2015 30th IEEE/ACM International Conference on Automated Software Engineering

Detecting Broken Pointcuts Using Structural
Commonality and Degree of Interest

Raffi Khatchadourian Awais Rashid
City University of New York Lancaster University
rkhatchadourian @citytech.cuny.edu awais@comp.lancs.ac.uk

Abstract—Pointcut fragility is a well-documented problem in
Aspect-Oriented Programming; changes to the base-code can lead
to join points incorrectly falling in or out of the scope of pointcuts.
Deciding which pointcuts have broken due to base-code changes
is a daunting venture, especially in large and complex systems.
We present an automated approach that recommends pointcuts
that are likely to require modification due to a particular base-
code change, as well as ones that do not. Our hypothesis is that
join points selected by a pointcut exhibit common structural
characteristics. Patterns describing such commonality are used
to recommend pointcuts that have potentially broken to the
developer. The approach is implemented as an extension to the
popular Mylyn Eclipse IDE plug-in, which maintains focused
contexts of entities relevant to the task at hand using a Degree
of Interest (DOI) model.

I. INTRODUCTION

Although using Aspect-Oriented Programming (AOP) [1]
can be beneficial to developers in many ways [2], such systems
have potential for new problems unique to the paradigm. A key
construct that allows code to be situated in a single location
but affect many system modules is a query-like mechanism
called a pointcut expression (PCE). PCEs specify well-defined
locations (join points) in the execution of the program (base-
code) where code (advice) is to be executed. In Aspect] [3], an
AOP extension of Java, join points may include calls to certain
methods, accesses to particular fields, and modifications to the
run time stack. In this way, AOP allows for localized imple-
mentations of so-called crosscutting concerns (or aspects), e.g.,
logging, persistence, security. Without AOP, aspect code would
be scattered and tangled with other code implementing the core
functionality of the modules.

As the base-code changes with possibly new functionality
being added, PCEs may become invalidated. That is, they may
fail to select or inadvertently select new places in the program’s
execution, a problem known as PCE fragility [4]. Deciding
which PCEs have broken is a daunting venture, especially
in large and complex systems. In software with many PCEs,
seemingly innocuous base-code changes can have wide effects.
To catch these errors early, developers must manually check all
PCEs upon base-code changes, which is tedious (potentially
distracting developers), time-consuming (there can be many
PCEs), error-prone (broken PCEs may not be fixed properly),
and omission-prone (PCEs may be missed).

Several approaches combat this problem by proposing
new PCE languages with more expressiveness [5,6], limiting
where advice may apply [7], or enforcing constraints on
advice application [8]. Others make advice applicability more

978-1-5090-0025-8/15 $31.00 © 2015 IEEE
DOI 10.1109/ASE.2015.80

641

Hidehiko Masuhara
Tokyo Institute of Technology
masuhara@acm.org

Takuya Watanabe
Edirium K.K.
sodium@edirium.co.jp

explicit [9] or do not use PCEs [10]. However, each of these
tend to require some level of anticipation and, consequently,
when using PCEs, there may nevertheless exist situations
where PCEs must be manually updated. Furthermore, when
using more expressive PCE languages, the rules that the base-
code must respect may be complex. Hence, although these
languages may reduce fragility, they may render detection of
broken PCEs more difficult [11].

Other approaches [4,12,13] analyze changes in join points
between versions so that the difference in behavior is well-
understood. However, PCEs that likely broke as a result of
the change must be manually determined. The Aspect] Devel-
opment Tools (AJDT; http://eclipse.org/ajdt), which displays
current join point and PCE matching information, does not
indicate which PCEs do not select a given join point nor
which are likely broken due to a new join point. Ye and
Volder [14] provide almost matching join points via developer-
minded heuristics, and Nguyen et al. [15] incorporate missed
join points into PCEs, but neither detect situations where join
points are unintentionally selected by PCEs. Wloka et al.
[16] automatically fix PCEs broken by refactorings, however,
manual base-code edits may also break PCEs. Khatchadourian
et al. [17] suggest join points that may require inclusion by a
PCE. Yet, developers must manually detect broken PCEs, as
well as determine how frequently to check.

