Modular Array-Based GPU Computing
in a Dynamically-Typed Language

Matthias Springer

Peter Wauligmann

Hidehiko Masuhara

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan

matthias.springer@acm.org

Abstract

Nowadays, GPU accelerators are widely used in areas with large
data-parallel computations such as scientific computations or neu-
ral networks. Programmers can either write code in low-level
CUDA/OpenCL code or use a GPU extension for a high-level
programming language for better productivity. Most extensions fo-
cus on statically-typed languages, but many programmers prefer
dynamically-typed languages due to their simplicity and flexibility.
This paper shows how programmers can write high-level modu-
lar code in /kra, a Ruby extension for array-based GPU computing.
Programmers can compose GPU programs of multiple reusable par-
allel sections, which are subsequently fused into a small number
of GPU kernels. We propose a seamless syntax for separating code
regions that extensively use dynamic language features from those
that are compiled for efficient execution. Moreover, we propose sym-
bolic execution and a program analysis for kernel fusion to achieve
performance that is close to hand-written CUDA code.

CCS Concepts +Software and its engineering — Source code
generation; ¢ Computing methodologies — Parallel program-
ming languages; *Theory of computation — Type theory

Keywords GPGPU, CUDA, Ruby, kernel fusion

1. Introduction

In recent years, one area of research in GPU computing focuses on
high-level languages, making the performance gap between highly
optimized low-level programs and high-level programs closer and
closer. A variety of tools emerged that let programmers write par-
allel programs for execution on GPUs in a high-level language.
Most tools are extensions or libraries for existing high-level lan-
guages [2, 9L [19]. Their goal is not to reach peak performance. With
suffient expert knowledge about CUDA/OpenCL and the underlying
hardware platform, it is possible to write highly optimized low-level
programs that perform better. However, writing code in a high-level
language is easier and more productive [15].

Ikr%is a language extension for data-parallel and scientific com-
putations in Ruby on Nvidia GPUs. It uses arrays as an abstraction

Uhttps://prg-titech.github.io/ikra- ruby/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ARRAY’17, June 18, 2017, Barcelona, Spain

ACM. 978-1-4503-5069-3/17/06...$15.00
http://dx.doi.org/10.1145/3091966.3091974

peter.wauligmann@tum.de

48

masuhara@acm.org

Ruby Interpreter

Access
Result

(Symbolic Execution) (Tree) Ruby Array

Execute in Array
Ruby Interpreter Command

. pmap, pstencil, ...

Retrieve Ruby Type Generate C++/CUDA
Source Code Inference Soure Code

Compile
(nvce)

Convert Transfer Run Host Section Transfer Convert
Data Data Back Data Data

Generated C++/CUDA Code

Figure 1: High-level Overview of Compilation Process

for expressing parallelism. Ikra provides parallel versions of map,
reduce and a construct for stencil computations. When using Ikra,
we encourage a dynamic programming style that is governed by the
following two concepts.

Integration of Dynamic Language Features Code in parallel sec-
tions is limited to a restricted set of types and operations (dy-
namic typing and object-oriented programming is allowed). All
Ruby features (incl. metaprogramming) may still be used in
other parts. Therefore, programmers can still use external li-
braries (e.g., I/O or GUI libraries).

Modularity [11] While optimized low-level programs typically
consist of a small number of kernels performing a variety of
operations, Ikra allows programmers to compose a program from
multiple reusable, smaller kernels.

Due to dynamic language features, whole-program static (ahead
of time) analysis is difficult. Therefore, Ikra generates CUDA pro-
grams at runtime (just in time) when type information is known.
Moreover, Ikra optimizes GPU programs using two techniques that
are well-known in statically-typed languages but not in dynamically-
typed languages such as Ruby. First, it fuses multiple kernels 16,3}
12] into a single kernel. Such code can be faster because data can
remain in registers and does not have to be transferred from/into
slow global memory. Second, loops surrounding parallel code are
compiled to C++ code and not executed in the Ruby interpreter.
Microbenchmarks show that both techniques together achieve per-
formance that is comparable to a single hand-written kernel.

Compilation Process Ikra is a RubyGem (Ruby library) that pro-
vides parallel versions of commonly used array operations. The no-
tation and API for these operations is similar to Ruby’s counterparts
but method names are prefixed with p for parallel.

Figure [I] gives a high-level overview of the Ikra’s compilation
process. When one of Ikra’s parallel operations is invoked in the
Ruby interpreter, Ikra executes that operation symbolically. The

https://prg-titech.github.io/ikra-ruby/

]

<<mixin>>

Ikra

<<mixin>> ArrayldentityCommand

:Enumerable | ParallelOperations | [|-dimensions : Fixnuml]
+pcombine()
+pmap0 [ArrayindexCommand |
+pstencil() [~ |-dimensions : Fixnum(]
+preduce() :
+pzip()

ArrayCombineCommand

<{instantiate>>
: input
/ \:/ 0.5\[, ArrayStencilC d

nArray ArrayC d
+to_command() -input : ArrayCommand([] <
+pnew() -result : Object[] ArrayZipCommand
+to_command() |

B ORI +with_index()

enerate C++

2 +to_a
run parallel code, .+each(()) L] ArrayReduceCommand
put result in cache +[(index)

