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Abstract
DynaSOAr is a dynamic object allocator for GPGPU
that enables object-oriented programming with an ef-
ficient structure-of-arrays (SOA) memory layout. One
of the limitations in DynaSOAr is its poor support for
nested objects. When a class has a field of another class,
the fields of the inner class are allocated in an arrays-of-
structure layout. This paper proposes a technique that
translates nested class definitions into flat ones by inlin-
ing inner classes into top-level classes. We implemented
this technique as a Sanajeh domain-specific language
that translates Python class definitions into C++ classes
using DynaSOAr. Our preliminary evaluation showed
that Sanajeh executes a parallel benchmark program
with nested objects at almost the same speed as the one
with manually flatten classes.

Keywords: Python DSL, Parallel programming, GPGPU,
Dynamic object allocation

1 Introduction
General-purpose computing on graphics processing units
(GPGPU) is widely used for many types of applications,
including numerical computation, simulation, deep learn-
ing, and cryptocurrencies.

While the majority of GPGPU programs are currently
written in CUDA or OpenCL, there are a few high-
level programming languages that attempt to support
GPGPU programming with high-level programming ab-
stractions such as the map-reduce [2, 3, 10], objects [7],
and arrays [4].
DynaSOAr [7, 8] is a C++ domain-specific language

(DSL) that provides object support for GPGPU. Its ba-
sic programming model is single method, multiple objects
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(SMMO), where execution of a method on a large amount
of objects of the same class is the source of parallelism.
DynaSOAr has two notable features that makes this pro-
gramming model feasible: (1) it supports dynamic object
allocation—GPU threads can dynamically allocate ob-
jects in parallel; and (2) it supports structure-of-arrays
(SOA) memory layouts, which enables faster memory
accesses than a naive (i.e., arrays-of-structures) layout
on GPUs. Several practical applications including n-
body simulations and traffic simulations are successfully
written in DynaSOAr with good performance.

This paper advances object support for GPGPU one
step further by efficiently supporting nested objects. A
nested object is an object that is allocated in a field of
another object. In object-oriented programming (OOP),
it is common to use nested objects for better maintain-
ability. For example, in an n-body simulation, where
each body has its position and velocity, we often define
a vector class to represent 3D vectors, and define a body
class with the fields for its position and velocity by using
the vector class.
Since DynaSOAr does not efficiently support nested

objects, we support nested objects by developing a trans-
lator, or a DSL called Sanajeh, from a program with
nested objects into a DynaSOAr program without nested
objects. In the rest of the paper, we first review SOA
and AOS layouts and the features of DynaSOAr (Sec-
tion 2), followed by the problem of nested objects in
DynaSOAr (Section 3). We then present Sanajeh that
transforms nested objects into flat representations (Sec-
tion 4), whose performance is evaluated by running an
n-body simulation (Section 5).

2 Background
2.1 Memory Layout of Objects and GPGPU

Performance

Object-oriented programs for GPGPU perform the same
computation on many objects of the same class. For
example, an n-body simulation expresses each body by
using an object allocated on the GPU memory, and
updates positions of bodies by using many threads.
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There are two kinds of memory layouts when plac-
ing many objects, namely the array-of-structures (AOS)
layout and the structure-of-arrays (SOA) layout. Those
two layouts result in different parallel memory access
performances and different programming styles.
AOS is a straightforward layout when we declare an

array of a class in CUDA/C++, where the memory of
the array is split into contiguous blocks of array elements
(i.e., objects of the element class), and each block stores
the fields of the respective object. Listing 1 shows an
example program.

Listing 1. AOS Layout in CUDA/C++

1 class Body {

2 float pos_x;

3 float pos_y;

4 float vel_x;

5 ...

6 } bodies [1000];

7

8 __device__ void update () {

9 int i = ... compute index from thread ID...;

10 ... bodies[i]. pos_x ...

11 }

On GPUs, AOS usually leads to lower computation
performance due to non-coalesced memory access. Fig-
ure 1 shows memory accesses from the first few threads
when they access pos_x in their respective objects. Since
the addresses are interleaved, the memory accesses are
slower when compared to the case with an SOA layout.

po
s_

x[
0]

po
s_

y[
0]

ve
l_

x[
0]

ve
l_

y[
0]

flo
at

_x
[0

]

flo
at

_y
[0

]

m
as

s[
0]

po
s_

x[
1]

ve
l_

x[
1]

po
s_

y[
1]

...