In this paper, we present an automated approach that rec-
ommends a set of PCEs that are likely to require modification
due to a particular base-code change. Our approach has been
implemented as an automated AspectJ source-level inferencing
tool called FRAGLIGHT, which is a plug-in to the popular
Eclipse IDE (http://eclipse.org). FRAGLIGHT identifies, as the
developer is making changes to the base-code, PCEs that have
likely broken within a degree of change confidence. Based on
how “confident” we are in the PCE being broken, FRAGLIGHT
presents the results to the developer by manipulating the
Degree of Interest (DOI) model of the Mylyn context [18].

Mylyn (http://eclipse.org/mylyn) is a standard Eclipse plug-
in that facilitates software evolution by focusing graphical
components of the IDE so that only artifacts related the
currently active task are revealed to the developer. The context
is comprised of the relevant elements, along with information
pertaining to how inferesting the elements are to the related
task. The more a developer interacts with an element (e.g.,
navigates to a file), when working on a task, the more
interesting the element is deemed to be, and vice-versa.

In Mylyn, elements may also become interesting implicitly,

IEEE
computer
® psouety

Listing 1. A point on a Cartesian plane.

1 public class Point implements Figure {

2 private double x;private double y;

3 public void setX(double x) {this.x=x;}

4 public void setTwiceX(double x) {this.x=2xx;}
5 public double getY () {return y;}}

Listing 2. An aspect managing how Figures are displayed.
public aspect DisplayManipulation {

1

2 after():

3 execution(x Figure+.setx*(..))

4 {Display.update();}

5 double around () :

6 execution (double Figure+.getx(..))
7 {return proceed()*0.5;}}

e.g., a package may become interesting if a class within the
package is edited. FRAGLIGHT implicitly makes PCEs that are
more likely broken more interesting, i.e., by increasing its DOI
value, while implicitly making PCEs that are /ess likely broken
to be less interesting, i.e., by decreasing its DOI value.

FRAGLIGHT’s recommendations are based on harnessing
unique and arbitrarily deep structural commonality between
program elements corresponding to join points selected by a
PCE in a particular software version. The majority of program
elements corresponding to join points selected by a PCE in one
base-code version share such characteristics between them, and
these relationships persist in subsequent versions [17]. Here,
we use this premise to detect broken PCEs on-the-fly.

This paper goes beyond [17] in that it:

Solves a different problem. Our previous approach, geared
towards aspect developers', periodically suggests join points
that may require inclusion into a revised version of a PCE.
Aspect developers may revise PCEs, possibly after coarse-
grained base-code changes, depending on the provided join
point suggestions. Our new approach, geared towards base-
code developers, however, suggests PCEs that may have
broken due to a single revision to the base-code.

Presents a new, incremental algorithm. While our previous
approach works with only a single PCE at a time, in this
paper, our incremental approach avoids rebuilding and ana-
lyzing the base-code for each PCE.

Integrates with Mylyn. Our new approach is integrally tied
to the Mylyn DOI, a proven, successful, and familiar model.

II. MOTIVATING EXAMPLE

We motivate our approach using a simple yet classic
graphics application [3]. Listing 1 portrays code for a simple
Point class (line 1) that implements a Figure (interface not
shown) on a Cartesian plane. Two instance fields, x and y, are
declared on line 2. There are two mutator instance methods for
field x (mutators for y omitted for presentation), namely, setX
(double), declared on line 3, which assigns field x to be the
argument, and setTwiceX(double), declared on line 4, which
assigns field x to be double the argument. Furthermore, there is
an accessor instance method for field y (accessor for x omitted
for presentation), declared on line 5, that returns the field value.

I'The distinction between aspect and base-code developers has been well
documented. This is particularly relevant in regards to reusable aspects [19].

642

As Figures may be maneuvered in many different editor
modules, the DisplayManipulation aspect snippet (Listing 2)
localizes the code for manipulating how Figures are displayed.
The after advice (line 2) refreshes the Display (line 4, code not
shown) whenever the state of a Figure is altered. This advice is
implicitly executed after control leaves any join point selected
by its bound PCE (line 3). These join points correspond to
the execution of any method implementing a method of the
Figure interface (Figure+) whose name begins with set, takes
any number and type of parameters, and returns any type of
value. In Listing 1, this corresponds to the execution of the
setX(double) and setTwiceX(double).