Figure 2: Integration of Ikra in Ruby

result is an array command object. Such an object contains all
information required for CUDA code generation and execution. An
array command can be used like a normal Ruby array. However,
only when its contents are accessed for the first time, Ikra generates
CUDA/C++ source code, compiles it using the Nvidia compiler and
runs the generated C++ program. The generated program copies
data to the GPU, launches the parallel sections, copies the result
back to the host memory and returns the resul

Instead of defining single parallel sections, programmers can
also define host sections. A host section is a block of Ruby code that
contains a more complex program with multiple parallel sections.
In such a case, the entire block is translated to C++ code, avoiding
switching from the Ruby interpreter to external C++ programs
multiple times. The former case can be seen as a host section which
directly returns the result of a single parallel section. Thus, we only
mention the general case “Run Host Section” in Figure[T]

Symbolic Execution During symbolic execution, Ikra retrieves
the source code of parallel sections (e.g., the body of a pmap oper-
ation), generates abstract syntax trees and infers types. The result
of symbolic execution is an array command. Ikra currently supports
various primitive types (Fixnum, Float, booleans, NilClass), user-
defined classes and polymorphic types. A polymorphic type is rep-
resented by a pair of type/class ID and the actual value (union type).

Programmers can invoke other methods inside parallel sections,
including method calls on objects. After Ikra has determined the
receiver type(s) of a method call during type inference, the target
method(s) are added to a work list of methods to be processed next.

Array Commands A command object in the Command Design
Pattern [5] is an object that contains all information that is necessary
to perform an action at a later point of time. An array command in
Ikra is an object that contains all information required for code gen-
eration and launching a parallel section/host section. For example,
a stencil array command contains the typed AST of the computa-
tion (block), a reference to the input array command, an array of
neighborhood indices, and an out of bounds value.

An array command can be seen as a special Ikra array. It has all
methods that an ordinary Ruby array has, but its content is computed
once it is accessed. Figure 2] gives an overview of Ikra’s integration
in Ruby and the design of array commands. There are a variety of
subclasses of ArrayCommand corresponding to parallel operations
that are supported in Ikra (Section [2). The standard Ruby Array

2If object-oriented programming is used inside a kernel, data is first con-
verted to a memory coalescing-friendly structure of arrays layout [14].

49

and Ikra’s ArrayCommand include both mixins Enumerable and
ParallelOperations. The first mixin provides standard collection
API functionality. The second mixin provides parallel operations
which are executed on the GPU.

2. Parallel Operations

This section gives an overview of operations that are provided
by Ikra. All operations can handle multidimensional Ikra arrays,
making code more readable if data is inherently multidimensional
(e.g., images), but we use only one dimension for most operations
in this section for presentation reasons. If an operation performs
a computation, then the size of the first argument determines the
number of CUDA threads that are allocated.

Array Identity This operation creates an Ikra array (command)
from an ordinary Ruby array A (denoted by id(A)). It can be used
to load an external Ruby array A (not computed on the GPU) and
make it available in Ikra. Array identity is applied implicitly where
required. For example, when a map operation is applied to a Ruby
array, lkra applies this operation automatically. However, it is useful
if programmers want to convert a one dimensional Ruby array to a
multidimensional Ikra array. It is exposed to Ruby programmers as
to_command, taking an optional parameter for dimensions.

A .to_command()

A.to_command(dimensions: [15, 20])

Ikra arrays can be converted back to Ruby arrays with to_a, which
is recommended for performance reasons if large parts of the Ikra
array are read randomly.

Combine This operation is used to map over one or more arrays
A; of same size m and dimensions. It takes as input n arrays and a
block (anonymous function) f taking n scalar values. It applies f
to every element of the input and retains the original shape of the
input, regardless of dimensions.

F(A0], ..., An[0])
combine(Ai, ..., An, f) =
flAim =1],..., Apfm —1])
Ikra allocates m CUDA threads, i.e., every thread processes one
tuple. This will likely change in future versions of Ikra. This
operation is exposed to Ruby programmers as pcombine:

Aj.pcombine(As, ., A, &f)

Map This operation is a special case of combine with one input
array. It corresponds to an ordinary map operation but is executed
in parallel.

map(As,) = combine(Ar, f) = [F(As[0]) ..., f(Ar[m—1])

This operation is exposed to Ruby programmers as pmap:

A1 .pmap (&f)

Index This operation generates an array of size m of consecutive
indices starting from 0 and ending with m — 1.

index(m) =10,1,2,...,m — 1]
In a multidimensional case, index takes d arguments m; (d is the
number of dimensions), where m; is the size of the i-th dimen-
sion. Every value in the resulting array is then an array of size d
containing the indices for every dimension.

[0,0],...,[0,7711—1],...,

index(ma,m2) = | "7 01 = 1, ma — 1]

This operation is not directly exposed to programmers. Similar to
Ruby notation, programmers must invoke the method with_index
after a parallel operation (the parameter m is provided implicitly)
or use Array.pnew (see below).