Figure 1. Non-Coalesced Memory Access With AOS
Layout

An SOA layout split the memory into arrays of fields,
where the fields of the 𝑛th object are allocated at the 𝑛th
element of those arrays. To use SOA in CUDA/C++,
we can declare a class that consists of arrays of fields as
shown in Listing 2. Accessing the field pos_x of the ith
object can be achieved by first accessing the array for
pos_x, then accessing the ith element, as shown as the
expression bodies.pos_x[i] in the listing.

Although SOA makes programs verbose, it is widely
used in GPGPU applications because of its faster mem-
ory accesses than AOS [1, 6, 11]. As shown in Figure 2,
when contiguous threads access the same field of their

Listing 2. SOA Layout in CUDA/C++

1 class Body {

2 float pos_x [1000];

3 float pos_y [1000];

4 float vel_x [1000];

5 ...

6 } bodies;

7

8 __device__ void update () {

9 int i = ... compute index from thread ID...;

10 ... bodies.pos_x[i]...

11 }
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Figure 2. Coalesced Memory Access With SOA Layout

respective objects, the processor reads a contiguous mem-
ory region (so-called memory coalescing). This is much
faster than the same access with AOS.

2.2 DynaSOAr

DynaSOAr is a dynamic object allocator for GPGPU [7,
8]. In DynaSOAr, fields of objects are stored in an SOA
memory layout, while class declarations and field ac-
cess expressions follow the standard C++ syntax. This
means that, with the previous example, the programmer
can write programs in a similar style to Listing 11, the
memory layout and accesses become the one shown in
Figure 2.

DynaSOAr allows GPU threads to allocate objects in
parallel. To maximize parallelism, it uses the block-based
SOA memory management, in which each block stores
objects of the same class in an SOA layout. Though the
rest of the paper discusses memory layouts by ignoring
blocks for brevity, the discussions are valid for the case
with the block-based management in DynaSOAr.

3 Nested Objects and Memory Layout
Nested objects are objects that contain other objects
in their fields. From the viewpoint of class declarations,
they are objects of classes that have a field of a class type.
Below, we first review the advantages of nested objects
(Section 3.1), and then explain how nested objects behave
in DynaSOAr (Section 3.2).

1The actual class declaration in DynaSOAr is slightly more verbose

due to its template-based implementation. In this paper, we use
the standard C++ syntax for readability.
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Listing 3. N-Body Simulation with Nested Objects

1 class Vector {

2 float x;

3 float y;

4 Vector plus(Vector o){

5 return *new Vector(x + o.x, y + o.y);

6 }

7 Vector times(float factor) { ... }

8 Vector div(float factor) { ... }

9 }

10

11 class Body {

12 Vector pos;

13 Vector vel;

14 Vector force;

15 ...

16 __device__ Vector update(Body o) {

17 ...

18 vel = vel.plus(force.times(kDt).div(mass));

19 ...

20 }

21 }

3.1 Advantages of Nested Objects

Nested objects are a natural consequence of OOP. In
other words, since OOP promotes the use of object ab-
stractions for better modularity, using objects inside of
an object improves the modularity of programs. List-
ing 3 is an n-body simulation written with nested objects.
Instead of having pairs of float fields for position, ve-
locity, etc., Body uses Vector fields. Computation with
those fields are also written with methods (or member
functions) of Vector as shown in the update method.
As we can see in the example, nested objects make

the intention of the program clearer as we can express a
position as a single value instead of a pair of two values.
They also make programs easier to be maintained. When
we want to modify the algorithm for vectors, we only need
to update the methods of the vector class. Nested objects
promote program reusability. In the n-body example,
Vector::plus can be used different places where vector
addition is needed.

3.2 Nested Objects in DynaSOAr

There are three options when we want to use nested
objects in DynaSOAr.

Nested class field. When a class (say Body) de-
clares a field (pos) of another class (Vector), Dy-
naSOAr allocates a contiguous array for the field
(pos). However, the nested objects (Vectors) are
stored in an AOS layout as illustrated in Figure 3.

Pointer to a dynamically allocated object. Since
DynaSOAr is a dynamic object allocator, it is pos-
sible to allocate nested objects and to store the
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Figure 3. Memory Layout of Nested Object in Dyna-
SOAr

pointer to the allocated object into a field of the
outer object. However, this is not a feasible solu-
tion as dynamic allocation incurs time and memory
overheads, and requires manual deallocation.

Flattening. The last option is not to use nested
objects, rather declare classes with fields of prim-
itive types. This can be done merely by copying
field declarations from nested classes to the outer
class. In fact, the existing application programs in
DynaSOAr are all written in this way to achieve
maximum performance. However, this option sac-
rifices the advantages of nested objects discussed
above.

