
1

2

3

class SciPy!1.12.0():
 def place_poles(self, A, B, poles):
 return NumPy!1.26.4().solve(a, b)

1

2

3

class NumPy!2.0.0():
 def solve(self, A, B):
 return res

class NumPy!1.26.4():
 def solve(self, A, B):
 return res

1

2

3

1

2

3

4

5

def my_place_poles(A, B, poles):
 return NumPy!2.0.0().solve(a, b)
array_equal(
 my_place_poles(A, B, poles),
 SciPy!1.12.0().place_poles(A, B, poles))

- All call sites of the package must
be targets for refactoring

- Untraceable causes of broken
behaviors due to upstream incomp.

Array {
 ‘value’: ..,
 ’ver-info’: 1100
}

Vython: a Language with Dynamic
Version Checking for Gradual Updating

Satsuki Kasuya

Implementation Performance Evaluation (preliminary)

Current Results

Package-wise updates
are NOT flexible

for fixing broken behaviors in downstream

Proposal: Vython

 POC Implementation
 Preliminary Evaluation
 Compatibility Manager
 Automatic Feedback Generation
 Designing Surface Language
 Case Study

Dynamically tracing versions
to detect conflicts & suggest refactoring hints

Upstream developers specify

Downstream developers are notified

class NumPy_v_2.0.0:
@version_initializer
def __init__(self, ~): …
@version_checker
@version_propagator
def solve(self, a, b):
 incompatible(res)

array_equal(
 my_place_poles(..),
 ..)

How to support multiple
versions in one program?

How to deal with
value incompatibilities?

Acceptable perf. for debugging despite a prototype

GoalMotivation

supervised by Yudai Tanabe and Hidehiko Masuhara

formerly Tokyo
Institute of Technology

Only 1

Can specify a class
version at instantiation

cf. ≒ ~16x overhead in DynaPyt[Egnbail+’22]➢ Object tracks its
source versions.

U
ps

tr
ea

m
D

ow
ns

tr
ea

m

Challenges

Vython
transpiler

Artifact 1

as exemplified by case study Artifact 2

Artifact 1

> Warning: Incompatible values is used together.
 4 | my_place_poles(A, B, poles)
 | ^ --> [[2. 3.] [2.2 2.6]]
 | ^ from solve in NumPy-v2.0.0/numpy.py:2:3
 5 | SciPy!1.12.0().place_poles(A, B, poles)
 | ^ --> [[[2.2 1.2] [2.4 4.4]] [[4. 2.8] [1. 2.4]]]
 | ^ from place_poles in SciPy-v1.12.0/scipy.py:3:11
 | ^ from solve in NumPy-v1.26.4/numpy.py:2:3
 |
 |

Conflict!

NumPy
v1.26.4

NumPy
v2.0.0

NumPy
v1.26.4

NumPy
v2.0.0

NumPy
v1.26.4

NumPy
v2.0.0

Case study on
NumPy value

incompatibilities

Artifact 2

➢ Feature 2 is compiled
into bitwise operations
in helper functions.

Gradual Updating
[Tanabe+’21,’23, Lubis+’22]

1. Selective update of call sites
2. Confirm behavior by running

On statically-
typed languages

On dynamically-
typed languages

• VL[Tanabe+’21,’23]

• BatakJava[Lubis+’22] This research

RQ 1: RQ 2:

Feature 1: Feature 2:

[Incompatibility] Removed ambiguity when broadcasting
 in np.solve (gh-25914)
 The broadcasting rules for np.solve(a, b)were ambiguous when b had 1

fewer dimensions than a. This has been resolved in a backward-incompatible way …

[Refactoring Hints]
The old behavior can be reconstructed by using
np.solve(a, b[…, None])[…, 0].

https://numpy.org/devdocs/release/2.0.0-notes.html

Limitation: require versions for all class declarations & instantiations.

Comparison with Related Work

Annotate

… and Incompatibilities & refactoring hints from

~18x overhead
in the worst case

Scalable to a practical
size of a program

Found the cause of

incompatibility!

Refactoring & PR

- vt size: 1

- measuring 2000 additions

with varying vt size

https://github.com/numpy/numpy/pull/25914

	Slide 1

