + [∆′]0 ⊢ t′ : A
(weak)

Thus, we obtain the conclusion of the theorem.

– Case (der)

Γ1, x : B ⊢ t : A

Γ1, x : [B]1 ⊢ t : A
(der)

In this case, t does not change between before and after the last derivation.
The induction hypothesis implies that there exists a term t′ such that:

t −→ t′ ∧ Γ1, x : B ⊢ t′ : A (ih)

We then reapply (der) to obtain the following:

Γ1, x : B ⊢ t′ : A

Γ1, x : [B]1 ⊢ t′ : A
(der)

Thus, we obtain the conclusion of the theorem.

64 Y. Tanabe et al.

– Case (pr)

[Γ] ⊢ t′′ : B ⊢ r

r · [Γ] ⊢ [t′′] : 2rB
(pr)

This case holds trivially because there are no evaluation rules that can be
applied to [t′′].

– Case (ver)

[Γi] ⊢ ti : A ⊢ {li}⋃
i({li} · [Γi]) ⊢ {li = ti} : 2{li}A

(ver)

This case holds trivially because there are no evaluation rules that can be
applied to {li = ti}.

– Case (veri)

[Γi] ⊢ ti : A ⊢ {li} lk ∈ {li}⋃
i({li} · [Γi]) ⊢ ⟨li = ti | lk⟩ : A

(veri)

In this case, the only evaluation rule we can apply is evaluation for [·]. We
know the evaluation of the assumption has the following form:

E-veri
⟨li = ti | lk⟩ ; tk@lk

⟨li = ti | lk⟩︸ ︷︷ ︸
t

−→ tk@lk

By Lemma 1, we know the following:⋃
i({li} · [Γi]) ⊢ ⟨li = ti | lk⟩ : A

⟨li = ti | lk⟩ ; tk@lk

}
=⇒

⋃
i({li} · [Γi]) ⊢ tk@lk : A

Thus, we obtain the conclusion of the theorem.

– Case (extr)

Γ ⊢ t1 : 2rA lk ∈ r

Γ ⊢ t1.lk : A
(extr)

In this case, there are two evaluation rules that we can apply to t.
• Suppose the evaluation rule matches to [·].
We know the evaluation of the assumption has the following form:

E-ex1 or E-ex2
t1.lk ; t′1
t1.lk︸︷︷︸

t

−→ t′1

Compilation Semantics for a Programming Language with Versions 65

By Lemma 1, we know the following:

Γ ⊢ t1.lk : A

t1.lk ; t′1

}
=⇒ Γ ⊢ t′1 : A

Thus, we obtain the conclusion of the theorem.
• Suppose the evaluation rule matches to E.l.
We know the evaluation of the assumption has the following form:

t′1 ; t′′1
E[t′1].lk︸ ︷︷ ︸

t

−→ E[t′′1].lk

where t1 = E[t′1].
By induction hypothesis, we know the following:

Γ ⊢ E[t′1] : 2rA

E[t′1] −→ E[t′′1]

}
=⇒ Γ ⊢ E[t′′1] : 2rA (ih)

We the reapply (extr) to obtain the following:
Γ ⊢ E[t′′1] : 2rA lk ∈ r

Γ ⊢ E[t′′1].lk : A
(extr)

Thus, we obtain the conclusion of the theorem.

– Case (sub)

Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s ⊢ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(sub)

In this case, t does not change between before and after the last derivation.
The induction hypothesis implies that there exists a term t′ such that:

t −→ t′ ∧ Γ1, x : [B]r, Γ2 ⊢ t′ : A (ih)

We then reapply (sub) to obtain the following:

Γ1, x : [B]r, Γ2 ⊢ t′ : A r ⊑ s ⊢ s
(sub)

Γ1, x : [B]s, Γ2 ⊢ t′ : A

Thus, we obtain the conclusion of the theorem.

Theorem 3 (λVL progress).

∅ ⊢ t : A =⇒ (value t) ∨ (∃t′.t −→ t′)

Proof. The proof is given by induction on the typing derivation of t. Consider
the cases for the last rule used in the typing derivation of the assumption.

66 Y. Tanabe et al.

– Case (int)

∅ ⊢ n : Int
(int)

This case holds trivially because value n.