Likewise, the around advice (line 5) scales Figures by
50%. The advice body (line 7) is implicitly executed around
join points matching its bound PCE (line 6). Such join
points correspond to the execution of methods implementing
a method in the Figure interface whose name begins with get,
taking any number and types of parameters, and returning any
value. In Listing 1, this corresponds to the execution of the
getY() method. When executed, the advice body first proceed
s to execute the selected join point, multiplies the return value
by the scaling factor, and returns the resulting value in its
place.

Suppose that in this version, both PCEs are correct, i.e.,
they select all and only the intended join points. Now suppose
that in a subsequent version, a new method move(double
,double), which moves figures according to the specified
coordinates, is added to the Figure interface. A corresponding
implementation is then added to the Point class:

Listing 3. A new method is added to move Figures using coordinates.
1 public void move(double x,double y)
2 {this .x=x; this.y=y;}

Clearly, this new method alters the state of Figures, however,
the PCE bound to the after advice, which refreshes the Display
following state changes to Figures, on line 3 of Listing 2 fails
to select this new join point. As a result, this PCE breaks.’
Notice, however, that the PCE bound to the around advice,
which scales figures, does not break and thus continues to
select all and only the desired join points.

In general, each incremental change to the base-code can
potentially break PCEs and thus cause bugs. If developers
wait until many such changes, problems may be compounded
and more difficult to find. To alleviate this, developers could
perform a global analysis of all aspects and verify that each
PCE is correct after every incremental change. However,
not only would such an activity be distracting to base-code
developers, it could also be non-trivial. Although this simple
example contains only two PCEs, larger, more realistic systems
may contain many more PCEs whose correctness would need
to be verified. It would thus be helpful for developers if broken
PCEs could be brought to their attention early. It would also be
helpful if unbroken PCEs were kept in the “background” as no
action would be required. That way, the base-code developers
may continue coding when an error is less likely and pause
work otherwise. Rectifying such a problem would involve

2This PCE could have instead selected field set join points, which would
have seemingly solved the problem. However, interfaces do not contain
variable instance fields. Moreover, in the case of the Point class, the Display
would have been refreshed twice, which could be inefficient.

either changing the base-code® so that it is correctly selected
(or not selected) by the problematic PCE, or by altering the
PCE itself. In the following sections, we will demonstrate how
FRAGLIGHT can automatically alleviate such problems.

III. APPROACH

Overview. Our approach deals with the program’s join
point shadows (JPSs), which are the static counterparts of join
points, i.e., points in the program text where the compiler may
insert advice code [20]. Specifically, we treat a program as
a set of JPSs that may or may not be under the influence
of advice. Furthermore, we define a PCE to be a subset of
JPSs, thus eliminating the need to consider complex expression
constructs. We also assume that the PCE is free of dynamic
conditions, which allows us to exploit solely static information
in our analysis. Our implementation conservatively relaxes this
assumption so that PCEs utilizing dynamic conditions may
nevertheless be used as input to our tool. The impact of this
limitation is minimal [17], and most PCEs do not use dynamic
conditions [21].

FRAGLIGHT predicts how likely each PCE is to change
given a change in the base-code. We model base-code changes
as a series of JPS additions and removals, with each added
JPS in the series being used as input. Changing a JPS, e.g.,
renaming a method, is modeled as the addition of a new JPS,
e.g., the new method’s execution.

Example 1. Adding the move() method in Listing 3 would
result in three new JPSs, namely, execution(void Point.move(
double,double)), set(Point.x), and set(Point.y), with the latter
two being on line 2 in Listing 3.

Workflow Details. Phase I: Analysis. The analysis phase is
triggered when a Mylyn task is activated. At this time, advice-
bound PCE representations are collected.

Example 2. If the aspect in Listing 2 was the only aspect in all
of the projects in the workspace, the PCEs bound to the after
() advice declared on line 2 and the around() advice declared
on line 5 would be analyzed.

