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Abstract
Updating the version of upstream packages can break soft-
ware behavior due to incompatibilities. To cope with this
problem, inspired by the concept of programming with ver-
sions, we propose Vython, a Python subset with dynamic
version checking. Vython enables programmers to safely
and gradually update by allowing the simultaneous use of
multiple versions and reporting incompatible versions that
are used together within the same data flow. We discuss the
design and naive implementation of Vython, evaluate its run-
time performance, and explore future directions to facilitate
smoother updates in practical development.

Keywords: Software maintenance, Software migration, De-
pendency management, Python

1 Introduction
Updating the version of upstream packages is one of the most
troublesome tasks for downstream developers [8, 11]. An
incompatible new version can break the behavior of down-
stream programs [5, 7]. Each new release of upstream pack-
ages requires downstream developers to assess its impact
and modify their source code accordingly.
Replacing an upstream package with its new version is

automated by package managers such as pip [1] in Python.
For example, developers using NumPy [6] can automatically
install the latest version by running pip install -U numpy.
Many developers benefit from this automation, as packages
like NumPy are widely used across various domains, such
as data analysis, deep learning, and image processing, in
libraries like Pandas [17], PyTorch [12], and OpenCV [2].

Downstream developers carefully coordinate existing pro-
grams in order to update fundamental packages such as
NumPy. The first major update of NumPy, version 2.0.0, was
released in 2024. If any of the packages in use depends on
NumPy 1.x, the automatic installation of NumPy 2.0.0 via
pip will fail. Manual installation, which is possible from
the source, can break the existing behavior of downstream
programs unintentionally, as some NumPy functions are
incompatible with the old ones (see Appendix A).

Programming with Versions (PWV) [10, 13, 14] is a recent
proposal designed to enable a gradual transition to new ver-
sions, thereby reducing update costs. The key ideas of PWV
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Figure 1. Dependencies of the User program.

1 class SciPy: # SciPy 1.12.0:
2 def place_poles(A, B, poles):
3 return NumPy().solve(..) # Using Numpy 1.26.4

1 def my_place_poles(A, B, poles): # User Program
2 return NumPy().solve(..) # Using Numpy 2.0.0
3 NumPy().array_equal(
4 my_place_poles(A, B, poles),
5 scipy.place_poles(A, B, poles) ) # => False

Figure 2. A program that uses NumPy and SciPy in Python

are (1) the simultaneous use of multiple versions, and (2)
language mechanisms (i.e. types) that check version compat-
ibilities. PWV languages ensure that programs use values
created by compatible versions.

While previous research realized PWV in statically-typed
languages, this research explores methods implementing
PWV functionalities in dynamically-typed languages. To
achieve this, we propose dynamic version checking (DVC) to
alert when values of incompatible versions are used together
dynamically . The DVC mechanism facilitates developers’
communication regarding incompatibilities [9]; upstream
developers specify compatibility for each function, allowing
downstream developers to assess the impact of updates on
their software through warnings.
We implement Vython, a Python subset with DVC, as a

proof-of-concept. As a preliminary evaluation, we evaluate
its runtime performance, and discuss optimizations and pos-
sible mechanisms that assist practical development.

2 Motivating Example
Consider a scenario where we update a user program that

reimplements a function for solving pole placement problem1

and test its behavior against SciPy [16] implementation.
Figure 1 shows the dependencies of the User program. User
depends on SciPy version 1.12.0, which indirectly depends
1This is a common task in control theory, placing closed-loop poles in
desired locations to control the system response [15].
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on NumPy 1.26.4, and User directly depends on NumPy and
attempts to update it from version 1.26.4 to 2.0.0.
As shown in Figure 2, both SciPy and User use solve

from NumPy2. In User (Figure 2 bottom), my_place_poles
is implemented using solve, and its results are compared
against the existing implementation in SciPy. place_poles
in SciPy 1.12.0 (Figure 2 top) directly returns the result of
solve. We try to update NumPy in the User project.