– Case (var) This case holds trivially because x : A cannot be ∅.

– Case (abs)

− ⊢ p : A1 �∆′ ∆′ ⊢ t : A2

∅ ⊢ λp.t : A1 → A2

(abs)

This case holds trivially because value λp.t.

– Case (app)

∅ ⊢ t1 : B → A ∅ ⊢ t2 : B

∅ ⊢ t1 t2 : A
(app)

There are two cases whether t1 is a value or not.
• Suppose t1 is a value.
By the inversion lemma (9), we know that there exists a term t′1 and
t1 = λp.t′1. Thus, we can apply two rules to t as follows.

∗ Case (E-abs1)
(E-abs1)

(λx.t′1) t2 ; (t2 � x) t′1
(λx.t′1) t2︸ ︷︷ ︸

t

−→ (t2 � x) t′1

Furthermore, we know the following:

(t2 � x) t′1 = [t2/x]t
′
1

(�var)

By choosing t′ = [t2/x]t
′
1, we obtain the conclusion of the theorem.

∗ Case (E-abs2)
E-abs2

(λ[x].t′1) t2 ; let [x] = t2 in t′1
(λ[x].t′1) t2︸ ︷︷ ︸

t

−→ let [x] = t2 in t′1︸ ︷︷ ︸
t′

By choosing t′ = let [x] = t2 in t′1, we obtain the conclusion of the
theorem.

• Suppose t1 is not a value.
There exists a term t′1 such that:

t1 ; t′1
t1 −→ t′1

Also, we can apply evaluation for application to t.

Compilation Semantics for a Programming Language with Versions 67

t1 ; t′1
t1 t2︸︷︷︸

t

−→ t′1 t2

Thus, by choosing t′ = t′1 t2, we obtain the conclusion of the theorem.

– Case (let)

∅ ⊢ t1 : 2rA x : [A]r ⊢ t2 : B

∅ ⊢ let [x] = t1 in t2 : B
(let)

There are two cases whether t1 is a value or not.
• Suppose t1 is a value.
By the inversion lemma (9), we know that t1 has either a form of [t′1] or
and {li = t′′i }.

∗ Case t1 = [t′1].
In this case, we can apply (E-clet) to obtain the following.

let [x] = [t′1] in t2 ; ([t′1]� [x])t2
(E-clet)

Thus, we can apply (�□) and (�var) to obtain the following.
(�var)

(t′1 � x)t2 = [t′1/x]t2 (�□)
([t′1]� [x])t2 = [t′1/x]t2

Thus, by choosing t′ = [t′1/x]t2, we obtain the conclusion of the
theorem.

∗ Case t1 = {li = t′′i }.
In this case, we can apply (E-clet) to obtain the following:

(E-clet)
let [x] = {li = t′′i } in t2 ; (⟨li = t′′i | lk⟩� [x])t2

let [x] = {li = t′′i } in t2︸ ︷︷ ︸
t

−→ (⟨li = t′′i | lk⟩� [x])t2

Also, we can apply (�ver) and (�var) to obtain the following.
(�var)

(⟨li = t′′i | lk⟩� x)t2 = [⟨li = t′′i | lk⟩/x]t2 (�ver)
({li = t′′i }� [x])t2 = [⟨li = t′′i | lk⟩/x]t2

Thus, by choosing t′ = [⟨li = t′′i | lk⟩/x]t2, we obtain the conclusion
of the theorem.

• Suppose t1 is not a value.
There exists terms t′1 such that:

t1 ; t′1
t1 −→ t′1

Also, we can apply evaluation for contextual let bindings to t.
t1 ; t′1

let [x] = t1 in t2︸ ︷︷ ︸
t

−→ let [x] = t′1 in t2

68 Y. Tanabe et al.

Thus, by choosing t′ = (let [x] = t′1 in t2), we obtain the conclusion of
the theorem.

– Case (weak)

∅ ⊢ t : A ⊢ ∅
∅ ⊢ t : A

(weak)

In this case, t does not change between before and after the last derivation.
Thus, we can obtain the conclusion of the theorem by induction hypothesis.

– Case (der)
This case hold trivially because Γ1, x : [B]1 cannot be ∅.

