
A Parameterized Interpreter
for Modeling Different AOP Mechanisms

Naoyasu Ubayashi
Department of Artificial Intelligence

Kyushu Institute of Technology
Fukuoka, Japan

ubayashi@acm.org

Genki Moriyama
Department of Artificial Intelligence

Kyushu Institute of Technology
Fukuoka, Japan

genki@acm.org

Hidehiko Masuhara
Graduate School of Arts and Sciences

University of Tokyo
Tokyo, Japan

masuhara@acm.org

Tetsuo Tamai
Graduate School of Arts and Sciences

University of Tokyo
Tokyo, Japan

tamai@acm.org

ABSTRACT
We present a parameterized interpreter for modeling aspect-
oriented mechanisms. The interpreter takes several param-
eters to cover different AOP mechanisms found in AspectJ,
Hyper/J, and Demeter. The interpreter helps our under-
standing of the AOP mechanisms in two ways. First, its core
part represents the common mechanical structure shared by
different AOP mechanisms. Second, by reconstructing the
existing AOP mechanisms and using parameters to configure
the interpreter, we can illustrate the differences and similar-
ities of those mechanisms clearly. This will also be helpful
in rapid-prototyping a new AOP mechanism or a reflective
AOP system that supports different mechanisms.

Categories and Subject Descriptors: D.3.2 Program-
ming Languages: Language Classifications –Extensible lan-
guages

General Terms: Languages

Keywords: AOP, Join point models

1. INTRODUCTION
Mechanisms in aspect-oriented programming (AOP) lan-

guages[14][8] can be characterized by join point models (JPMs)
consisting of join points, a means of identifying the join
points, and a means of raising effects at the join points.
JPMs are important in AOP languages because they can
deal with crosscutting concerns elegantly[30]. Crosscutting
concerns may not be able to be modularized as aspects with-
out an appropriate JPM. Each of the current AOP languages
is based on a few fixed set of JPMs. Many different JPMs
have been proposed, and they are still evolving with the aim

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2005 ACM 1-58113-993-4/05/0011 ...$5.00.

of better modularization of various crosscutting concerns.
H.Masuhara and G.Kiczales defined a three-part model-

ing framework that explains a common structure in differ-
ent JPMs including PA (pointcuts and advice as in As-
pectJ[2][15]), TRAV (traversal specifications as in Deme-
ter[6]), COMPOSITOR (class merges based on matching
relationships as in Hyper/J[27][22]), and OC (open classes
as in AspectJ)[19]. The modeling framework is derived from
a suite of interpreters called Aspect SandBox (ASB)[1][7].

Although the three-part modeling framework clarifies com-
mon mechanisms in major JPMs, it does not provide a
common design model. The goal of this paper, a follow-
up paper to [19], is a conceptual description of the design
space of JPMs, executed by capturing essential characteris-
tics and differences concisely. Based on the three-part mod-
eling framework, we propose a parameterized interpreter
that takes several parameters to cover different JPMs.

The interpreter helps our understanding of the AOP mech-
anisms in two ways. First, its core part represents the com-
mon mechanical structure shared by different JPMs. Sec-
ond, by reconstructing the existing JPMs and using param-
eters to configure the interpreter, we can illustrate the dif-
ferences and similarities of those mechanisms clearly. This
will also be helpful in rapid-prototyping a new JPM or a
reflective AOP system that supports different mechanisms.

The remainder of this paper is structured as follows. In
section 2, we point out the difficulty of providing a common
parameterized interpreter by using examples that show the
differences among the four JPMs. We overcome the diffi-
culty, and present the parameterized interpreter in section
3. We also show how the four JPMs are obtained by fulfilling
the parameters of the interpreter. In section 4, we evaluate
the parameterized interpreter in terms of the efficiency of
rapid-prototyping JPMs. In section 5, we discuss extensible
AOP using the parameterized interpreter. In section 6, we
introduce some related works, and discuss future directions
of research. Section 7 concludes the paper.

2. MOTIVATION
Although the previous work pointed out the common struc-

194

ture shared by different AOP mechanisms[19], the common-
ality is described in an informal manner. In other words,
there has been no single model to capture different AOP
mechanisms. Note that, as in the previous work, we refer to
an interpreter of a language with an AOP mechanism as a
model of the mechanism. In this section, we briefly excerpt
a modeling framework with sample programs from the pre-
vious work, and then demonstrate how the framework lends
itself to no single model.

2.1 Example
Using the following simple figure program, we give a brief

explanation of the four JPMs:

class Figure { List element = new LinkedList(); }
class FigureElement { Display display; }
class Point extends FigureElement {

int x, y;
int getX() { return x; }
int getY() { return y; }
void setX(int x) { this.x = x; }
void setY(int y) { this.y = y; }

}
class Line extends FigureElement {

Point p1, p2;
int getP1() { return p1; }
int getP2() { return p2; }
void setP1(Point p1) { this.p1 = p1; }
void setP2(Point p2) { this.p2 = p2; }

}

This program is written in the ASB core language called
BASE1. In ASB, interpreters of the four JPMs are designed
on the BASE interpreter. The above program consists of
four classes: Figure, FigureElement, Point, and Line. A
figure is comprised of a collection of figure elements. There
are two kinds of figure elements: point and line. The defini-
tions of the two classes LinkedList and Display are omitted
here. The former is a class for managing figure elements, and
the latter is a class for displaying a figure.

PA program
PA captures a join point such as a method call, and inserts
advice code before/after/around the join point. The follow-
ing code is an after-advice that implements display updat-
ing functionality. The update, which is the method of the
Display class, is called after setX, setY, setP1, or setP2 is
called.

after (FigureElement fe):
(call(void Point.setX(int))
|| call(void Point.setY(int))
|| call(void Line.setP1(Point))
|| call(void Line.setP2(Point))) && target(fe){

fe.display.update(fe);
}

TRAV program
TRAV provides a mechanism that enables programmers to
design traversals through object graphs in a succinct fashion.
The following code implements the behavior of visiting all
the figure elements reachable from a figure.