4 Nested Object Support in Sanajeh
4.1 Overview

We propose Sanajeh2, a Python DSL that efficiently
supports nested objects. Though it is designed as a
Python DSL, Sanajeh’s programming model is identical
to DynaSOAr as it serves as a one-to-one translator to
DynaSOAr. Sanajeh however efficiently supports nested
objects by inlining fields of inner classes when it trans-
lates into DynaSOAr classes.

Listing 4 is an excerpt of an n-body simulation in
Sanajeh. It is a Python DSL that translates device code
(i.e., the code to be executed on GPUs) into DynaSOAr
class definitions. Roughly speaking, it offers the same
APIs (e.g., for parallel method invocation and object al-
location) to the DynaSOAr’s; hence it can be considered
as a Python wrapper for DynaSOAr. The Python classes
that shall be executed on GPUs must have type hints3

for fields, method parameters, and local variables. Type
inferencing of local variables might be possible, yet left

2Sanajeh is a genus of snake whose fossil showed that it preyed

hatching dinosaurs [12].
3https://www.python.org/dev/peps/pep-0484/
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Listing 4. N-body Simulation in Sanajeh

1 class Vector:

2 x: float

3 y: float

4 ...

5 def plus(self , o: Vector) -> Vector:

6 return Vector(self.x + o.x, self.y + o.y)

7 def times(self , f: float) -> Vector: ...

8 def div(self , f: float) -> Vector: ...

9 ...

10

11 class Body:

12 pos: Vector

13 vel: Vector

14 force: Vector

15 ...

16 def update(self):

17 ...

18 self.vel = self.vel.plus(

19 self.force.times(kDt)

20 .div(self.mass))

21 ...

for future work. As type hints are ignored in the Python
interpreters, Sanajeh programs can be interpreted as
standard Python programs, if it is provided a library
that has the compatible APIs.

4.2 Restrictions on Nested Objects

Sanajeh supports nested objects under the following
assumptions on a top-level class declaration.

∙ Monomorphic: nested objects must have the same
static and dynamic types. In other words, sub-
classes can be used only when the subclass is used
of its own type.

∙ No circular class references: every field of the class
is of primitive type or class without circular class
references. In other words, (mutually) recursive
types (e.g., linked lists) are not allowed for nested
objects.

∙ Confined: a reference to a nested object is never
returned from any method of the top-level class.

∙ No-aliasing: when a nested object is mutable, its
reference must not be duplicated.

Currently, it is the programmer’s responsibility to sat-
isfy those assumptions. Automatic checking would be
possible, which is left for future work.

4.3 Inlining Algorithm

Sanajeh inlines nested classes into flat ones in a pre-
process of the transformation from Sanajeh/Python to
DynaSOAr/CUDA. An alternative approach would do as
a post-process, which we did not take due to a relatively
larger syntax in C++, in comparison to Python.

The inlining process consisting of three steps, namely
field inlining, expression normalization, method inlining,
and field access rewriting. Although the algorithm can
work for multi-level nesting (i.e., an inner class contains a
field of another class), the following descriptions assume
one level nesting for brevity.

4.3.1 Field Inlining. The first step inlines the field
declarations in nested classes into the top-level class.
Each field is renamed to a unique one. In this paper, we
use a concatenation of the original field names.
For example, it converts the Body class in Listing 4

into the following one.

class Body:

pos_x: float

pos_y: float

vel_x: float

vel_y: float

...

4.3.2 Expression Normalization. The second step
transforms expressions both in the nested classes and
the top-level classes into the A-normal forms [5]. The
a-normal form is a restricted style of expressions by
replacing nested expressions with local variables. In our
case, we replace method call expressions that appear as
a parameter to another method call or the right-hand
side of a field assignment.

For example, the A-normalization process transforms
the assignment in Listing 4:

self.vel = self.vel.plus(

self.force.times(kDt)

.div(self.mass))

into the following lines.

_v2: Vector = self.force.times(kDt)

_v1: Vector = _v2.div(self.mass)

_v0: Vector = self.vel.plus(_v1)

self.vel = _v0

Note that the declarations of the local variables _v0,
_v1 and _v2 have types, which are obtained from the
return type of the methods.

4.3.3 Method Inlining. Since all method calls are
normalized, it simply replaces each method call expres-
sion with the return expression of the called method
after inserted the preceding statements in the method.
The formal parameters of the method and self are
replaced with the actual parameters.
After method inlining, the example code becomes as

follows.

_v2: Vector =

Vector(self.force.x*kDt ,self.force.y*kDt)

_v1: Vector =

Vector(_v2.x/self.mass ,_v2.y/self.mass)

_v0: Vector =

4 2021-06-21 12:03. Page 4 of 1–6.
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Vector(self.vel.x+_v1.x,self.vel.y+_v1.y)

self.vel = _v0

4.3.4 Field Access Renaming. The final step rewrites
field accesses by (1) creating local variable declarations
for fields of class-type local variables, (2) replacing each
assignment expression of a class type with a sequence of
assignment expressions of their fields, and (3) replacing
each field access expression of a nested object with the
access to the inlined field.