– Case (pr)

∅ ⊢ t : B ⊢ r

∅ ⊢ [t] : 2rB
(pr)

This case holds trivially because [t] is a value.

– Case (ver)

∅ ⊢ ti : A ⊢ {li}
∅ ⊢ {li = ti} : 2{li}A

(ver)

This case holds trivially because {li = ti} is a value.

– Case (veri)

∅ ⊢ ti : A ⊢ {li} lk ∈ {li}
∅ ⊢ ⟨li = ti | lk⟩ : A

(veri)

In this case, we can apply (E-veri).

(E-veri)
⟨li = ti | lk⟩ ; tk@lk

⟨li = ti | lk⟩ −→ tk@lk

Thus, by choosing t′ = tk@lk, we obtain the conclusion of the theorem.

– Case (extr)

∅ ⊢ t1 : 2rA lk ∈ r

∅ ⊢ t1.lk : A
(extr)

In this case, we have two cases whether t1 is a value or not.

Compilation Semantics for a Programming Language with Versions 69

• Suppose t1 is a value. (t1 = v1)
By Lemma 11, we know the following:

∅ ⊢ v1 : 2rA =⇒ ∃t′.

{
v1.lk −→ t′

∅ ⊢ t′ : A

Thus, we obtain the conclusion of the theorem.
• Suppose t1 is not a value.
There exists a term t1 such that:

t1 ; t′1
t1 −→ t′1

Also, we can apply an exaluation rule for extraction to t.
t1 ; t′1

t1.lk︸︷︷︸
t

−→ t′1.lk

Thus, by choosing t′ = t′1.lk, we obtain the conclusion of the theorem.

– Case (sub)

Γ1, x : [B]r, Γ2 ⊢ t : A r ⊑ s ⊢ s

Γ1, x : [B]s, Γ2 ⊢ t : A
(sub)

In this case, t does not change between before and after the last derivation.
Thus, by induction hypothesis, we obtain the conclusion of the theorem.

70 Y. Tanabe et al.

D VLMini Proofs

Definition 7 (Solution of Algorithmic Type Synthesis). Suppose that
Σ;Γ ⊢ t ⇒ A;Σ′;∆;Θ; C. A solution for this judgement is a pair (θ, η,B)
such that θ satisfies Θ, η satisfies C, and θηA = B.

Definition 8 (Solution of Pattern Type Synthesis). Suppose that Σ;R ⊢
p : A � Γ ;Σ′;Θ; C. A solution for this judgement is a pair (η, θ, B) such that θ
satisfies Θ, η satisfies C, and θηA = B.

Lemma 12 (Relation of Resource Well-formedness).

⊢ Σ ∧ Σ ⊢ η ∧ FTV (r) ⊆ dom(η) ∧ Σ ⊢ r : Labels =⇒ ⊢ ηr

Proof. Straightforward by induction on the derivation of Σ ⊢ r : Labels.

Lemma 13 (Relation of Type Well-formedness).

⊢ Σ ∧ Σ ⊢ θ ∧ Σ ⊢ η ∧
FTV (A) ⊆ dom(θ) ∪ dom(η) ∧ Σ ⊢ A : Type

=⇒ ⊢ ηθA

Proof. Straightforward by induction on the derivation of Σ ⊢ A : Type. The
proof uses Lemma 12.

Lemma 14 (Relation of Type Environment Well-formedness).

⊢ Σ ∧ Σ ⊢ θ ∧ Σ ⊢ η ∧
FTV (Γ) ⊆ dom(θ) ∪ dom(η) ∧ Σ ⊢ Γ

=⇒ ⊢ ηθΓ

Proof. Straightforward by induction on the derivation of Σ ⊢ Γ . The proof uses
Lemmas 12 and 13.

Lemma 15 (Relation of Resource Environment Well-formedness).

⊢ Σ ∧ Σ ⊢ η ∧ FTV (R) ⊆ dom(η) ∧ Σ ⊢ R =⇒ ⊢ ηR

Proof. Straightforward by induction on the derivation of Σ ⊢ R. The proof uses
Lemma 12.

Lemma 16 (Soundness of Pattern Type Synthesis).