Visitor counter = new CountElementsVisitor();
traverse("from Figure to FigureElement",

fig, counter);

1While this is a Scheme-based object-oriented language, we
use a Java-like syntax for readers’ easier understanding.

The first argument to traverse is called a traversal spec-
ification that describes a path to be visited. The second
argument is the root object where the traversal starts. The
third argument is a visitor that defines behavior at each
traversed object. In this case, the program traverses from
a root figure object following down through line objects to
reach point objects, and counts the elements.

COMPOSITOR program
COMPOSITOR composes independent partial programs. Us-
ing COMPOSITOR, the display updating functionality can
be designed in two steps. First, we write the following pro-
gram and relationship:

class Observable {
Display display;
void moved() { display.update(this); }

}
; relationship between Point/Line and Observable
match Point.setX with Observable.moved
match Point.setY with Observable.moved
match Line.setP1 with Observable.moved
match Line.setP2 with Observable.moved

Next, we compose the original figure program and the
above program using the relationship. In the resulting com-
posed program, the specified method of the Point and Line

classes are combined with the body of the moved method in
the Observable class. The effect is that display.update is
called after the execution is complete.

OC program
OC makes it possible to locate method or field declarations
for a class outside the textual body of the class declaration.
The following code defines draw methods for the different
kinds of figure elements in a single DisplayMethods class –
it modularizes the display aspect of the system. Graphics

is a class for drawing graphics.

class DisplayMethods {
void Point.draw() { Graphics.drawOval(...); }
void Line.draw() { Graphics.drawLine(...); }

}

2.2 Three-part modeling framework
Although the four JPMs are drastically different, there

are some points of commonality. The three-part modeling
framework shows the core semantics of these JPMs by mod-
eling the weaving process. The framework defines the pro-
cess of weaving as taking two programs and coordinating
them into a single combined computation. A critical prop-
erty of the framework is that it describes the join points
as existing in the result of the weaving process rather than
residing in either of the input programs.

The framework explains each JPM as an interpreter that
is modeled as a tuple of nine parameters:

〈X, XJP , A, AID, AEF F , B, BID, BEF F , META〉.
A and B are the languages in which the respective programs
pA and pB, input to the interpreter, are written. X is the
result domain of the weaving process, which is the third lan-
guage of a computation. XJP is a join point in X. AID and
BID are the means, in the languages A and B, of identify-
ing elements of XJP . AEF F and BEF F are the means, in
the languages A and B, of affecting semantics at the iden-
tified join points. META is an optional meta-language for

195

PA TRAV COMPOSITOR OC
X program execution traversal execution composed program combined program
XJP method calls arrival at each object declarations in X c declarations
A c, m, f declarations c, f declarations c, m, f declarations c declarations w/o OC declarations
AID m signatures, etc. c, f signatures c, m, f signatures m signatures
AEF F execute method body provide reachability provide declarations provide declarations
B advice declarations traversal spec.&visitor (=A) OC m declarations
BID pointcuts traversal spec. (=AID) effective m signatures
BEF F execute advice body call visitor&continue (=AEF F) copy m declarations
META none none match&merge rules none

Table 1: Three-part modeling framework

parameterizing the weaving process. A weaving process is
defined as a procedure that accepts pA, pB, and META,
and produces either a computation or a new program. Ta-
ble 1 summarizes the three-part modeling framework[19]. In
Table 1, single letters ’c’, ’m’, and ’f’ are abbreviations for
class, method and field, respectively.

2.3 Problem to be tackled
In the three-part modeling framework, the weaving pro-

cess consists of three operations: 1) generating a join point;
2) applying AID and BID to identify elements in pA and pB

matching the join point; 3) using AEF F and BEF F to pro-
duce the proper effects from the matching elements. These
steps are illustrated by the following code skeleton written
in Scheme.

(lambda (pA pB)
(let ((jp <generate a join point>))
(effect-A (lookup-A jp pA))
(effect-B (lookup-B jp pB))))

As pointed out in [19], the differences among the four
JPMs make it difficult to design a single parameterized pro-
cedure of this form. For example, BEF F controls execution
of A in PA. As a consequence, the four JPMs are designed
as individual interpreters in ASB.

Although the three-part modeling framework identified
a common structure among different AOP mechanisms as
shown in Table 1, the commonality is given in an informal
manner. There has been no single model that captures all
the different AOP mechanisms.

3. PARAMETERIZED INTERPRETER
To tackle the problem pointed out in section 2, we present

a single model that captures different AOP mechanisms, in
the form of a parameterized interpreter written in Scheme.
The interpreter, extensible ASB (X-ASB), consists of the
core part and various sets of parameters. The former rep-
resents the common mechanical structure of the four JPMs
PA, TRAV, COMPOSITOR, and OC. The latter clarifies
the differences and similarities of those JPMs. Each JPM
can be obtained by providing parameters to the interpreter.

3.1 Core part and the sets of parameters
Table 2 and Figure 1 show the relation between the pa-

rameters of the three-part modeling framework and those of
X-ASB. The elements enclosed by brackets are procedures.
The X-ASB parameters provided as procedure signatures
expose the programming interfaces for JPM developers.