Concern Graphs: An extended concern graph is built from
projects that include the aspects whose advice-bound PCEs
were analyzed. A concern graph is a directed multigraph de-
picting structural relations (e.g., calling, declarations, package
containment) between program elements (e.g., types, methods,
fields) [22]. We extend the graph with relations and entity types
found in modern Java languages.

Example 3. Vertices for Point, Point.y, and Point.getY() would
be in a graph built from Listing 1. Arcs would include Point

ﬂ> Point.y and Point dm, Point.getY/() £> Point.y, where df,
dm, and gf refer to field declaration, method declaration, and
field retrieval (“gets field”) relations, respectively.

Maximum Analysis Depth: A maximum analysis depth (k)
is a parameter to control tractability. It controls the depth of
the structural relations considered.

Pattern Extraction: Next, each PCE is associated with the
graph. This involves identifying portions of the graph (vertices
or arcs) that are related to the JPSs selected by a PCE.

31t may not always be possible to fix the problem using a base-code change
as doing so may break other PCEs.

643

Example 4. Recall that the PCE declared on line 3 of Listing 2
selects executions of methods (and overriding methods via the
+ designator in Figure+) implementing the Figure interface
and whose name begins with “set,” etc. This PCE would be
associated with the vertices representing the methods Point.
setX() and Point.setTwiceX(). Graph elements (e.g., vertices)
that represent such methods are “enabled” w.r.t. a PCE [17].

Algorithmically, pattern extraction works by first enumer-
ating acyclic, finite paths of maximum length % in the graph.

Example 5. A path of length one is Point.setX() i) Point.x,
where sf represents a field manipulation (“sets field”) relation.

Next, paths that contain enabled vertices or arcs are used
to construct patterns.

Example 6. The vertex Point.setX() in the path shown in Ex. 5
is enabled w.r.t. the PCE declared on line 3 in Listing 2.

Wild cards are then substituted for various graph elements
(either vertices or arcs), with the enabled graph elements being
substituted with “enabled wild cards”.

Example 7. We derive the pattern ?* L, Point.x from the PCE

declared on line 3 in Listing 2 using the path depicted in Ex. 5,
where 7* is an enabled wild card.* Note that the enablement
is w.r.t. the PCE.

Pattern Matching: Pattern matching identifies paths with
common sources and sinks as those containing enabled graph
elements. Graph elements matching enabled wild cards are
those whose represented JPS exhibit similar structural com-
monality with the JPSs selected by the PCE.

Example 8. The pattern in Ex. 7 would match (and only
match) the paths Point.setX() i> Point.x and Point.setTwiceX

() i) Point.x in Listing 1. Notice that the enabled wild card
7* matches Point.setX() and Point.setTwiceX(), which corre-
sponds to all and only the selected JPSs. This indicates that
this pattern describes similar structural characteristics as the

PCE from which it was derived. Note, though, that while the

enabled wild card of the pattern Point Y, 2% 4150 matches both

Point.setX() and Point.setTwiceX(), it also matches Point.getY
(), whose corresponding JPS is not selected by the PCE. This
indicates that, while this pattern expresses similar structural
characteristics as the PCE, it is too broad.

Pattern Analysis: Patterns are compared with the PCE,
producing a pattern similarity metric, which quantifies how
closely the pattern resembles a PCE in terms of structural
properties related to selected JPSs. The closer a pattern’s
similarity is to 1 (its range is in [0, 1]), the more closely the
pattern matches similar structural commonality as that of the
PCE. The equation to calculate the pattern-PCE similarity is
depicted in equation (4) of Fig. 1.

Details of the pattern similarity metric are as follows. CG
refers to the extended concern graph built from the original
base-code when the Mylyn task is activated. In our motivating
example, this graph would represent the code in Listing 1.
Next, we define a function match (7, IT), where 7 ranges over
the set of patterns and II the power set of paths in C'G. This

“Patterns of greater lengths may contain wild cards that are not enabled.

errq (7, PCE) =

|PCE N match(#, paths(CG))|

|match (7, paths(CQ))|

errg(#, PCE) =

|PCE N match (7, paths(CQ))|

|PCE|
if |7|=
abs() =1 |W(#)|

%]

g
-
i

sim(#, PCE) =1 — [erro(#, PCE)(1 — abs(#)) + errg(#, PCE)abs(%)]

if jps € PCE

0.W.