Σ;R ⊢ p : A� Γ ;Σ′;Θ; C
(θ, η, ηθA) is its solution

}
=⇒ ηR ⊢ p : ηθA� ηθΓ

Proof. By induction on the derivation of Σ;R ⊢ p : A�Γ ;Σ′;Θ; C. We perform
case analysis on the rule applied last to derive Σ;R ⊢ p : A� Γ ;Σ′;Θ; C.

Compilation Semantics for a Programming Language with Versions 71

– Case (pInt):

⊢ Σ Σ ⊢ R Σ ⊢ A : Type

Σ;R ⊢ n : A� ∅;Σ; {A ∼ Int};⊤
(pInt)

We are given

p = n, Γ = ∅, Θ = {A ∼ Int}, C = ⊤ .

Hence, we have θA = Int and η = ∅, therefore,

ηθA = Int, ηθΓ = ∅ .

By Lemma 15,

⊢ ηR .

Therefore, by pInt,

⊢ ηR

ηR ⊢ n : Int� ∅
(pInt)

– Case (pVar), and ([pVar]):
Similarly to the case (pInt). We use lemma 13 for the case (pVar), and
lemmas 12 and 13 for the case ([pVar]).

– Case (p□):

Σ,α : Labels, β : Type;α ⊢ p′ : β � Γ ;Σ′;Θ′; C
Σ;− ⊢ [p′] : A� Γ ;Σ′;Θ′ ∧ {A ∼ 2αβ}; C

(p□)

We are given

R = −, p = [p′], Θ = Θ′ ∧ {A ∼ 2αβ} .

Hence, we have θ unify Θ′, θA = θ(2αβ), and ηθA = ηθ(2αβ), therefore,

ηθA = ηθ(2αβ) = ηθA, ηR = − .

Hence, by the induction hypothesis,

ηα ⊢ p′ : ηθβ � ηθΓ

Therefore, by p□,

ηα ⊢ p′ : ηθβ � ηθΓ

− ⊢ [p′] : 2ηαηθβ � ηθΓ
(p□)

Since θ does not include type substituions for resource variables, ηα = ηθα,
hence 2ηαηθβ = ηθ(2αβ) = ηθA. Therefore, we get the conclusion for this
case.

72 Y. Tanabe et al.

Theorem 4 (Soundness of Algorithmic Type Synthesis).

Σ;Γ ⊢ t ⇒ A;Σ′;∆;Θ; C
(θ, η, ηθA) is its solution

}
=⇒ ηθ∆ ⊢ t : ηθA

Proof. By induction on the derivation of Σ;Γ ⊢ t ⇒ A;Σ′;∆;Θ; C. We perform
case analysis on the rule applied last to derive Σ;Γ ⊢ t ⇒ A;Σ′;∆;Θ; C.

– Case (⇒int):

⊢ Σ Σ ⊢ Γ

Σ;Γ ⊢ n ⇒ Int;Σ; ∅;⊤;⊤
(⇒int)

We are given

t = n, A = Int, ∆ = ∅, Θ = ⊤, C = ⊤ .

Hence, we have θ = ∅ and η = ∅, therefore,

ηθ∆ = ∅, ηθA = Int .

Therefore, by (int),

∅ ⊢ n : Int
(int)

– Case (⇒lin):

⊢ Σ Σ ⊢ Γ x : A ∈ Γ

Σ;Γ ⊢ x ⇒ A;Σ;x : A;⊤;⊤
(⇒lin)

We are given

t = x, ∆ = x : A, Θ = ⊤, C = ⊤ .

Hence, we have θ = ∅ and η = ∅, therefore,

ηθ∆ = x : A, ηθA = A .

Furthermore, by Lemma 13, we have

⊢ ηθA (= A) .

Therefore, by (var),

⊢ A

x : A ⊢ x : A
(var)

Compilation Semantics for a Programming Language with Versions 73

– Case (⇒gr):

⊢ Σ Σ ⊢ Γ x : [A]r ∈ Γ

Σ;Γ ⊢ x ⇒ A;Σ;x : [A]1;⊤;⊤
(⇒gr)

We are given

t = x, ∆ = x : [A]1, Θ = ⊤, C = ⊤ .

Hence, we have θ = ∅ and η = ∅, therefore,

ηθ∆ = x : [A]1, ηθA = A .