Three-part model X-ASB parameter
X [eval-program], [computation-at-jp]
XJP [register-jp]
A pgm-a
AID [lookup-a]
AEF F [effect-a]
B pgm-b
BID [lookup-b]
BEF F [effect-b]

Table 2: X-ASB parameters

X

ΒA

AID BID

BEFF

AEFF

XJP

(eval-program)

(computation-at-jp)

(computation-at-jp)

(lookup-a) (lookup-b)

(effect-a)

(effect-b)
(pgm-b)(pgm-a)

(register-jp)

Figure 1: Weaving process

We illustrate the outline of the X-ASB parameterized in-
terpreter. The heart of the weaving process is the coordina-
tion at join points where the two programs A and B meet.
The type of join points is registered by the register-jp pa-
rameter. Each coordination given as the computation-at-jp
parameter is executed using the four parameters lookup-a,
effect-a, lookup-b, and effect-b. The eval-program pa-
rameter is the body of an interpreter in which procedures
specified by the computation-at-jp parameter are called.
The following code shows the core part of the interpreter.

(define weave
(lambda (pgm-a pgm-b)
(register-jp)
(eval-program pgm-a pgm-b)))

(define eval-program
(lambda (pgm-a pgm-b)
(<iterate the following steps

- get the next program element
- generate a join point
- call computation-at-jp>)))

196

(define computation-at-jp
(lambda (jp)
<mediate the following according to the JPM type>
(effect-a (lookup-a jp))
(effect-b (lookup-b jp))))

The interpreter takes the two programs pgm-a/pgm-b as
arguments that correspond to A/B in Table 1. The register-
-jp procedure registers join point types that include in-
formation needed for coordination at specific join points.
For example, a method-call join point type (abbreviated as
call-jp in this paper) is registered in PA. When the ex-
ecution of the eval-program procedure arrives at a point
that requires a weaving, it generates a join point instance
from its type and calls the computation-at-jp procedure.
In PA, the eval-program procedure evaluates the original
program (pgm-a), generates a call-jp instance when the
eval-program procedure evaluates the method-call expres-
sion, and calls the computation-at-jp procedure that exe-
cutes an advice body (pgm-b) using information contained in
the call-jp instance. The computation-at-jp parameter
that handles the call-jp can be designed as follows.

;; The first version
(define eval-exp ;called from eval-program

(lambda (exp env)
(cond

((method-call-exp? exp)
(computation-at-jp::call-jp

<generate an instance of call-jp>)))))
(define computation-at-jp::call-jp

(lambda (jp)
(execute-advice (lookup-advice jp

(lambda ()
(execute-method (lookup-method jp) jp))))))

The four procedures lookup-method, execute-method,
lookup-advice, and execute-advice correspond to the
X-ASB parameters lookup-a, effect-a, lookup-b and
effect-b, respectively: lookup-method and lookup-advice

searches the method declaration and the advice declara-
tions related to the call-jp; execute-method executes the
method body; and execute-advice executes the advice bod-
ies. In this case, only the after-advice is available.

3.2 Registration of join point type
A join point type registered by the register-jp param-

eter is strongly related to the computation-at-jp parame-
ter. For example, the computation-at-jp::call-jp proce-
dure is affected by the call-jp join point. If we want to
add a new kind of join point such as a field-set join point,
we must define a new kind of computation-at-jp such as
the computation-at-jp::fset. Although the first version
of the computation-at-jp procedure shown above gives a
guideline applicable to JPM designs, its reusability is still
limited. In order to make the computation-at-jp procedure
reusable, it is necessary to enrich the data structure that a
join point holds. The following jp defines the structure of a
join point:

(define-struct jp
(computation-strategy
lookup-a effect-a lookup-b effect-b))

The jp structure consists of five elements: the first ele-
ment computation-strategy shows a weaving policy such as

b-control-a (pgm-b controls over pgm-a as in PA); the four
procedures lookup-a, effect-a, lookup-b, and effect-b

correspond to parameters in Table 2. The elements specific
to a certain join point type can be added to the jp struc-
ture. For instance, the call-jp join point in PA is defined
below. This join point includes the name of the method be-
ing called, the object that is the target of the call, and a list
of the arguments to the call:

(define-struct (call-jp jp) mname target args)

A set of join point types must be registered using register-

-jp. The following is the code for registering the call-jp

join point type.

(define-struct jtype (jname generator))
(define register-jp

(lambda ()
(register-one-jp
’call-jp
(lambda (mname target args)
(make-call-jp

’b-control-a
lookup-method execute-method
lookup-advice execute-advice
mname target args)))))

A join point type is defined by the jtype structure, which
in turn has two elements: the jname element shows the name
of the join point type, and the generator is a procedure
that instantiates a join point from the jp structure. The
register-one-jp procedure, an X-ASB library procedure,
registers one join point type. Using the library procedure,
it is possible to add a new kind of join point type and its
related computation.

3.3 Computation at a join point
Using the jp structure, we give a new design of the compu-

tation-at-jp parameter. This is more modular than the
first version.

When an interpreter arrives at a point specified by the reg-
istered join point type, the interpreter generates a join point
instance using the generator defined in the jtype struc-
ture, and executes the following computation-at-jp pro-
cedure, which dispatches a process according to a compu-
tation strategy. In the case of the call-jp join point, the
computation-at-jp::b-control-a library procedure is exe-
cuted. It is not necessary to define a new kind of computatio-
n-at-jp whenever we add a new kind of join point type.
We can reuse the computation-at-jp::b-control-a library
procedure if the join point type is based on PA.