1
sel(jps, PCE) = {

n(gps) = {fr ‘ jps € match(ﬁ',paths(CG'))}

0(PCE) = {fr ’ 7 was derived from PCE}
sel(jps, PCE)
cheonf (jps, PCE) = 1

>

lu(ips) N 6(PCE)|

Fig. 1. PCE change confidence equation.

function, given a pattern and a set of paths, matches the pattern
against the paths, resulting in a set of JPSs. These are the JPSs
whose corresponding program elements exhibit the structural
commonality represented by the pattern.

Equations (1), (2), and (3) are combined in the similarity
calculation to measure patterns on three dimensions. Equa-
tion (1) is the err, error rate attribute, which is akin to the
ratio of the number of JPSs selected by both the PCE and
the pattern when matched against finite, acyclic paths in the
graph paths(CG) to the number of JPSs solely selected by
the pattern (|PCE]| refers to the number of JPSs selected by
PCE). It is subtracted from 1 to create an error ratio in the
statistical sense. It quantifies the pattern’s ability in matching
solely the JPSs within the PCE; the closer the err,, rate is to 0
the more likely the JPSs matched by the pattern are also ones
within the PCE. If 7 does not match any JPSs, the err, is 0
as it is vacuously precise.

Example 9. The pattern depicted in Ex. 7 would have a small
(in fact, 0) err, w.r.t. the PCE declared on line 3 of Listing 2,
as both express exactly the same methods, namely, Point.setX
() and Point.setTwiceX(). On the other hand, the pattern Point
4y 9% would have a larger err, w.r.t. the PCE declared on
line 6 as the executions of Point.setX() and Point.setTwiceX
() would be matched by the pattern but not selected by the
PCE. Particularly, err,, here would be % because, of the three
method executions matched by the pattern, only one of them

is also selected by the PCE (1 — 7)

Equation (2) is the errg error rate attribute, which is akin
to the ratio of the number of JPSs selected by both the PCE and
the pattern when applied to paths in the graph to the number of
JPSs selected solely by the PCE. Similar to err,, the quantity
is subtracted from 1 and its range is in [0, 1]. It quantifies
the pattern’s ability in matching all of the JPSs selected by
the PCE; the closer the errg rate is to 0 the more likely the
pattern is to match all the JPSs selected by the PCE. If there
are no JPSs selected by the PCE, the errg is vacuously 1 (any

|sel(jps, PCE) — sim(#, PCE)]|
#Ep(jps)NS(PCE)

644

if match(#, paths(CG)) =

M
0.w.
if PCE =@

@)

3

“
(&)

(6)

)
if p(jps) N6(PCE) =&
®

0.W.

pattern matches no JPSs).

Example 10. The pattern shown in Ex. 7 would have a small
(0) errg w.r.t. the PCE declared on line 3, Listing 2, as the
pattern matches all of the methods selected by the PCE (i.e.,
the pattern “covers” the PCE). However, the same pattern
would have a large (1) errg w.r.t. the PCE declared on line 6,
Listing 2, as none of the executions matched by the pattern
are selected by the PCE (i.e., it does not cover the PCE).

Finally, equation (3) is the pattern abstractness (abbreviated
abs), i.e., the ratio of wild card to concrete elements. W (7)
projects the wild cards from a pattern 7, with |[W(7)| being the
number of wild cards in the pattern 7 and || being the total
number of graph elements. An empty pattern has no concrete
elements, thus, it has an abs of 1. For instance, the pattern in
Ex. 7 has an abs of %

We use abs because patterns containing many wild cards
are more likely to match a greater number of concrete graph
elements and vice versa. Thus, we combine the err, and
errg rates by use of a weighted mean weighted by abs in
equation (4). The reason is that a pattern that is very abstract
is less likely to match JPSs that are only selected by a PCE.
On the other hand, a pattern that is less abstract is less likely
to match all JPSs selected by a PCE [17].