A1 .pmap.with_index (&f)

New This operation is a combination of index and map. It creates
a new array of size m and initializes it using the block (anonymous
function) f. It is a parallel version of Ruby’s Array . new.

new(m,) = map(index(m), f) = [f(0),..., f(m —1)]

Similiar to index, this operation takes multiple arguments in a multi-
dimensional case. This operation is exposed to Ruby programmers
as pnew:

Array.pnew(m, &f)

Passing a block (function)
A.preduce(&f)

Symbols are also possible as shortcuts
E.g.: A.preduce do |a, b| a + b; end
A.preduce(:+)

3. Kernel Fusion

All array commands except for index and array identity have at
least one input array command (input in Figure[2). E.g., the input
for a map operation is the array that is being mapped over. During
code generation, Ikra traverses the tree of such dependent (input)
commands. Depending on the access pattern of dependent input,
Ikra may merge multiple parallel operations into a single kernel.

Stencil (Convolution) This operation takes as arguments an input
array A, an array of relative indices I (neighborhood) of size k, a
block f, and an out-of-bounds value o. It creates an array of same
size and dimensionality where every value 7 is initialized using f,
passing the values in the neighborhood of A[7] as arguments to f.
Simple examples of stencil computations are image filtering kernels.

The following formula is used to calculate the value in the
resulting array at position <. If all indices are within bounds (case
1),ie.,0<i+I[j] <mforall0 < j < k (where m is the size of
A), the value of the stencil computation is used. Otherwise (case 2),
the fallback value o is used.

o(A, 1, f,0,i) = {f@“[i +T[0]), . Ali + I[k = 1]])),

Using this helper function v, a stencil computation is defined as
follows.

stencil(A, I, f,0)

[U(A7I7f7070)7'"71}(A7I7f707m_1)]

This operation is exposed to Ruby programmers as pstencil:

A.pstencil(I, o, &f)

Zip This operation does not perform a computation but groups
values of two ore more arrays of same size and dimensionality.
([A1[0]; . .., An[0]]

z2ip(Ai, ..., An) =
[Aifm —1],..., Ax[m — 1]]]

The result of this operation is an array of arrays. This operation is
exposed to Ruby programmers as pzip:

A1.pzip(A2, o An)

Reduce This operation takes as arguments an input array A and
a block f, whose function must be associative. Every block appli-
cation reduces two elements into a single one. The block is applied
until only one element is left (regardless of the dimensions). This
operation is similar to Ruby’s reduce, but the return value is an array
with one element instead of a scalar value.

reduce(A, f) = [f(.... F(f(A[0], A[L)), f(A[2], A3]),..) ..)]

There are no guarantees about the order in which element are
combined, because reduction is done in parallel. This operation
is exposed to Ruby programmers as preduce:

(case 1)
o, (case 2)

50

Command Input Access Pattern
combine same location (for all inputs)
stencil multiple (fixed pattern)
reduce multiple

zip same location (for all inputs)
(with_index) | same location

Figure 3: Input Access Patterns for Array Commands

Figure [3]lists access patterns for dependent computations for all
array commands. “Same location” means that for computation of
the element at position ¢ only the element at the same position in
dependent (input) command(s) is required. For example, to calculate
element 12 in map, only element 12 from the input is required.
“Multiple” means that an array command needs multiple elements
from dependent command(s). For example, a stencil computation
requires an entire neighborhood of values from the input.

Ikra can currently merge dependent computations if the access
pattern is “same location”. In that case, one thread can first compute
the dependent operation and then directly proceed with the follow-
ing computation without any synchronization. Figure] shows an
example. The leftmost gray box corresponds to Lines 2-3. Those
operations are fused because the input access pattern for combine is
“same location’ﬂ For the stencil computation, the first input cannot
be fused because its access pattern is “multiple”. The index input
can be fused because input generated by with_index is always ac-
cessed as “same location”. Future work will extend kernel fusion to
access patterns used in stencil computations (Section 7).

4. Examples

In this section, we present two examples to illustrate how Ikra is
used in practice. The first example focuses on modular (reusable)
parallel sections and the second example shows the usage of host
sections.

4.1 Image Manipulation Library

In this example, we design an image manipulation library which
is based on Ikra. It provides methods for loading images from the
file system and a number of filters and effects.

Figure[f]illustrates how to use the library and shows each step of
the computation: First, a picture of the Tokyo Tower is loaded. Then,
a blur filter is applied multiple times. Moreover, a picture of a sunset
is loaded and both pictures are merged. Finally, a picture of a forest
is loaded, inverted and overlaid with the previously merged picture.
Notice how the code is modular with respect to composability,
reusability, understandability: Image filters are provided by the

3id is added implicitly when programmers use Ruby arrays.

Al = [1, 2, 3]1; A2 = [10, 20, 30] # Ruby arrays

. end # combine

a = Al.pmap.with_index do |e, idx|
;| b = a.pcombine(A2) do |el, e2] . end # combine
¢ = b.pstencil([-1, 0, 1], 0). # stencil
with_index do |values, idx| . end
d = c.preduce do |rl, r2| . end # reduce
(a) Source Code
M—» combine
W—' [a] coTbtiine
stencil reduce (root of
’m’_, [c] > [d] tree)

(b) Resulting Kernel Fusion. Gray boxes are kernels.