;; The Second version
(define computation-at-jp

(lambda (jp)
(let ((strategy (jp-computation-strategy jp)))
(cond ((b-control-a? strategy)

(computation-at-jp::b-control-a jp))
((traversal? strategy)
(computation-at-jp::traversal jp))
<other strategies are ommited>))))

(define computation-at-jp::b-control-a
(lambda (jp)
(let* ((lookup-a (jp-lookup-a jp))

(effect-a (jp-effect-a jp))
(lookup-b (jp-lookup-b jp))
(effect-b (jp-effect-b jp)))

(effect-b (lookup-b jp) jp
(lambda ()
(effect-a (lookup-a jp) jp))))))

197

PA TRAV COMPOSITOR OC
X [eval-program] [eval-program] [eval-program] [eval-program]

[computation-at-jp] [computation-at-jp] [computation-at-jp] [computation-at-jp]
XJP [register-jp] [register-jp] [register-jp] [register-jp]

call-jp arrival-jp matching-jp c-decl-jp
A c, m, f declarations c, f declarations c, m, f declarations c declarations w/o OC declarations
AID [lookup-method] [lookup-fields] [lookup-decl] [lookup-cdecl]
AEF F [execute-method] [provide-next-arrival] [provide-decl] [provide-mdecls]
B advice declarations traversal spec.&visitor (=A) OC m declarations
BID [lookup-advice] [lookup-trav] (=AID) [lookup-oc-mdecls]
BEF F [execute-advice] [execute-visitor] (=AEF F) [copy-mdecls]
META B control A traversal relationship oc

Table 3: Application of the X-ASB parameterized interpreter

The updated version of the computation-at-jp procedure
is more reusable than the first version. This version can be
commonly used by PA, TRAV, COMPOSITOR, and OC.
The idea of join point type is essential to designing a JPM
that is as modular as possible because information needed
at the computation-at-jp parameter is encapsulated in a
join point instance.

3.4 Library for pointcut designator
The pointcut mechanism is important and useful for effec-

tive AOP although all JPMs do not presume the mechanism.
X-ASB provides library procedures for designing pointcut
designators and pointcut evaluations.

The structure of a pointcut designator is defined as fol-
lows:

(define-struct pcd (pname evaluator))

A pointcut designator consists of two elements: the pname
shows the name of a pointcut designator, and the evaluator
is a boolean procedure that checks whether a current join
point is an element of a pointcut set. The evaluator pro-
cedure is called from the lookup-b parameter.

Below is the code for registering a call pointcut desig-
nator that includes a type of return value, a class name, a
method name, and parameters of the method. The registe-
r-one-pcd procedure, an X-ASB library procedure, registers
one pointcut designator. The procedure has two arguments:
the first is the name of the pointcut designator, and the sec-
ond is an evaluator. In this case, the registered evaluator
checks whether the method name of a join point is equivalent
to the name specified by the call pointcut designator.

(define-struct (call-pcd pcd)
(rtype cname mname params))

(define register-jp
(lambda ()
(register-one-pcd

’call-pcd
(lambda (ptc jp)
(if (call-pcd? ptc)

(and (eq? (call-pcd-mname ptc)
(call-jp-mname jp))))))))

In PA, the lookup-advice procedure, which checks call

pointcut conditions, uses the pointcut evaluator registered
by the above code.

3.5 Design of the four JPMs
Table 3 shows the application of the X-ASB parameter-

ized interpreter. Table 3 corresponds to the three-part mod-
eling framework as follows: a parameter in the framework
corresponds to a procedure that designs an X-ASB parame-
ter, and the META parameter in the framework corresponds
to the computation strategy in X-ASB. Although there are
no META parameters in the framework except COMPOSI-
TOR, the existence of these parameters is assumed implic-
itly in the framework. For example, the META parameter in
PA can be regarded as the b-control-a computation strat-
egy. The concept of a computation strategy is important
to making the design of the computation-at-jp parame-
ter reusable. Moreover, this concept resolves the problem
pointed out in section 2.3.

The main contribution of this paper is to provide a pro-
cess for designing JPMs. Using X-ASB, we can design JPMs
explicitly as follows: 1) design a type of join point using the
register-jp parameter, which includes the four parameters
lookup-a, effect-a, lookup-b, and effect-b; 2) coordi-
nate the computation at the join point using the computatio-
n-at-jp parameter; and 3) design a weaving process using
the eval-program parameter in which the computation-at-
-jp is called. The registration of a join point type and co-
ordination using the type are essential in the parameterized
interpreter X-ASB. Based on X-ASB, interpreters of the four
JPMs can be designed as follows (see Figure 2):

• PA: The eval-program procedure executes program
pA, and calls the computation-at-jp procedure upon
evaluating a method-call expression, a point related to
the call-jp join point. The computation-at-jp pro-
cedure weaves the method execution of the program
pA and the advice execution of the program pB us-
ing lookup-method, execute-method, lookup-advice,
and execute-advice. These procedures are registered
in the call-jp join point;

• TRAV: The eval-program procedure traverses pro-
gram pA provided as an object graph, and calls the
computation-at-jp procedure upon reaching a point
related to the arrival-jp join point, an arrival at
the node that satisfies the traversal specification. The
computation-at-jp procedure weaves the program pA
(class, field declarations) and the program pB (traver-
sal specifications and visitor) by executing the visitor
method that refers to the fields of the program pA.
The computation-at-jp procedure uses the four pro-

198

method call

method call

computation-at-jp
(execute advice)

generate join point

eval-program
(evaluate expressions)

PA

eval-program
(traverse obj tree)

arrival
 at node

arrival at node

generate join point

computation-at-jp
(execute visitor method
 & traverse next node)

TRAV

eval-program
(compose programs)

pgm-a pgm-b

c, m, f declaraion
:
:

satisfies
relationships

c, m, f declaration

computation-at-jp
(add declaration
 to composed program)

generate join point

COMPOSITOR

c declaration

computation-at-jp
(merge OC declaration)

generate join point

OC

eval-program
(scan c declarations)

c declaration
:
:

<join point type>

<join point type>

<join point type>
<join point type>

Figure 2: Design of the four JPMs

cedures lookup-field, provide-next-arrival, look-
up-trav, and execute-visitor. These procedures are
registered in the arrival-jp join point;

• COMPOSITOR: The eval-program procedure parses
two programs pA and pB to find declarations that sat-
isfy the relationship, and calls the computation-at-jp

procedure upon reaching a point related to the matchi-
ng-jp join point, a point matching the relationship.
The computation-at-jp procedure weaves the pro-
gram pA and the program pB by composing decla-
rations using lookup-decl and provide-decl. The
former looks up a declaration to be merged, and the
latter adds the declaration to the merged program.
These procedures are registered in the matching-jp

join point;

• OC: The eval-program procedure parses program pA
(class declarations), and calls the computation-at-jp

procedure upon reaching a point related to the c-decl-
-jp join point, a class declaration matching OC dec-
larations. The computation-at-jp procedure weaves
the program pA and the program pB (OC declara-
tions) by copying OC declarations to the related class
declaration using lookup-cdecl, provide-mdecl, look-
up-oc-mdecls, and copy-mdecls. These procedures
are registered in the c-decl-jp join point.