Example 11. Let & be the pattern from Ex. 7, PCE be the
PCE declared on line 3 of Listing 2, and C'G be the graph
representing the base-code in Listing 1. Then, sim (7, PCE) =
—[(0)(2) 4 (0)(3)] = 1. Let # be Point 22 ?* and PCE
be the PCE declared on line 6. Then, sim(#, PCE) = 1 —
DG+ O =3
Once the pattern similarity has been calculated, triples
corresponding to an analyzed advice, a pattern derived using its
bound PCE, and the pattern’s similarity to the PCE are stored
in memory for later use in the (next) detection phase. When
all PCEs have been processed, the FRAGLIGHT is registered
as a Java Editor Change Listener. In this way, it becomes an

“observer” of the editing pane where the base-code developer
writes code. This allows FRAGLIGHT to observe keystrokes
entered by the developer and detect when a new JPS is added;
we explain this in more detail in the following section. Once a
Mylyn task is deactivated, the tool is de-registered as a listener.

Phase II: Detection. In the detection phase, FRAGLIGHT
determines new JPSs when keystrokes are entered by the
developer in the IDE. For method execution JPSs, it finds new
method declarations using Eclipse, which are the lowest level
granularity whose addition information is available by this
framework. FRAGLIGHT then includes its own code for JPSs
residing within method bodies, e.g., method calls, adapting an
AST differencing algorithm [23]. A new JPSs that FRAGLIGHT
would detect is shown in Ex. 1.

Triples related to analyzed advice (PCEs), patterns, and
similarity (calculated in the analysis phase) are retrieved. Then,
the graph (C'G) is augmented with information pertaining to
the new base-code version using projects associated with the
retrieved advice (resulting in CG”).

Example 12. Adding the move() method in Listing 3 would
result in new paths, e.g., Point dm, move(), move() i) Point
.X, move() N Point.y, being added to CG, producing CG’.

Next, for each retrieved advice, its bound PCE change
confidence (defined in equation (8)) value is calculated.
First, we define a characteristic function sel in equation (5)
s.t. sel(jps, PCE) = 1 if jps is selected by PCE and 0
otherwise. Recall that we treat a program as consisting of a set
of JPSs that may or may not be currently selected by a PCE
and treat a PCE as selecting a subset of these JPSs. As such,
a jps is selected by PCE iff jps € PCE.

Example 13. Let jps = execution(void Point.move(double,
double)) and PCE be the PCE declared on line 3 of Listing 2.
Then, we have that sel(jps, PCE) = 0 because, although move
is a method of a class implementing Figure, its name does not
begin with “set”. Let jps = execution(void Point.setX(double
)). Then, sel(jps, PCE) = 1.

In equation (6), 1(jps) is the set of all patterns that match
jps when applied to the new base-code version CG’.

Example 14. Let jps = execution(void Point.move(double,
double)), k¥ = 1, and CG’ be the graph representing the
combined base-code of Listings 1 and 3. Then, p(jps) =

{7+ L, Point.x, 7* L5 Point.y, Point £7%7% 1.

In equation (7), §(PCE) is all patterns derived from PCE
Example 15. Let PCE be the PCE declared on line 3 of
Listing 2. Then, 6(PCE) = {7* 7, Point.x, Point RN A }.
Let PCE be the PCE declared on line 6. Then, 6(PCE) =
{7* o, Point.y, Point -7 }.

Finally, Equation (8) depicts the PCE change confidence
equation, which produces a real number in [0,1] that corre-
sponds to the confidence we have that PCE will need to be
changed (i.e., it breaks) due to adding jps to the base-code.
The closer the value is to 1, the more likely the PCE breaks
because of the new JPS and vice-versa.

We now discuss the individual cases within equation (8).
The case in which p(jps) N §(PCE) is non-empty implies

645

that there is at least one pattern s.t. it is derived from PCE
and it matches jps, which is part of the new base-code. We
consider the similarity of all such patterns to PCE. If a
pattern is very similar to the PCE in terms of matching and
selected JPSs, respectively, and jps is not selected by the
PCE, i.e., sel(jps, PCE) = 0, then we are very confident
that PCE has broken as a result of adding jps. In this case,
we have that |sel(jps, PCE) — sim(#, PCE)| will be close
to 1. The equation is then the average of the values for all
patterns meeting the earlier stated criteria. If no patterns meet
this criterion, i.e., u(jps) N 6(PCE) = &, then the change
confidence is simply whether or not the JPS is selected by the
PCE, i.e., sel(jps, PCE). This is because there are no patterns
derived from the PCE that also match jps.