Figure 4: Example: Kernel Fusion

]

ImgLib <<mixin>>
Filter ImoLib Ikra::ParallelOperations
-block : Proc +load_png(filename)
+apply_to(cmd)
+blurl 1
+blend(other, ratio) _
CombineFilter StencilFilter
-args : ArrayCommand][] -neighborhood : int[] return cmd.pstencil(
+apply_to(cmd) -out_of_bounds_value neighborhood,
+apply_to(cmd) it gg{az%boundsivalue, Iﬁ

(a) Architecture of Image Manipulation Library

module ImagelLibrary::Filters
def self.load_png(filename)
image = read_png(filename)
return image.pixels.to_command(
dimensions: [image.height, image.width])
end
def self.blend(other, ratio)
return CombineFilter.new(other) do |pl, p2|
pixel_add(# Helper functions
pixel_scale(pl, 1.0 - ratio),
pixel_scale(p2, ratio))
end
end
def self.blur
return StencilFilter.new(
neighborhood: STENCIL_ 2,
out_of_bounds_value: 0) do |v|

r=v[-11[-11[0] + ... + v[1][1][0]
g =v[-1][-11[1] + ... + v[1][1][1]
b =v[-1][-11[2] + ... + v[1][1][2]
[r/79,9/9, b/ 9]
end
end

end

(b) Example: Definition of Filters

Figure 5: Implementation of Image Manipulation Library

3Lttt =

;| forest =

51

require "image_library"

ImgLib.load_png("tokyo_tower.png")
for i in 0...3

tt = tt.apply_filter(ImgLib::Filters.blur)
end

sun = ImgLib.load_png("sunset.png")
combined = tt.apply_filter(
ImgLib::Filters.blend(sun, 0.3))

ImgLib.load_png("forest.png")
forest.apply_filter(
ImgLib::Filters.invert)
combined = combined.apply_filter(
ImgLib::Filters.overlay(
forest, ImglLib::Masks.circle(tt.height / 4)))

forest =

ImgLib::OQutput.render(combined) # Draw pixels

(a) Ruby Source Code

blur (stencil) blur (stencil) blur (stencil) blend (combine)

load (id)

invert (map) blend'(combine)

overlay (combine)

i L X

(b) Image Rendering. Gray boxes indicate generated GPU kernels.

Figure 6: Example: Image Manipulation Library Usage

input = [10, 20, 30, 40, 50, 60]
result = Ikra.host_section do
arr = input.to_command(dimensions:
for i in 0...10
if arr.preduce(:+)[0] % 2

[2, 31)

arr = arr.pmap do |i| i + 1; end # map 4
else
arr = arr.pmap do |i| i + 2; end # mapp
end
arr = arr.pmap do |i| i + 3; end # map
end
arr
;| end

Figure 7: Example: Iterative Computation in Host Section

library and can be arbitrarily combined. However, only when the
final result is accessed (rendered) in the last line, Ikra generates a
single GPU program with four kernels and executes it.

The filters are provided by the image manipulation library
(Figure [3) and implemented using parallel map or stencil opera-
tions. The image manipulation library defines an extension method
apply_filter for applying image filters using double dispatch.

4.2 TIterative Computation

Many scientific computations (e.g., numerical partial differential
equations) exhibit an iterative structure where an array or matrix is
updated for a fixed number of times or until convergence. The fol-
lowing source code snippet does not compute any meaningful result
but illustrates how to write such computations in Ikra. The update

loop is contained in a host section, a code section that is compiled to
C++ and executed on the host, as opposed to parallel sections which
are executed on the device. The value of the last statement of a host
section is the return value of the host section. Inside host sections,
only simple Ruby code may be written: Everything that is allowed
inside a parallel section plus parallel sections themselves. More
advanced Ruby features (such as metaprogramming) are forbidden.

For the code in Figure[7] one C++/CUDA program is generated.
That program contains a C++ function for the host section and mul-
tiple CUDA kernels. Control flow statements inside host sections
are executed symbolically as opposed to control flow statements
outside of host sections, which are executed by the Ruby interpreter.
Host sections are translated with a conservative kind of ahead of
time compilation: In the above example, it is not clear if the parallel
section in Line 10 will be executed together with the one in Line 6
(map 4, + map) or the one in Line 8 (mapg + map), or both
in different iterations. Therefore, Ikra generates both fused kernel
variants and launches the appropriate one at runtime. The detailed
code generation process for this example is described in Section[5.2}

5. Code Generation
5.1 Mapping Ruby Types to C++ Types

During type inference, Ikra analyzes which types an expression can
have. If an expression is monomorphic (has a single type), a Ruby
type is directly mapped to a corresponding type in the C++/CUDA
source code. Figure [§] shows the mapping of Ruby data types to
CUDA/C++ data types. Numeric values are currently represented
by int and float; therefore, the range/precision of values is lim-
ited in Ikra. nil is represented by int value 0. Arrays are either
represented by array_t (a pointer-size pair) or a generated struct
type for arrays that appear in zip types (to allow efficient zipping
of arrays of different type). Array commands will be discussed in
the next section. All other objects are represented by object IDs
generated by Ikra’s object tracer [14].

For polymorphic expressions (e.g., if Fixnums and nil are
assigned to a variable), union type structs (Figure [9) are used [1].
Values are stored in union_v_t which can hold values (or pointers
to values) for all C++ types in Figure[8] The class ID field contains
a number which identifies the runtime type unambiguously. If a
method is called on a polymorphic expression, lkra generates a
switch-case statement with all types that the expression can have
at runtime. If a monomorphic value is assigned to a polymorphic
Ivalue, Ikra wraps the value in a union type struct. Arrays of union
type structs are used to represent polymorphic arrays.