For a detailed explanation, the program codes of the PA
interpreter (example of dynamic JPM) and the COMPOSI-
TOR interpreter (example of static JPM) are shown in the
appendix as examples.

It is important for JPM developers to make the following
design decisions: 1) What kinds of join points are needed?

and 2) What kinds of coordination should be defined at the
join points?

4. EVALUATION
X-ASB is effective for rapid-prototyping JPMs. In this

section, we evaluate how rapidly we can model JPMs using
X-ASB.

Table 4 shows the code size for developing the four JPMs.
The code is categorized into four parts consisting of regist-
er-jp (and related parameters: lookup-a/b, effect-a/b),
computation-at-jp (to be exact, a sub-procedure such as
computation-at-jp::b-control-a), eval-program, and base.
The base part includes the BASE interpreter and X-ASB li-
brary procedures except computation-at-jp. The code size
A, the summation of the first three parts, indicates the LOC
(Line of Code) specific to each JPM. The code size B shows
the total LOC of each JPM weaver. The labor for introduc-
ing a new JPM can be estimated by the expression A/B∗100.
As shown in the table, we have only to add 10 - 30 % new
code to develop a new JPM. Although the code for defin-
ing the register-jp parameter and the computation-at-jp
parameter is relatively small excluding PA, the size of the
eval-program is large. It is not necessarily easy to design
this parameter because it determines the overall behavior of
the weaver.

Next, we evaluate the labor for extending an existing
JPM. Table 5 shows the code size for extending PA. We
have only to add 48 LOCs and 42 LOCs in order to add
fset-jp/fset-pcd (a field-set join point and pointcut designa-
tor) and fget-jp/fget-pcd (a field-get join point and pointcut
designator), respectively. The labor for extending PA can
be estimated by the expression B/(A+B)∗100. As shown in
the table, we have only to add about 20 % new code to add

199

Part PA TRAV COMPOSITOR OC
1.register-jp 81 36 16 32
2.computation- 9 16 5 11

at-jp::xx
3.eval-program 64 131 238 28
4.base 537 537 537 537
A: sum of 1-3 154 183 259 71
B: sum of 1-4 691 720 796 608
A/B (%) 22.3 25.4 32.5 11.7

Table 4: LOC for developing each JPM

Part original PA add fset-jp add fget-jp
1.register-jp 81 44 38
2.computation- 9 - -

at-jp::xx
3.eval-program 64 4 4
sum of 1-3 A:154 B:48 B:42
B/(A+B) (%) 23.8 20.8

Table 5: LOC for extending PA

a new kind of join point and pointcut designator. The code
of the computation-at-jp is reused. That is, the computa-
tion strategy b-control-a is common to call-jp, fset-jp,
and fget-jp. It is easy to extend an existing JPM because
we can reuse most of the two parameters eval-program and
computation-at-jp.

5. DISCUSSION TOWARDS EXTENSIBLE
AOP

In this paper, we proposed a parameterized interpreter
for modeling different JPMs. Using this interpreter, we can
introduce new kinds of JPMs. However, it would be better
if we could change existing JPMs from base-level languages.
The effectiveness in software evolution would be restricted
if language developers had to extend JPMs whenever appli-
cation programmers needed new kinds of JPMs. Extensi-
ble languages, such as computational reflection[24][18] and
metaobject protocols[13] would be also useful in AOP.

Towards this direction, we discuss how metaobject proto-
cols can be designed based on the parameterized interpreter.

5.1 JPM design layer
There are two layers for designing JPMs. The level 1

layer provides mechanisms for introducing new JPMs. The
parameterized interpreter belongs to this layer. The level 2
layer provides mechanisms for extending JPMs developed in
the level 1 layer. For example, in the level 2 layer, we can add
a new pointcut designator to the PA interpreter developed
in the level 1 layer. Reflection for AOP is realized in the
level 2 layer.

Table 6 shows the relation between the design layers and
parameters. The parameters lookup-a/b and effect-a/b

are omitted because they are subjected to the register-jp

parameter. The level 1 layer includes all the parameters that
are necessary to design runnable interpreters. The level 2
layer includes only the computation-at-jp parameter and
the register-jp parameter. Join point types, pointcut des-
ignators, and computation strategies (coordination at a join
point) can be extended in the level 2 layer.

Layer Purpose Parameters
level 1 introduction [eval-program]

of new JPMs [computation-at-jp]
[register-jp]

level 2 extension [computation-at-jp]
of existing JPMs [register-jp]

Table 6: JPM design layer

Metaobject protocol Function
register-one-strategy register a computation strategy
lookup-strategy search a computation strategy
register-one-jp register a join point type
lookup-jp search a join point type
extract-jp extract a join point information
register-one-pcd register a pointcut designator
lookup-pcd search a pointcut designator
extract-ptc extract a pointcut information

Table 7: Metaobject protocols for AOP

From the evaluation in section 4, we can observe the fol-
lowing: it is relatively easy to design the register-jp pa-
rameter and the computation-at-jp parameter; and it is
not easy to design the eval-program parameter. We believe
that reflection for AOP should be limited to adding new
kinds of join point types, pointcut designators, and compu-
tation strategies. That is, parameters such as eval-program
should not be the target of reflection. Developing a new
eval-program carries a cost equal to that of developing a
new interpreter. Table 6 reflects this observation.