The reasoning behind equation (8) in Fig. 1 is as follows.
When 1(jps)NS(PCE) = @, none of the patterns derived from
PCE, i.e., §(PCE), matches jps as a result of applying them
to CG’. In other words, jps shares no structural commonality
with JPSs selected by PCE. Being that our hypothesis is that
JPSs selected by a PCE typically share significant structural
commonality, and this JPS shares no structural commonality
with such JPSs, we suggest that jps not be selected by PCE.
Then, the confidence we have in PCE breaking as a result of
adding jps is just sel(jps, PCE), i.e., 1 if jps is selected by
PCE and 0 otherwise. In contrast, when p(jps) N J(PCE) #
@, there exists a pattern derived from PCE that matches jps as
a result of applying it to the new base-code. Here, we average
the chconf for all such patterns.

Example 16. Let jps = execution(void Point.move(double,
double)), PCE be the PCE declared on line 3 of Listing 2,
k =1, and CG’ be the graph representing the combined base-
code of Listings 1 and 3. Per Ex. 14 and 15, we have that

lu(ips) N 8(PCE)|= [{7* <L Point.x, Point 47 }|= 2
As such, we have that chconf (jps, PCE)

1 S,
=3 <|sel(jps, PCE) — sim(?* N Point.x, PCE)|

+ |sel(jps, PCE) — sim(Point 227* 7PCE)|)
1
=5 (IO— 11+1]0— ;) = g (per Ex. 11 and 13)

Let PCFE be the PCE declared on line 6. Then,

dm

|u(jps) N6(PCE)|= |{Point —7* }|=1
As such, we have that chconf (jps, PCE)

dm

= |sel(jps, PCE) — sim(Point —?* | PCFE)|
5 5
=10- §\ =3 (per Ex. 11 and 13)
Notice that the chconf of the broken PCE (line 3) is greater
than the chconf of the unbroken PCE (line 6).

PCE Change Prediction. A PCE change prediction is
created for PCEs with change confidences either below a low
or above a high threshold. As a convenience, we add additional

information regarding the prediction depending on whether the
newly added JPS is currently selected by the corresponding
PCE. It is meant to guide the developer in determining how a
broken PCE should be fixed, i.e., whether the new JPS should
be removed from (a negative change prediction) or added to
(a positive change prediction) the PCE.

Mylyn DOI Model Manipulation. FRAGLIGHT manipulates
the Mylyn DOI model using the low and high confidence
thresholds. If the PCE change confidence falls in the low
confidence interval, the PCE is made less “interesting” in the
DOI model, moving the developer’s attention away from the
PCE so that they may focus on the base-code. Conversely,
if the change confidence falls in the high interval, the PCE
is made more “interesting,” bringing the developer’s attention
towards the PCE, so that they may focus on PCEs that may
have broken as a result of their newly added base-code.

Example 17. Due to the small size of our example, let the low
chconf threshold be 0.6 and the high be 0.8. The scenario
described in Ex. 16 results in a positive change prediction for
the PCE declared on line 3 of Listing 2 as its chconf is above
the high threshold, thereby increasing the PCE’s DOI value.
Conversely, the PCE declared on line 6 has a chconf below the
low threshold, which results in a negative change prediction
and a decrease in its DOI value. As such, the broken PCE
receives a higher DOI value than the unbroken one.

IV. IMPLEMENTATION

FRAGLIGHT is implemented as a relation provider exten-
sion to the standard Mylyn Eclipse plug-in. The extended con-
cern graph was constructed using the JayFX fact extractor [24],
which we extended for use with modern Java languages and
Aspect]. JayFX generates “facts,” using class hierarchical
analysis (CHA) [25], pertaining to structural properties and
relationships between program elements, e.g., field accesses,
method calls, in a particular project. Source code and tran-
sitively referenced libraries (possibly in binary format) are
analyzed during graph building.

The AJDT was used to conservatively associate the graph
with a PCE. Both pattern extraction and pattern-path match-
ing were implemented via Drools (http://drools.org). A pro-
totype implementation of FRAGLIGHT is publicly available
(http://github.com/khatchad/fraglight).