Updating NumPy via pip. This attempt fails as follows.
1 $ pip install numpy==2.0.0
2 ERROR: scipy 1.12.0 requires numpy<1.29.0,>=1.22.4, but you

have numpy 2.0.0 which is incompatible.

The output error reports that this attempt has resulted in
broken dependencies because the already installed SciPy is
locked to NumPy versions below 1.29.0.
Updating NumPy from the Source. A natural solution

to use NumPy 2.0.0 without waiting for SciPy updates is to
separately use NumPy 1.26.4 for SciPy and 2.0.0 for User.
Building NumPy from the source and dynamically import-
ing specific versions makes this possible (see Appendix B).
However, subtle differences between the two versions may
result in an unintended behavior in the User program.

The solve implementation was incompatibly changed in
the NumPy 2.0.0 release. As explained in Appendix A, the
ambiguous broadcasting rule was corrected in 2.0.0, so solve
in the two versions may return different outputs even with
the same input. As a result, the test of my_place_poles
against place_poles in Figure 2 line 5 fails, even if both
implementations are logically the same.

Identifying the cause of this failure is challenging. Current
build systems lack mechanisms to detect the mixed use of
incompatible implementation versions. Additionally, such
incorrect version usage is often reported as Python semantic
errors, which do not provide the essential cause rooted in
incompatibilities. Consequently, programmers must engage
in tedious tasks such as reading release notes and reviewing
implementations of all upstream packages.

3 Safely Use Multiple Versions in Vython
Vython is a python subset with the following features:
• Using multiple versions in a code: The programmer

can selectively use multiple versions of a class definition
by specifying a version when instantiating.

• Dynamic version checking (DVC): Vython records in-
formation about the class and its version used for creating
a value, ensuring that programs use values created by
compatible combination of versions (objects).
Vython differentiates multiple versions of a class inter-

nally, allowing for their selective use. As shown in Figure 3,
the current naive implementation requires version annota-
tions in the surface language. Additionally, DVC is intended
2These programs are simplified, but are essentially identical to the actual
implementation. For more details, see Appendix B.

1 class NumPy!1.26.4():
2 def solve(self, A, B):
3 return res

1 class NumPy!2.0.0():
2 def solve(self, A, B):
3 return incompatible(res,

..)

1 class SciPy!1.12.0():
2 def place_poles(A, B, poles):
3 return NumPy!1.26.4().solve(..) # Using Numpy 1.26.4

1 def my_place_poles(A, B, poles): # User Program
2 return NumPy!2.0.0().solve(..) # Using Numpy 2.0.0
3 array_equal(
4 my_place_poles(A, B, poles),
5 SciPy!1.12.0().place_poles(A, B, poles) ) # => Warning!

Figure 3. A program that uses NumPy and SciPy in Vython

class NumPy Array
version 2.0.0 1.0.3
flag True False
Table 1. Version Table

to be enabled only in debug mode. Vython has a production
mode that deploys programs without runtime checks.

Vython provides a mechanism for upstream developers to
specify compatibility, which is utilized in DVC as follows.

Upstream Developer Specifies Compatibilities in Code.
In Vython, upstream developers are responsible for specify-
ing incompatibilities. In Numpy 2.0.0 (Figure 3 top right), the
NumPy developer uses incompatible() to mark an expres-
sion as incompatible with previous versions. Additionally,
upstream developers can provide guidance (as shown below)
to help downstream developers. This information is recorded
along with the class definition in the source code.
1 [Changed in 2.0.0] (How it differes from 1.26.4)

Notifying Downstream Developers of Incompatibility
Causes. The downstream developer using both NumPy ver-
sions benefits from DVC and the guidance for updates speci-
fied by the NumPy developer. In the user program (Figure 3
bottom), the DVC mechanism reports runtime warnings (as
shown below) on lines 3-5 because array_equal uses values
derived from incompatible versions of the solve function.
1 Incompatible version usage found in Lines 3-5:
2 - NumPy 1.26.4
3 - NumPy 2.0.0
4 [Changed in version 2.0] `NumPy().solve(a,b)`:
5 - If `b` is 1-dim, it is treated as a column vector (M,).
6 - Otherwise, it is treated as a stack of (M, K) matrices.
7 - Previously, `b` was treated as a stack of (M,) vectors

if `b.ndim` equaled `a.ndim - 1`.