5.2 Metaobject protocols
Table 7 shows metaobject protocols for AOP. These pro-

tocols extend the two parameters computation-at-jp and
register-jp. The three protocols register-one-strategy

(register a computation strategy), register-one-jp (regis-
ter a join point type), and register-one-pcd (register a
pointcut designator) correspond to intercession. The five
protocols lookup-strategy (search a computation strategy),
lookup-jp (search a join point type), extract-jp (extract
information of a join point instance), lookup-pcd (search a
pointcut designator), and extract-ptc (extract a pointcut
information) correspond to introspection. The thisJoinPoint
variable in AspectJ corresponds to the extract-jp protocol.
A reflective interpreter supporting the metaobject protocols
is under construction.

Most aspect-oriented features can be designed by run-time
metaobject protocols[25]. It is interesting to explore the re-
lationships between reflective OOP languages and reflective
AOP languages. We think that reflective AOP languages
should expose metaobject protocols based on JPMs because
they are essential to AOP.

5.3 Validity of the metaobject protocols
It is necessary to evaluate the validity of the metaobject

protocols from the viewpoint of generality. We have ex-
amined how existing research on JPM extensions can be
explained using these protocols. We believe that they are
generic protocols that can explain almost all the current
JPM extensions.

Table 8 shows the relation between existing studies and
metaobject protocols. There are investigations that have

200

Metaobject protocol Example
register-one-strategy none
lookup-strategy none
register-one-jp none
lookup-jp none
extract-jp thisJoinPoint in AspectJ
register-one-pcd pcflow, dflow, josh

pattern-based pcd
lookup-pcd none
extract-ptc none

Table 8: Studies on JPM extension

attempted to enrich the pointcut designators because cur-
rent AOP languages do not provide sufficient kinds of point-
cut designators. G. Kiczales emphasizes the necessity of
new kinds of pointcut designators such as pcflow (predic-
tive control flow) and dflow (data flow)[16][20]. K. Gybels
and J. Brichau have pointed out problems of current point-
cut languages from the viewpoint of the software evolution,
and have proposed robust pattern-based pointcut designa-
tors using logic programming facilities[11]. D.B. Tucker and
S. Krishnamurthi propose a description of pointcuts and
advice for higher-order languages, particularly Scheme[28].
These approaches introduce new pointcut designators in or-
der to deal with new kinds of crosscutting concerns. These
attempts to add new kinds of pointcut designators can be
explained by the register-one-pcd protocol. We can intro-
duce new pointcut designators such as pcflow by defining
a pointcut evaluator. Josh[4], proposed by S. Chiba and
K. Nakagawa, adopts an approach by which programmers
can define a new pointcut designator as a boolean func-
tion. The approach of Josh can be considered as being
similar to the register-one-pcd protocol. Although there
exists research on pointcut extensions, research on extended
join point types does not exist yet. This extension can be
explained by register-one-jp protocols. For example, a
rich join point such as loop can be defined by extracting
points associated to control expressions such as if. Using
the register-one-strategy, we can add new kinds of com-
putation strategies. Although the current PA interpreter
supports only the after-advice, we can define a new coor-
dination (computation at a join point) for supporting the
before-advice.

As mentioned in this section, the parameters of the X-ASB
interpreter and the metaobject protocols derived from the
parameters are useful not only for modeling different AOP
mechanisms but also for discussing the research direction of
extensible AOP.

6. RELATED WORK
There are two approaches for developing AOP languages

that support multiple JPMs[12]. The first approach is to
provide a single general-purpose AOP language that can
design various special-purpose meta-level transformations.
The second approach is to provide an AOP language with
domain-specific aspect libraries.

This paper focuses on the first approach based on the
three-part modeling framework. There are several works
related to the first approach. E. Tanter et al. propose a
versatile AOP kernel that supports core semantics[26]. J.
Gray and S. Roychoudhury propose an approach that uses

a program transformation system as the underlying engine
for weaver construction[10]. Their long-term research goal,
a framework for language and platform-independent weav-
ing, is similar to our goal. R. Lämmel proposed a general
method to extend the language in a way that it supports a
form of superimposition just in the sense of AOP. In the ex-
tended language, a programmer can superimpose additional
or alternative functionality (aka advice) onto points along
the execution of a program[17]. The AspectBench Compiler
(abc)[3] is a workbench that facilitates experimentation with
new language features and implementation techniques. The
abc is designed to be an extensible framework for imple-
menting AspectJ extensions. X-ASB is an interpreter that
can model not only AspectJ-like JPM such as PA but also
other kinds of JPMs.

There are several AOP language systems adopting the
second approach. M.Shonle, K.Lieberherr, and A.Shah pro-
pose an extensible domain-specific AOP language, XAspect,
which adopts plug-in mechanisms[23]. Adding a new plug-in
module, we can use a new kind of aspect-oriented facility.
CME (Concern Manipulation Environment)[5], the succes-
sor of Hyper/J, adopts an approach similar to XAspect.

M. Mezini and K. Ostermann claim that join point inter-
ception (JPI) alone does not suffice for modular structur-
ing of aspects[21]. They propose Caesar, a model of AOP
with a higher-level module concept on top of JPI. Caesar
enables reuse and componentization of aspects. There are
two kinds of aspect components. One is a component that
designs aspectual facilities as in the meaning of Caesar. An-
other is a component that designs mata-level transforma-
tions. Both of these components are important for extensi-
ble AOP. The second kind of aspect component establishes
a foundation for new types of aspect-oriented features, and
the first kind of aspect component gives a variety of aspec-
tual features on the foundation. If we can write both kinds
of components using the same base language, the above two
approaches may be integrated. That is, the first approach
(general-purpose AOP language with meta-level transforma-
tions) and the second approach (aspect library) corresponds
to reflective AOP languages and associated reflective com-
ponents, respectively.