5.2 Symbolic Execution in Host Sections

Host sections are pieces of Ruby code that are entirely translated
to C++ code. They may contain one or more parallel sections
but no advanced language features like metaprogramming. The

Ruby Type C++/CUDA Type
Fixnum int
Float float
TrueClass bool
FalseClass bool
NilClass int
Array array_t, generated struct type
ArrayCommand array_command_t *
(only allowed in host sections)

(other) object_id_t (int)
(multiple types) | union_t

Figure 8: Mapping Ruby Types to C++ Types

%

52

|1

union union_v_t

.) | struct union_t
int int_; | {
float float_; .
3 int class_id;

bool bool_; .

X . 4 union_v_t value;
void *pointer; }
array_t array;

} union_v_t;

Figure 9: Union Type Struct Definition

compilation process of host sections is identical to the one of parallel
sections, but there are additional steps to handle parallel sections
within them. Since no code generation can be done once a host
section (C++ code) is executing, fused kernels must be generated up
front. Ikra statically analyzes all code paths with parallel sections
through the host section and generates a number of fused kernels,
even some that might never be used at runtime. At runtime, Ikra
keeps track of which parallel sections were executed symbolically
and eventually launches a fused kernel, which may contain multiple
parallel sections, when the result is accessed.

Kernel Fusion via Type Inference Within host sections, there
are additional type inference rules to handle parallel sections. Ikra
performs kernel fusion through type inference: The type of a parallel
section (i.e., a method call AST node invoking a method defined
in ParallelOperations) is the array command that it evaluates to
when evaluating it symbolically. To that end, Ikra interprets such
method call nodes in the Ruby interpreter. For example:

a =10

type(a) = int

b = Array.pnew(a) do ... end

Eval Ruby: Array.pnew(CodeRef.new(:a)) do ... end

type(b) := ArrayCombineCommand instance
c = b.pmap do ... end
Eval Ruby: type(b).pmap do ... end

H*

type(c) = (different) ArrayCombineCommand instance

For performance reasons, the values of arguments of parallel oper-
ations (except for input or size arguments) must be known during
symbolic execution (symbolic execution-time constants), so that
they are constant in the GPU program [10]]. For example, the neigh-
borhood of a stencil computation inside a host section must be con-
stant and cannot be generated inside the host section. However, all
arguments of a combine operation may be variable.

Compilation Process The result of a host section in the Ruby
interpreter is an array command (HostSectionArrayCommand).
The following list gives an overview of the single steps in symbolic
execution and code generation.

. Retrieve Ruby source code of host section

. Generate AST (abstract syntax tree) from source code

. Convert AST to SSA (static single assignment) form

. Insert to_a method call on last expression

. Perform type inference

AN L AW N =

. Generate C++ source code for host section and CUDA source
code for all array commands on which to_a or [] is called

The first two steps are identical to symbolic execution of parallel
sections. The SSA form simplifies type inference: If a variable is

written a second time with a value of different type, a new C++
variable is allocated and a union type can sometimes be avoided.
The return value (last expression) of a host section must be an array
command or an array. In the former case, to ensure that an array
command is executed, Ikra wraps the last expression in a method call
node with method name to_a. That method does not have any effect
for arrays but triggers array command execution. Type inference is
currently implemented with multiple passes; i.e., Ikra extends the
types of all expressions during every pass until a fixpoint is reache(ﬂ

After type inference, Ikra generates C++ source code for the
host section. If an expression has an array command type, Ikra uses
a pointer to an array_command_t struct which has (among other
things) a pointer to the cached result of the array command (if it
was accessed before). Essentially, an array_command_t instance
holds all information that an ArrayCommand instance in Ruby holds,
except for information that is known statically (e.g., the out of
bounds value of stencil computations is a numeric literal in the
kernel source code). Whenever an array command access is detected
(e.g., calling to_a on an array command), Ikra generates kernel
source code for the array command (receiver type!) and a kernel
invocation snippet which checks if a cached result is available and
otherwise transfers data (if necessary) and launches the kernel. Since
array commands may have dependent input commands, generated
kernels may consist of multiple fused parallel sections.

Example As an example, consider the following Ikra source code
which is already in SSA form and has a to_a method call at the end.

result = Ikra.host section do
arr; = input.to_command(dimensions:
for i in 0...10

4 arry = ¢(arry, arrg)

if arrg.preduce(:+)[0] % 2

[2, 31)

6 arrg = arry.pmap do |i| i+l; end # map,
else

8 arry = arry.pmap do [i| i+2; end # mapp

9 end

10 arrs = ¢(arrs, arry)

1 arreg = arrs.pmap do |i| i+3; end # mapo

12 end

13 arry = ¢(arry, arrg)

14 arry.to_a

15| end

In the following, we take a look at the inferred types of all arr;
variables. arry is an identity command for Ruby array input and

arry cannot be fully inferred yet because arrg is still unknown.
arr; = id[input]
arrg = {arri,arrg} = {id[input],arre}