4 Implementation
4.1 Recording Compatibility Information in Values
Vython records the version information in a format called
Version Table (VT). All values (objects) are assigned initialized
VT upon their instantiation. When evaluating a program
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Figure 4. Overhead of the helper functions in Vython (left) for simple benchmarks
and (right) for repeating additions 2000 times with the number of VT entries.

using multiple values, Vython concatenates their VTs and
propagates it to the VT of the resulting value.
For example, Table 1 shows the VT for the result value

of my_place_poles(A, B, poles) on line 4 in the user
program in Figure 3. This VT records that the value depends
on Array 1.0.3 and NumPy 2.0.0. The flag is a check flag
indicating whether the value is potentially incompatible with
other versions. The check flag is False by default and is set
to True by a call to incompatible().

4.2 Dynamic Version Checking Mechanism
Vython dynamically checks for compatibility by comparing
VTs through a predefined helper function. This function is
automatically invoked during the evaluation of prespecified
method calls, including primitive operations by default.
For example, in lines 3-5 of Figure 3, DVC compares the

VTs of the two arguments of array_equal. The first argu-
ment’s VT indicates incompatibility with NumPy versions
below 2.0.0 (as shown in Table 1), while the second’s VT
shows it derives from NumPy 1.26.4. DVC compares the
VT’s entries and detects the difference as an incompatibility.

4.3 Transpilation
The Vython transpiler transpiles Python programs with ver-
sion annotations, as shown in Figure 3, into specific versions
of Python programs. In the current implementation, we treat
all values as objects with VTs for simplification; literals are
transpiled into predefined classes and VT is implemented
as an attribute of these objects. The transpiler also inserts
global helper functions for VT initialization, VT propagation,
and compatibility checking.

5 Evaluation
Settings. We conducted preliminary experiments on run-

time performance. We run (1) simple benchmarks for several
major algorithms3 using a VT with a maximum of two en-
tries, and (2) a program that repeats additions 2000 times,
with the number of VT entries doubling from 20 to 211. These
experiments were conducted with Python 3.12.1 on an Intel

3See Appendix C for more details.

Core i5-10400F running Windows 11 23H2. We calculated
the average over 10000 iterations for the following five cases.

1. python: Baseline, no proposed language feature.
2. wrap-literals: Compiling literals as with VTs.
3. vt-init: 2 + VT Initialization at object instantiations.
4. vt-prop: 3 + VT concatenation and propagation.
5. vt-check (vython): 4 + Compatibility checking.

Discussion. Figure 4 (left) shows that the overhead is 18x
relative to Python in the worst case (fib and vt-check), and
the programs dominated by arithmetic and boolean opera-
tions, such as fib and is_prime, exhibit higher overhead
than the other two. In comparison to other dynamic analy-
sis tools for Python, such as DynaPyt [4], whose overhead
ranges from 1.2x to 16x, this result is not overly excessive and
indicate that it is acceptable for debugging purposes in terms
of runtime performance. Figure 4 (right) shows that the over-
head does not increase significantly as the VT size grows.
These results imply that Vython is scalable, although further
case studies are necessary to ensure the VT size remains
< 211 for real-world applications.

6 Conclusion and Future Work
We implement Vython and conduct a preliminary evaluation.
The results indicate that while the current implementation
is prototypical, its performance is acceptable for debugging
purposes. We plan to undertake the following future work.

Toward Better Feedback. Actual packages have multiple
versions and evolve non-linearly [3], while the current DVC
mechanism assumes two versions and linear evolution. By
using tools to manage source code differences and incompat-
ibilities, we can synthesize feedback that takes into account
the history of updates.