Furthermore, by Lemma 13, we have

⊢ ηθA (= A) .

Therefore, we conclude the case by the following derivation.

(var)
x : A ⊢ x : A (der)

x : [A]1 ⊢ x : A

– Case (⇒abs):

Σ1, α : Type;− ⊢ p : α� Γ ′;Σ2;Θ1

Σ2;Γ, Γ
′ ⊢ t ⇒ B;Σ3;∆

′;Θ2; C
Σ1;Γ ⊢ λp.t ⇒ α → B;Σ3;∆

′\Γ ′;Θ1 ∧Θ2; C
(⇒abs)

We are given

t = α → B, ∆ = ∆′\Γ ′, Θ = Θ1 ∧Θ2, .

Hence, we have θ unifies Θ1 and Θ2, η unifies C. Therefore, we have

ηθ∆ = ηθ(∆′\Γ ′), ηθA = ηθ(α → B) .

Furthermore, by Lemma 16 and the induction hypothesis, we have

− ⊢ p : ηθα� ηθΓ ′, ηθ∆′ ⊢ t : ηθB .

Therefore, by (abs),

− ⊢ p : ηθα� ηθΓ ′ ηθ∆′ ⊢ t : ηθB

ηθ∆′\ηθΓ ′ ⊢ λp.t : ηθα → ηθB
(abs)

Since ηθ∆′\ηθΓ ′ = ηθ(∆′\Γ ′) and ηθα → ηθB = ηθ(α → B), we have the
conclusion of the case.

74 Y. Tanabe et al.

– Case (⇒app):

Σ1;Γ ⊢ t1 ⇒ A1;Σ2;∆1;Θ1; C1
Σ2;Γ ⊢ t2 ⇒ A2;Σ3;∆2;Θ2; C2

Σ1;Γ ⊢ t1 t2 ⇒ β;Σ3, β : Type;∆1 +∆2;
Θ1 ∧Θ2 ∧ {A1 ∼ A2 → β}; C1 ∧ C2

(⇒app)

We are given

t = t1 t2, A = β, ∆ = ∆2 +∆2,

Θ = Θ1 ∧Θ2 ∧ {A1 ∼ A2 → β}, C = C1 ∧ C2 .

Hence, we have θ unifies Θ1 and Θ2, and θA1 = θ(A2 → β). Also, η unifies
C1 and C2, and then we have ηθA1 = ηθ(A2 → β) = ηθA2 → ηθβ. Therefore,
we have

ηθ∆ = ηθ(∆2 +∆2), ηθA = ηθβ .

Furthermore, by the induction hypothesises,

ηθΓ ⊢ t1 : ηθA1 (= ηθA2 → ηθβ), ηθΓ ⊢ t2 : ηθA2 .

Therefore, by (app),

ηθΓ ⊢ t1 : ηθA2 → ηθβ ηθΓ ⊢ t2 : ηθA2

ηθΓ ⊢ t1 t2 : ηθβ
(app)

– Case (⇒pr):

Σ1 ⊢ [Γ ∩ FV(t)]Labels � Γ ′ Σ1;Γ
′ ⊢ t ⇒ A′;Σ2;∆

′;Θ; C1
Σ3 = Σ2, α : Labels Σ3 ⊢ α ⊑c Γ

′ � C2
Σ1;Γ ⊢ [t] ⇒ 2αA

′;Σ3;α ·∆′;Θ; C1 ∧ C2
(⇒pr)

We are given

t = [t], A = 2αA
′, ∆ = α ·∆′, C = C1 ∧ C2, .

Hence, θ unifies Θ and η unifies C1 and C2. Therefore, we have

ηθ∆ = ηθ(α ·∆′) = (ηθα) · (ηθ∆′), ηθA = ηθ(2αA
′) = 2ηθαηθA

′ .

Furthermore, by the induction hypothesis, we have

ηθ∆′ ⊢ t : ηθA′ .

Therefore, by (pr),

ηθ∆′ ⊢ t : ηθA′ ⊢ ηθα

(ηθα) · (ηθ∆′) ⊢ [t] : 2ηθαηθA
′ (pr)

	Compilation Semantics for a Programming Language with Versions