Next, we infer the types for the first two map operations by evalu-
ating the pmap method calls in the Ruby interpreter with each type
in the union type of arry as the receiver. Different subscripts of
map operations indicate that the operations are different array com-
mand objects after symbolic evaluation (because they have different
parallel sections) and, therefore, represent different types.
arrs =map 4(arrz2) = {map 4 (id[input]), map 4 (arre)}
arrys =mapg(arra) = {map g (id[input]), mapg(arre)}
arrs ={arrs,arra}
= {map 5 (id[input]), map (arr),
map g (id[input]), mapg(arre)}

4 There are better techniques for type inference using constraint solving.

53

Next, we infer the type of the last map operation.
arre =mapg(arrs)
= {mapc(map 4 (id[input])), mapo(map ,(arrs)),
map ¢ (map g (id[input])), map (mapp(arre))}

As can be seen from the definitions above, the type of arrg is
circular. If we try to fully expand its definition, it will have an infinite
number of elements. This is because our type inference mechanism
effectively analyzes all control flow code paths through the host
section (but cannot “count”): The union type of arr7 will have one
type for every code path. Host sections with loops have an infinite
number of paths, because the type inference engine is not aware
of the number of iterations. Moreover, if while loops are used, the
number of iterations cannot be determined statically in general.

Once a cycle like this one is detected, Ikra breaks it by inserting
a to_a method call, which will launch the kernel and return its
result as an array. Consequently, such a method call will stop the
kernel fusion process. Where exactly the cycle is broken is an
implementation detail. Ikra currently inserts the method call in
Line 11, but it could also be inserted in Lines 4 or 10.

ilarrg = arrs.to_a.pmap do |i| i + 3; end # mapo

We can now complete the type inference process and fill in the arra
placeholders in the other definitions.

arre = map(idfarrs)])
arry ={ud[input], map(id[arrs])}
arrs ={arrs,arr4}
= {map 4 (id[input]), map 4 (map¢ (id[arrs])),
map g (id[input]), map g(map(id[arrs]))}
arr; ={arry,arre¢}
= {id[input], map(id[arrs])}

For code generation, only arrg, arrs and arr7 are of interest, be-
cause their result is accessed. lkra generates kernels and invocations
for them: The type of the variable (or class ID field if polymorphic)
determines the kernel to be launched. In total, Ikra generates the
following kernels in this example (some might never be launched).

(5.1) map 4 (id[input]) (7.1) id[input]

(5.2) map 4(map(id[arrs))) (7.2) maps(id[arrs))

(5.3) map(id[input]) (r.1) reduce(id[input])
(

(5.4) map g(map(idfarrs))) (r.2) reduce(map(idfarrs)])

All polymorphic variables (all variables except for arry) will
have type union_t in the generated C++ code. The class ID field is
used to determine which kernel should be launched. For example,
one of the last two kernels should be launched in Line 14 depending
on whether there was at least one loop iteration or not. This informa-
tion is implicitly encoded in the class ID field. In the generated code,
Lines 2, 4, 6, 8, 10 and 13 do not launch a kernel but merely update
their respective variable with a new array_command_t object, pos-
sibly wrapped inside a union type struct containing the class ID for
the comman

6. Benchmarks

This section shows a number of microbenchmarksﬂ (small parallel
sections, only for loops) of the current Ikra implementation in

5 Recall that polymorphic method calls are translated to switch-case state-
ments. Every case updates the respective variable with a different class ID.

https://github.com/prg-titech/ikra- rubyl branch array17

https://github.com/prg-titech/ikra-ruby

stencil (4)

map (3)

m map (1) stencil) :
0.8 :

0.7

x
o . [kernel
0.4 05 Z 10 © 33 rest host
0.4 x é ¢ [alloc
g 3 ! *| [DX e ¢ I mE transfer
- 03 N : 6 D E free
02 ~ . EE interpreter
0.2 3 4 :
o
0.1 01 0 2
0.0 0.0 4
wlulels clx wlelelsl= clzl=
e1g|2|8 (5 elg|2|8|e /8|8
2|9 3 3 ° z|5 3| S|z
: 5] : : o
style no loop simple loop simple loop complex loop
kernel operation map stencil map stencil map map
#loop iterations n/a n/a 500 200 1000 100 200
#kernels in loop n/a n/a 1 1 1 5 5
with fusion acs v V|V v v v
with host section |/ v v 4 v v v v v
#kernels) - — <l — © -
after fusion
#runtlmgkernel —|=l=|= == S|o|— sls 3|8 Sslalala|~ S| 55—
invocations il el NN —= bl Bl e N2

Figure 10: Microbenchmark Runtime in Seconds. lkra-F is Ikra with all code in a single host section and kernel fusion. Zkra is without kernel
fusion. Ikra-M is a lower bound where all code is in a single kernel (even among iterations). CUDA-F and CUDA are hand-written baseline
implementations with/without (manual) kernel fusion. Compilation time (not shown here) is around 2 seconds for Ikra-generated code.

various configurations. Benchmarks were run on a computer with
an Intel Core i7-6820HQ CPU (2.70 GHz), 32 GB RAM, an
Nvidia GeForce 940MX GPU, Ubuntu 16.04.1 (kernel version
4.4.0-43-generic), Ruby 2.3.1 and the CUDA Toolkit V8.0.44.
Program 5 is a 3D stencil computation on a matrix of size 129 x
65 x 65. All other programs operate on matrices of size 6 x 107
(228 MB) with a one-dimensional CUDA block size of 1024.