Surface Language Design. The current Vython requires
specifying class versions in the surface program. We plan to
develop a method to automatically infer versions working on
Python programs. This will help minimize the annotations
given by downstream developers, identify dependencies on
old versions, and automate updates.
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example, consider the following program run with NumPy
1.26.4 and NumPy 2.0.0.
1 import numpy as np
2
3 # Shape (2, 2, 2)
4 a = np.array(
5 [ [[3, 1], [1, 2]]
6 , [[2, 1], [1, 3]] ])
7 # Shape (2, 2)
8 b = np.array(
9 [ [9, 8]
10 , [7, 10] ])
11
12 x = np.linalg.solve(a, b)
13 print(x)

When we run the above program with NumPy versions
1.26.4 and 2.0.0, we get the following different outputs due
to incompatibility in broadcasting rules.
1 @ Running linalg_solve.py with numpy 1.26.4
2 [[2. 3. ]
3 [2.2 2.6]]
4 @ Running linalg_solve.py with numpy 2.0.0
5 [[[2.2 1.2]
6 [2.4 4.4]]
7
8 [[4. 2.8]
9 [1. 2.4]]]

The reason for this difference lies in how the b array is
treated in different versions of NumPy. In version 1.26.4, if
b’s number of dimensions (b.ndim) is equal to one less than
the number of dimensions of a (a.ndim - 1), b is interpreted
as a stack of (M,) vectors. This means that in version 1.26.4,
the b array is treated as a stack of 1-dimensional vectors, each
corresponding to a 2x2 matrix in a. Therefore, the program
is interpreted as follows:(

3 1
1 2

) (
𝑥1
𝑥2

)
=

(
9
8

)
,

(
2 1
1 3

) (
𝑦1
𝑦2

)
=

(
7
10

)
.

However, in version 2.0.0, the behavior was modified such
that the b array is treated as a column vector only if it is
strictly 1-dimensional. In all other cases, it is treated as a
stack of (M, K) matrices. Consequently, for the given input,
b is treated as a stack of 2-dimensional matrices. Therefore,
the program is interpreted as follows:(
3 1
1 2

) (
𝑥1 𝑥2
𝑥3 𝑥4

)
=

(
9 8
7 10

)
,

(
2 1
1 3

) (
𝑦1 𝑦2
𝑦3 𝑦4

)
=

(
9 8
7 10

)
.

A.2 Incompatibilities in Other Functions
In addition to numpy.linalg.solve, NumPy 2.0.0 introduces
several other backward-incompatible modifications. Among
the programs we collected that produce different outputs
solely due to version differences in NumPy, we list some
notable input-output pairs below. For other examples where
downstream developers might easily notice incompatibilities
due to Python runtime errors, such as differences in output
types, please refer to the repository.

numpy.nonzero. The function return the indices of the
elements that are non-zero. The function previously ignored
whitespace so that a string only containing whitespace was
considered False, however, whitespace is now considered
True in string arrays newly in NumPy 2.0.0.
1 import numpy as np
2
3 arr = np.array(['␣', 'a', ''])
4 print(np.nonzero(arr))

1 @ Running nonzero.py with numpy 1.26.4
2 (array([1]),)
3 @ Running nonzero.py with numpy 2.0.0
4 (array([0, 1]),)

numpy.linalg.lstsq. The function returns the least squares
solution to a linear matrix equation. The default value of
the rcond (cut-off ratio) parameter in lstsq was changed
in NumPy 2.0.0. This change introduces a subtle incompat-
ibility: while most inputs yield the same output regardless
of the NumPy version, inputs with elements near machine
precision can produce different results depending on the
NumPy version. The following example illustrates such a
case.
1 import numpy as np
2
3 a = np.zeros((10**2, 2))
4 a[0, 0] = 1
5 a[m-1, 1] = 2.22e-16
6 b = np.zeros(m)
7 b[m-1] = 1
8
9 x, res, rank, s = np.linalg.lstsq(a, b)
10 print(...)