For the local variable declaration _v2: Vector in the
above example, it creates local variables _v2_x: float

and _v2_y: float. It then transforms the line

_v2: Vector = Vector(self.force.x*kDt , ...)

into

_v2.x = Vector(self.force.x*kDt , ...).x

_v2.y = Vector(self.force.x*kDt , ...).y

and further into the next lines by eliminating the con-
structor.

_v2.x = self.force.x*kDt

_v2.y = self.force.y*kDt

Finally, by replacing _v2.x, self.force.x, and so
forth with _v2_x, self.force_x, and so forth, respec-
tively, it produces the following lines.

_v2_x: float = self.force_x * kDt

_v2_y: float = self.force_y * kDt

_v1_x: float = _v2_x / self.mass

_v1_y: float = _v2_y / self.mass

_v0_x: float = self.vel_x + _v1_x

_v0_y: float = self.vel_y + _v1_y

self.vel_x = _v0_x

self.vel_y = _v0_y

4.4 Implementation

We implemented a prototype version of Sanajeh in Python,
which is publicly available at https://github.com/prg-
titech/Sanajeh/. The size of the translator and the run-
time code is roughly three thousand lines of code.

5 Preliminary Evaluation
We evaluated the runtime performance of a program
with nested objects by comparing the execution times
of the following three versions of an n-body simulation
program.

Manually flattened (DynaSOAr): The top-level
class contains only primitive type fields after flat-
tened nested objects by hand. As explained in
Section 2.2, this version is optimal as objects and
fields are allocated in an SOA layout. (Precisely,
we obtained this version by manually translating
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Figure 4. Execution Times of the N-Body Simulation
Relative to the DynaSOAr Flatten Version (lower is
better)

the n-body simulation in DynaSOAr [7], which was
originally written without using nested objects.)

Automatically flattened (Sanajeh): The source
program that uses nested objects, which are au-
tomatically inlined in the Sanajeh-to-DynaSOAr
translator. Since the automatic inlining should pro-
duce the same class structure as the class in the
manually flattened version, we expect this version
has the same performance.

Nested (DynaSOAr): The source program uses
nested objects and compiled by DynaSOAr. This
results in the AOS-in-SOA layout, where the fields
of the Body class are allocated in the SOA layout,
yet the fields of Vector in the Body are allocated
in the standard C++ layout; i.e., the AOS layout.
Though this version is written in DynaSOAr by
hand, the same code should be produced if we im-
plemented Sanajeh without the automatic inlining
feature.

We executed the three versions with different num-
bers of bodies. For each configuration, we measured the
execution time for 100 time-steps and calculated the
average time for one step. We use an NVIDIA TITAN
Xp GPU with 12 GB device memory attached to a host
processor running Ubuntu 18.04.4. We used nvcc/CUDA
Toolkit 10.1 with the -O3 option and Python 3.7.4.

Figure 4 summarizes the execution times relative to
the manually flattened cases. As we can see, the automat-
ically flattened version has slight overheads (less than
6%), which are amortized with a larger number of bod-
ies. The nested version are 36%–105% slower than the
flatten version. The overheads increase as the number of
bodies increases. Although we have not yet investigated
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the causes, GPU cache memory might be alleviating the
AOS access overheads for smaller number of bodies.

6 Conclusion
This paper presents Sanajeh, a Python DSL for GPGPU
with support for nested objects. We present the inlin-
ing algorithm that transforms a class declaration with
nested classes into flat ones, by inlining fields of nested
classes, inlining method calls, and renaming field ac-
cesses. With the nested object support, we confirmed
that a benchmark program runs as fast as the program
written without nested objects.

Although it is based on DynaSOAr, our work suggests
that transforming classes with nested objects into inlined
ones is possible with a simple inlining algorithm, which
should also be useful to many OOP languages with
SIMD parallelism. We believe the proposed technique
will promote further use of OOP in array-based or data-
parallel programming.
The current implementation of Sanajeh needs to be

improved for practical usability. First, a type inferencing
algorithm will let us use local variables without giving
types. Second, inlining inner arrays of fixed sizes [9] will
widen the flexibility of the language. Third, supporting
inheritance in nested classes would increase the expres-
siveness of the language. Although dynamic dispatching
is not feasible on GPUs, we believe that there are many
use cases of inheritance that can be implemented with
static dispatching.
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