The benchmarks show the performance speedup due to kernel
fusion and how generated lkra code performs in comparison to
hand-written CUDA code. We compare 7 different programs with
various compilation strategies. For every program, we show the
kernel program structure (control flow graph). The square boxes
indicate kernels and the arrows indicate control flow. The letter M
indicates a map operation, the letter N a new operation, and the star
a can be either map or stencil.

Programs 1, 6 and 7 show the benefit of kernel fusion. In
Program 1, a single kernel is launched for all 11 parallel sections,
giving a 10x speedup compared to the version without kernel
fusion. In Program 6, 101 kernels are launched for 501 parallel
sections. All 5 kernels within the loop are fused together, giving a
5x speedup compared to the version without kernel fusion. If all
501 map/new operations are fused together by executing the loop
in the Ruby interpreter (no host section), another 2x speedup is
possible. However, in the general case, the number of loop iterations
is unknown (e.g., while loops). Moreover, the resulting kernel code
becomes large; increasing the number of iterations even results in
a nvcc compilation error. As can be seen from the interpreter time,
Ikra also spends a very long time in the Ruby interpreter if a tree
of 501 array commands is analyzed and fused together. This shows
that there is still potential for optimization of the Ruby part of Ikra.

Program 7 shows the benefit of kernel fusion in a program with
more complex control flow, giving a speedup of 2x. This program
generates source code with union types to keep track of which kernel
to launch at the end of an iteration. This leads to additional runtime
overhead. However, this overhead (rest host) is much smaller than
the kernel runtime and could not even be measured with confidence
in our experiments. The reason that Program 7 does not achieve the
same speedup from kernel fusion as Program 6 is that the number of
parallel sections inside the loop is smaller and the number of loop
iterations is larger (200 vs. 100).

Programs 3-5 consist of a loop with a single map or stencil
operation. In such cases, Ikra cannot perform kernel fusion inside

54

the loop, which is why we only report the performance for /kra.
Himeno is a benchmark with a memory-bound stencil computation.
It has a high alloc time because Ikra (and the CUDA baseline) do
currently not reuse memory but allocate a new piece of memory
every time an array is updated within the loop. When reusing the
same memory location, the performance can be increased due to a
lower allocation time and more efficient memory access (caching).

All benchmarks have a low fransfer time, i.e., time spent for
transferring data between the device and the host. This is because
data is only transferred to the host when the result of a parallel
section is accessed. The loops in all benchmarks are for loops with
a fixed number of iterations. Only after the last iteration, the result
is accessed and transferred back to the host. In a more realistic case,
where the control flow (e.g., number of iterations) depends on the
data, more data transfer will occur.

When comparing Ikra’s performance with hand-written CUDA
code, we can see that the kernel runtimes are almost identical for
map operations. The generated code of stencil operations is not yet
fully optimized (or fused). Ikra spends additional time in the Ruby
interpreter for performing type inference and generating Ruby code,
and very little time in host sections (allocating/comparing union
types/array commands, loop overhead, etc.).

Number of Generated Kernels Due to the kernel fusion process
described in Section[5.2] Ikra generates one kernel per control flow
path (excluding loops). This can lead to a combinatorial explosion
of the number of generated kernels. Based on an analysis of the
kernel structure of a large number of parallel programs by J. Shen et
al. [13], we believe that the number of kernels remains manageable
in real applications. Their work showed that the kernel structure of
all analyzed programs is similar to the ones in our benchmarksﬂ and
never more complex than the structure in Program 7.

7. Future Work

Kernel Fusion of Stencil Operations lkra can currently only
fuse operations whose input pattern is “same location”. There are
plans to extend kernel fusion to certain stencil computations that
exhibit a simple neighborhood. Kernels fusion can be done either
with redundant computation or with synchronization. Consider, for
example, the following two stencil operations.

7Ikra’s programming style could increase the number of parallel sections.

Ay = stencil(Ao, [-1,0], f,10)
As = stencil(A1,[—1,0],g,10)
The resulting arrays after each iteration are defined as follows.

10
F(Ao[0], Ao[1])
f(Ao[1], Ao[2])

A=

10
9(10, f(Ao[0], Ao[1]))
9(f(Ao[0], Ao[1]), f(Ao[1], Ao[2]))

Ay =

The definition of A2 represents the computation for the fused stencil
operation. Most terms using the function f are computed twice
(redundantly). Alternatively, Ikra could split Ao in multiple arrays,
assign every subarray to a CUDA block and store intermediate
results in shared memory. Inter-block synchronization or redundant
computation is then only necessary at the subarray borders (ghost
region [8]). This technique works well only if the neighborhood is
simple (i.e., the ghost region is small).

Reusing Memory Many programs that update a vector or matrix
iteratively only need access to the data from the previous computa-
tion. For performance reasons (e.g., caching), CUDA programmers
allocate one (for combine operations) or two (for stencil operations)
arrays only and keep writing to these arrays. However, all opera-
tions in Ikra (and Ruby) create new arrays. Moreover, lkra does
not have a garbage collector, so the memory is released after the
execution of the host section or if the programmer frees memory
explicitly in the Ruby code. To decide whether it is safe to reuse a
previously allocated array, Ikra must do an escape analysis to en-
sure that overwritten data is not read at a later point of time. Such
advanced memory management issues are subject to future work.