1 @ Running linalg_lstsq.py with numpy 1.26.4
2 Solution with default rcond: [0.0000000e+00 4.5045045e+15]
3 Residuals: [4.93038066e-32]
4 Rank: 2
5 Singular values: [1.00e+00 2.22e-16]
6 @ Running linalg_lstsq.py with numpy 2.0.0
7 Solution with default rcond: [0. 0.]
8 Residuals: []
9 Rank: 1
10 Singular values: [1.00e+00 2.22e-16]

numpy.loadtxt and numpy.genfromtxt. The functions
provide readers for simly formatted files. Default encod-
ing for these functions was changed in NumPy 2.0.0. Pre-
viously, these two functions selected encoding=bytes as
the default parameter, but starting from version 2.0.0, it has
been changed to encoding=string. As a result, programs
that expect custom converters assuming a byte value will be
broken by the update.
1 import numpy as np
2 import io
3 def custom_converter(byte_string):
4 return float(byte_string.decode('utf-8'))
5
6 data = b"1.1\n2.2\n3.3\n"
7 with open('data.txt', 'wb') as f:
8 f.write(data)
9
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10 # Load the data using loadtxt with the custom converter
11 try:
12 data = np.loadtxt('data.txt', converters={0:

custom_converter})
13 print(f"Data␣loaded␣successfully:␣{data}")
14 except Exception as e:
15 print(f"An␣error␣occurred:␣{e}")

1 @ Running loadtxt_genfromtxt.py with numpy 1.26.4
2 Data loaded successfully: [1.1 2.2 3.3]
3 @ Running loadtxt_genfromtxt.py with numpy 2.0.0
4 An error occurred: could not convert string '1.1' to

float64 at row 0, column 1.

B Dynamically Switching NumPy Versions
This section describes the reproduction of the motivating
examples from Section 2 in actual Python programs. The
complete source code and instrucations to reproduce the
results of this paper are available on the GitHub reposi-
tory (https://github.com/prg-titech/use-multi-versions).

B.1 Installing Multiple NumPy Versions from
Sources

For example, to install numpy version 1.26.4 into a direc-
tory named numpy-1.26.4 using pip on a Linux OS, use the
following command.
1 $ mkdir numpy-1.26.4
2 $ pip donwload numpy==1.26.4
3 $ pip install numpy-1.26.4- ... .whl -t numpy-1.26.4

B.2 Simultaneouslly Using Multiple NumPy
Versions in Code

The following load_numpy function dynamically loads a
specified version of NumPy. It takes a string representing the
version, sets the appropriate NumPy path, and removes any
cached instances of NumPy from sys.modules. The func-
tion then temporarily modifies the system path to include
the specified version’s path installed in the last section and
imports the NumPymodule from its initialization file. Finally,
load_numpy returns the module object for the specified ver-
sion of NumPy.
1 # version_dispatch.py
2 def load_numpy(version):
3 if version == '1.26.4':
4 numpy_path = os.path.abspath('numpy-1.26.4')
5 elif version == '2.0.0':
6 numpy_path = os.path.abspath('numpy-2.0.0')
7 else:
8 raise ValueError(f"Unsupported␣numpy␣version:␣{

version}")
9
10 # Clear cache
11 if 'numpy' in sys.modules:
12 del sys.modules['numpy']
13 for mod_name in list(sys.modules):
14 if mod_name.startswith('numpy'):
15 del sys.modules[mod_name]
16
17 # Set environment pathes
18 original_path = sys.path.copy()
19 sys.path.insert(0, numpy_path)
20
21 try:
22 numpy_init_path = os.path.join(numpy_path, 'numpy',

'__init__.py')
23 spec = importlib.util.spec_from_file_location("numpy

", numpy_init_path)
24 if spec is None:
25 raise ImportError(f"Cannot␣find␣numpy␣module␣in␣

{numpy_path}")
26
27 numpy = importlib.util.module_from_spec(spec)
28 spec.loader.exec_module(numpy)
29 finally:
30 # Restore sys.path
31 sys.path = original_path

https://github.com/prg-titech/use-multi-versions
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The following program shows the full version of the pro-
gram shown in Figure 2. The implementation of the pole
placement problem (place_poles and my_place_poles) has
been simplified, as it is not the focus of this section. Using
./version_dispatch.py, which defines the load_numpy
function described in the previous subsection, place_poles
is evaluatedwithNumPy 1.26.4 on line 26, and my_place_poles
is evaluated with NumPy 2.0.0 on line 27. Finally, the results
of the two functions are compared on line 29.