Domain-specific aspect-oriented extensions are important.
They are necessary not only at the programming stage but
also at the modeling stage. An approach for supporting
domain-specific aspect-oriented modeling is proposed in [9].
Logic programming facilities and queries using these facili-
ties will be useful for defining domain-specific pointcuts[29].
If reflective AOP languages can expose program execution
information held in weavers, and programmers can use this
information when they define pointcuts, the pointcuts will
be enriched.

7. CONCLUSION
This paper proposes the parameterized interpreter X-ASB

for modeling different JPMs. X-ASB will be helpful in rapid-
prototyping a new AOP mechanism or a reflective AOP sys-
tem that supports multiple JPMs. We believe that X-ASB
guides language developers in modular JPM designs.

8. ACKNOWLEDGEMENT
This research has been conducted under Kumiki Project,

supported as a Grant-in-Aid for Scientific Research (13224087)

201

by the Ministry of Education, Culture, Sports, Science and
Technology (MEXT), Japan.

9. REFERENCES
[1] ASB(Aspect SandBox),

http://www.cs.ubc.ca/labs/spl/projects/asb.html.

[2] AspectJ. http://www.eclipse.org/aspectj/.

[3] Avgustinov, P., Christensen, A.S., Hendren, L.,
Kuzins, S., Lhotak, J., Lhotak, O., Moor, O., Sereni,
D., Sittampalam, G., and Tibble, J.: abc: An
Extensible AspectJ Compiler, In Proceedings of
International Conference on Aspect-Oriented Software
Development (AOSD 2005), pp.87-98, 2005.

[4] Chiba, S. and Nakagawa, K.: Josh: An Open
AspectJ-like Language, In Proceedings of International
Conference on Aspect-Oriented Software Development
(AOSD 2004), pp.102-111, 2004.

[5] Concern Manipulation Environment (CME): A
Flexible, Extensible, Interoperable Environment for
AOSD, http://www.research.ibm.com/cme/.

[6] Demeter Project.
http://www.ccs.neu.edu/research/demeter/.

[7] Dutchyn, C., Kiczales, G., and Masuhara, H.: AOP
Language Exploration Using the Aspect Sand Box,
Tutorial on International Conference on
Aspect-Oriented Software Development (AOSD 2002),
2002.

[8] Elrad, T., Filman, R.E. and Bader A.:
Aspect-oriented programming, Communications of the
ACM, vol.44, no.10, pp.29-32, 2001.

[9] Gray, J., Bapty, T., Neema, S., Schmidt, D., Gokhale,
A, and Natarajan, B.: An Approach for Supporting
Aspect-Oriented Domain Modeling, In Proceedings of
International Conference on Generative Programming
and Component Engineering (GPCE 2003),
pp.151-168, 2003.

[10] Gray, J. and Roychoudhury, S.: A Technique for
Constructing Aspect Weavers Using a Program
Transformation Engine, In Proceedings of
International Conference on Aspect-Oriented Software
Development (AOSD 2004), pp.36-45, 2004.

[11] Gybels, K. and Brichau, J.: Arranging Language
Features for More Robust Pattern-based Crosscuts, In
Proceedings of International Conference on
Aspect-Oriented Software Development (AOSD 2003),
pp.60-69, 2003.

[12] Hugunin, J.: The Next Steps For Aspect-Oriented
Programming Languages,
http://www.isis.vanderbilt.edu/sdp, 2001.

[13] Kiczales, G., Rivieres, J.des , Bobrow, D. G.: The Art
of the Metaobject Protocol, MIT Press, Cambridge,
MA, 1991.

[14] Kiczales, G., Lamping, J., Mendhekar A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J.: Aspect-Oriented
Programming, In Proceeding of European Conference
on Object-Oriented Programming (ECOOP’97),
pp.220-242, 1997.

[15] Kiczales, G., Hilsdale, E., Hugunin, J., et al.: An
Overview of AspectJ, In Proceedings of European
Conference on Object-Oriented Programming
(ECOOP 2001), pp.327-353, 2001.

[16] Kiczales, G.: The Fun Has Just Begun , Keynote talk
at International Conference on Aspect-Oriented
Software Development (AOSD 2003), 2003.

[17] Lämmel”, R.: Adding Superimposition To a Language
Semantics, Proceedings: Foundations of
Aspect-Oriented Languages Workshop at AOSD 2003
(FOAL 2003), 2003.

[18] Maes, P.: Concepts and Experiments in
Computational Reflection, In Proceedings of
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’87), pp.147-155, 1987.

[19] Masuhara, H. and Kiczales, G.: Modeling Crosscutting
in Aspect-Oriented Mechanisms, In Proceedings of
European Conference on Object-Oriented
Programming (ECOOP 2003), pp.2-28, 2003.

[20] Masuhara, H. and Kawauchi, K.: Dataflow Pointcut in
Aspect-Oriented Programming, In Proceedings of The
First Asian Symposium on Programming Languages
and Systems (APLAS’03), pp.105-121, 2003.

[21] Mezini, M. and Ostermann, K.: Conquering Aspects
with Caesar, In Proceedings of International
Conference on Aspect-Oriented Software Development
(AOSD 2003), pp.90-99, 2003.

[22] Ossher, H. and Tarr, P.: Multi-Dimensional
Separation of Concerns & Hyperspaces, Software
Architectures and Component Technology: The State
of the Art in Research and Practice, Mehmet Aksit,
editor, Kluwer Academic Publishers, pp.293-323, 2000.