8. Related Work

Kernel fusion is an optimization that is supported by many other
GPGPU frameworks and languages, but the focus is on different as-
pects. For example, Harlan [7]] supports nested kernels, Futhark [6]
has support for nested parallelism and a powerful fusion engine for
map/reduce combinations, and Kernel Weaver focuses on database
queries [17]. Furthermore, all of these tools focus on statically-typed
programming languages, making translation within a kernel easier
compared to Ikra because no union types are required and making
kernel fusion itself easier because it is known ahead of execution
time which kernels are executed together.

Fumero et al. designed a GPU extension for the R programming
language, a dynamically-typed language [4]. Their implementation
is built on top of the Truffle AST interpreter framework [18] and
the Graal JIT compiler. They use partial evaluation to generate opti-
mized OpenCL code for Aot code sections. In contrast to Ikra, the re-
sulting OpenCL code can handle only monomorphic types, whereas
Ikra generates a single CUDA program with union types that can
handle all types which could theoretically show up during runtime.
Consequently, their generated OpenCL code is more efficient, but
requires recompilation if the runtime types are changing.

9. Summary

We presented the design and implementation of Ikra, a Ruby library
for data-parallel computations. Ikra allows programmers to write
modular code with respect to reusability and composability of par-
allel sections. Parallel sections that are used together are fused into

55

a single kernel if they use only the values generated by the previous
section at the same location. Host sections separate code regions
that extensively use dynamic language features from computations
and allow Ikra to compile entire loops to C++ code. If inside of a
host section, parallel operations are fused during a static analysis us-
ing type inference. Future work will extend kernel fusion to stencil
computations and focus on memory management features.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing
in a statically typed language. ACM Trans. Program. Lang. Syst.,
13(2):237-268, April 1991.

[2] M. M.T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating haskell array codes with multicore GPUs. DAMP ’11,
pages 3—14. ACM, 2011.

J. Filipovi¢, M. Madzin, J. Fousek, and L. Matyska. Optimizing
CUDA code by kernel fusion: application on BLAS. The Journal
of Supercomputing, 71(10):3934-3957, 2015.

J. Fumero, M. Steuwer, L. Stadler, and C. Dubach. Just-in-time GPU
compilation for interpreted languages with partial evaluation. VEE
*17, pages 60-73. ACM, 2017.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

T. Henriksen, K. F. Larsen, and C. E. Oancea. Design and GPGPU
performance of Futhark’s redomap construct. ARRAY 2016, pages
17-24. ACM, 2016.

E. Holk, R. Newton, J. Siek, and A. Lumsdaine. Region-based memory
management for GPU programming languages: Enabling rich data
structures on a spartan host. OOPSLA ’14, pages 141-155. ACM.

[8] F. B. Kjolstad and M. Snir. Ghost cell pattern. ParaPLoP ’10. ACM.

[9] A. Kl6ckner, N. Pinto, Y. Lee, B. Catanzaro, O. Ivanov, and A. Fasih.
PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation. Parallel Comput., 38(3):157-174, March 2012.

[10] A. S. D. Lee and T. S. Abdelrahman. Launch-time optimization of
OpenCL GPU kernels. GPGPU-10, pages 32-41. ACM, 2017.

[11] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,
Ist edition, 1988.

[12] S. Sato and H. Iwasaki. A Skeletal Parallel Framework with Fusion
Optimizer for GPGPU Programming, pages 79-94. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[13] J. Shen, A. L. Varbanescu, X. Martorell, and H. Sips. A study of
application kernel structure for data parallel applications. Technical
report, Delft University of Technology, 2015.

[14] M. Springer and H. Masuhara. Object support in an array-based
GPGPU extension for Ruby. ARRAY 2016, pages 25-31. ACM, 2016.

[15] M. Viiias, Z. Bozkus, and B. B. Fraguela. Exploiting heterogeneous
parallelism with the heterogeneous programming library. J. Parallel
Distrib. Comput., 73(12):1627-1638, December 2013.

[16] M. Wahib and N. Maruyama. Scalable kernel fusion for memory-
bound GPU applications. SC *14, pages 191-202. IEEE Press, 2014.

[17] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel weaver:
Automatically fusing database primitives for efficient GPU computa-
tion. MICRO-45, pages 107-118. IEEE Computer Society, 2012.

[18] T. Wiirthinger, C. Wimmer, A. Wo8, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One VM to rule them all.
Onward! 2013, pages 187-204. ACM, 2013.

[19] Y. Yan, M. Grossman, and V. Sarkar. Jcuda: A programmer-friendly
interface for accelerating Java programs with CUDA. Euro-Par ’09,
pages 887-899. Springer-Verlag, 2009.

[3

[t

[4]

[5]

[6

—_

[7

—

	Introduction
	Parallel Operations
	Kernel Fusion
	Examples
	Image Manipulation Library
	Iterative Computation

	Code Generation
	Mapping Ruby Types to C++ Types
	Symbolic Execution in Host Sections

	Benchmarks
	Future Work
	Related Work
	Summary