As mentioned in Section 2, despite place_poles and my_
place_poles being identical implementations except for the
NumPy version they use, the result evaluates to False.
1 from version_dispatch import load_numpy
2
3 # SciPy
4 class SciPy():
5 def place_poles(self, A, B, desired_poles):
6 np = load_numpy('1.26.4')
7 res = np.linalg.solve(A, B)
8 return res
9
10 # User Program
11 def my_place_poles(A, B, desired_poles):
12 np = load_numpy('2.0.0')
13 res = np.linalg.solve(A, B)
14 return res
15
16 def main():
17 np = load_numpy('2.0.0')
18 A = np.array(
19 [ [[3, 1], [1, 2]]
20 , [[2, 1], [1, 3]] ])
21 B = np.array(
22 [ [9, 8]
23 , [7, 10] ])
24 desired_poles = np.array([-1.0, -2.0])
25
26 expect = SciPy().place_poles(A,B,desired_poles).tolist()
27 actual = my_place_poles(A,B,desired_poles).tolist()
28
29 test = np.array_equal(expect, actual) # => False
30
31 main()

C Programs Used for Simple Benchmarks
insert.py. This program inserts one thousand Node in-

stances to a binary tree.
1 class Node!1():
2 def __init__(self, value):
3 self.value = value
4 self.left = None
5 self.right = None
6
7 def insert_right(self, v):
8 if self.right == None:
9 self.right = Node!1(v)
10 else:
11 self.right.insert(v)
12
13 def insert_left(self, v):
14 if self.left == None:
15 self.left = Node!1(v)
16 else:
17 self.left.insert(v)
18
19 def insert(self, v):
20 if(self.value <= v):
21 self.insert_right(v)
22 else:
23 self.insert_left(v)
24
25 root = Node!1(5)
26 a = [...] # Array of 1000 elements, random numbers

between 1 and 10000
27 for i in a:
28 root.insert(i)

sort.py. This programperforms amerge sort on a Python
list of 1000 elements.
1 def sort(list):
2 if len(list) < 1:
3 return []
4 elif len(list) == 1:
5 return list
6 pivot = list[0]
7 lower_list = []
8 upper_list = []
9 middle_list = []
10
11 for item in list:
12 if item < pivot:
13 lower_list.append(item)
14 elif item > pivot:
15 upper_list.append(item)
16 else:
17 middle_list.append(item)
18
19 sorted_lower_list = sort(lower_list)
20 sorted_upper_list = sort(upper_list)
21
22 return sorted_lower_list + middle_list +

sorted_upper_list
23
24 a = [...] # Array of 1000 elements, random numbers

between 1 and 10000
25 sort(a)

is_prime.py. This program uses a simple algorithm to
determine the primality of 128456903.
1 def is_prime(n):
2 if n <= 1:
3 return False
4 if n == 2 or n == 3:
5 return True
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6 if n % 2 == 0 or n % 3 == 0:
7 return False
8 return is_prime_recursive(n, 5)
9
10 def is_prime_recursive(n, i):
11 if i * i > n:
12 return True
13 if n % i == 0 or n % (i + 2) == 0:
14 return False
15 return is_prime_recursive(n, i + 6)
16
17 is_prime(128456903)

fib.py. This program recursively computes the 20th Fi-
bonacci number.
1 def fib(n):
2 if n<=2:
3 return 1
4 else:
5 return fib(n-1) + fib(n-2)
6
7 fib(20)
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