[23] Shonle, M., Lieberherr, K., and Shah, A.: XAspects:
An Extensible System for Domain-specific Aspect
Languages, Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2003),
Domain-Driven Development papers, pp.28-37, 2003.

[24] Smith, B. C.: Reflection and Semantics in Lisp, In
Proceedings of Annual Symposium on Principles of
Programming Languages (POPL’84), pp.23-35, 1984.

[25] Sullivan, G.T.: Aspect-oriented programming using
reflection and metaobject protocols, Communications
of the ACM, vol.44 no.10, pp.95-97, 2001.

[26] Tanter, E. and Noye, J.: A Versatile Kernel for
Multi-Language AOP, In Proceedings of Generative
Programming and Component Engineering (GPCE
2005), to appear, 2005.

[27] Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M.,
Jr.: N Degrees of Separation: Multi-dimensional
Separation of Concerns, In Proceedings of
International Conference on Software Engineering
(ICSE’99), pp.107-119, 1999.

[28] Tucker, D.B. and Krishnamurthi,S.: Pointcuts and
advice in higher-order languages, In Proceedings of
International Conference on Aspect-Oriented Software
Development (AOSD 2003), pp.158-167, 2003.

[29] Volder, K., Brichau, J., Mens, K., and D’Hondt, T.:
Logic Meta Programming, a Framework for
Domain-Specific Aspect Languages,
http://www.cs.ubc.ca/ kdvolder/, 2001.

[30] Wand, M., Kiczales, G., and Dutchyn, C.: A
Semantics for Advice and Dynamic Join Points in
Aspect-Oriented Programming, In Proceedings:
Foundations Of Aspect-Oriented Languages
(FOAL2002), Workshop at AOSD 2002, pp.1-8, 2002.

202

APPENDIX
Common
(define weave

(lambda (pgm-a pgm-b)
(register-jp)
(eval-program pgm-a pgm-b)))

(define-struct jp (computation-strategy
lookup-a effect-a lookup-b effect-b))

(define-struct pcd (pname evaluator))
(define computation-at-jp

(lambda (jp)
(let ((strategy (jp-computation-strategy jp))))

(cond ((b-control-a? strategy)
(computation-at-jp::b-control-a jp))
((relationship? strategy)
(computation-at-jp::relationship jp))
<other strategies are ommited>)))

(define computation-at-jp::b-control-a
(lambda (jp)
(let* ((lookup-a (jp-lookup-a jp))

(effect-a (jp-effect-a jp))
(lookup-b (jp-lookup-b jp))
(effect-b (jp-effect-b jp)))

(effect-b (lookup-b jp) jp
(lambda ()

(effect-a (lookup-a jp) jp))))))
(define computation-at-jp::relationship

(lambda (jp)
(let* ((lookup-a (jp-lookup-a jp))

(effect-a (jp-effect-a jp)))
(effect-a (lookup-a jp) jp))))

PA weaver
Body
(define pa::weave

(lambda (pgm)
(weave (extract-org-pgm pgm)

(extract-advice-decls pgm))
<extract-org-pgm extracts an original program>
<extract-advice-decls extracts advice
declarations>))

Join point type, pointcut designator
(define-struct (call-jp jp) (mname target args))
(define-struct (call-pcd pcd)

(rtype cname mname params))
(define register-jp

(lambda ()
(register-one-jp

’call-jp
(lambda (mname target args)
(make-call-jp

’b-control-a
lookup-method execute-method
lookup-advice execute-advice
mname target args)))

(register-one-pcd
’call-pcd
(lambda (ptc jp)
(if (call-pcd? ptc)

(and (eq? (call-pcd-mname ptc)
(call-jp-mname jp))))))))

(define lookup-method
(lambda(jp) <lookup a method>))

(define execute-method
(lambda(method jp) <execute the method>))

(define lookup-advice
(lambda (jp)
<lookup advices that match pointcut conditions

using pointcut evaluator ’call-pcd>))

(define execute-advice
(lambda (advices jp thunk) <execute advices>))

Program evaluator
(define eval-program

(lambda (org-pgm advice-decls)
<evaluate expressions by calling eval-exp>))

(define eval-exp
(lambda (exp env)
(cond
((method-call-exp? exp)
(call-method
(method-call-exp-mname exp)
(eval-exp

(method-call-exp-obj-exp exp) env)
(eval-rands

(method-call-exp-rands exp) env)))
<other expressions are ommitted>)))

(define call-method
(lambda (mname obj args)
(computation-at-jp
(jtype-generator (lookup-jp ’call-jp))

mname obj args)
<lookup-jp searches a registered join point
type>))

COMPOSITOR weaver
Body
(define compositor::weave

(lambda (pgm-a pgm-b)
(weave pgm-a pgm-b)))

Join point type
(define-struct (matching-jp jp)

(pgm seed relationships))
(define register-jp

(lambda ()
(register-one-jp

’matching-jp
(lambda (pgm seed relationships)
(make-matching-jp
’relationship
lookup-decl provide-decl
lookup-decl provide-decl
pgm seed relationships)))))

(define lookup-decl
(lambda (jp)
<lookup a declaration to be merged>))

(define provide-decl
(lambda (decl jp)
<add the declaration to a merged program>))

Program evaluator
(define eval-program

(lambda (pgm-a pgm-b)
(let loop

((pgm (make-program ’()))
(seeds (compute-seeds pgm-a pgm-b))
(relationships (get-relationships))

<compute seeds, all possible
compositions of declarations>)

<take a seed, and determine
wheather the seed should be merged>

<if so, generate a matching join point,
and call computation-at-jp>

(computation-at-jp
(jtype-generator (lookup-jp ’matching-jp))
pgm (car seeds) relationships)

(loop pgm (cdr seeds) relationships))
pgm))

203