V. CONCLUSION AND FUTURE WORK

We have detailed an approach, and corresponding imple-
mentation, that detects likely broken PCEs due to base-code
changes. In the future, we plan to administer a full empirical
evaluation of our proposed approach and other improvements.

REFERENCES

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin, “Aspect oriented
programming,” in ECOOP, 1997.

[2] G. C. Murphy, R. J. Walker, E. L. A. Baniassad, M. P.
Robillard, A. Lai, and M. A. Kersten, “Does aspect-
oriented programming work?” Commun. ACM, 2001.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of aspectj,” in
ECOOP, 2001.

646

[4] C. Koppen and M. Stoerzer, “PCDiff: Attacking the frag-
ile pointcut problem.” in Eur. Int. Workshop on Aspects
in Software, 2004.

T. Aotani and H. Masuhara, “Scope: an aspectj compiler
for supporting user-defined analysis-based pointcuts,” in
AOSD, 2007.

L. Wang, T. Aotani, and M. Suzuki, “Improving the
quality of aspectj application: Translating name-based
pointcuts to analysis-based pointcuts,” in Int. Conf. Qual-
ity Software, 2014.

J. Aldrich, “Open modules: Modular reasoning about
advice,” in ECOOP, 2005.

R. Khatchadourian, J. Dovland, and N. Soundarajan, “En-
forcing behavioral constraints in evolving aspect-oriented
programs,” in FOAL, 2008.

K. Hoffman and P. Eugster, “Bridging java and aspectj
through explicit join points,” in PPPJ, 2007.

E. Bodden, E. Tanter, and M. Inostroza, “Join point
interfaces for safe and flexible decoupling of aspects,”
TOSEM, 2014.

A. Kellens, K. Mens, J. Brichau, and K. Gybels, “Manag-
ing the evolution of aspect-oriented software with model-
based pointcuts,” in ECOOP, 2006.

M. Stoerzer and J. Graf, “Using pointcut delta analysis to
support evolution of aspect-oriented software,” in ICSM,
2005.

J. Zhao, “Change impact analysis for aspect-oriented
software evolution,” in Int. Workshop on Principles of
Software Evolution, 2002.

L. Ye and K. D. Volder, “Tool support for understanding
and diagnosing pointcut expressions,” in AOSD, 2008.
T. T. Nguyen, H. V. Nguyen, H. A. Nguyen, and T. N.
Nguyen, “Aspect recommendation for evolving software,”
in ICSE, 2011.

J. Wloka, R. Hirschfeld, and J. Hansel, “Tool-supported
refactoring of aspect-oriented programs,” in AOSD, 2008.
R. Khatchadourian, P. Greenwood, A. Rashid, and G. Xu,
“Pointcut rejuvenation: Recovering pointcut expressions
in evolving aspect-oriented software,” IEEE Trans. Softw.
Eng., 2012.

M. Kersten and G. C. Murphy, “Mylar: a degree-of-
interest model for ides,” in AOSD, 2005.

S. Clarke and R. J. Walker, “Composition patterns: An
approach to designing reusable aspects,” in ICSE, 2001.
H. Masuhara, G. Kiczales, and C. Dutchyn, “A compi-
lation and optimization model for aspect-oriented pro-
grams,” in Int. Conf. Compiler Construction, 2003.

S. Apel, “How aspectj is used: An analysis of eleven
aspectj programs,” Journal of Object Technology, 2010.
M. P. Robillard and G. C. Murphy, “Concern graphs:
finding and describing concerns using structural program
dependencies,” in ICSE, 2002.

B. Fluri, M. Wursch, M. Pinzger, and H. Gall, “Change
distilling: Tree differencing for fine-grained source code
change extraction,” IEEE Trans. Softw. Eng., 2007.

B. Dagenais, S. Breu, F. W. Warr, and M. P. Robillard,
“Inferring structural patterns for concern traceability in
evolving software,” in ASE, 2007.

J. Dean, D. Grove, and C. Chambers, “Optimization
of object-oriented programs using static class hierarchy
analysis,” in ECOOP, 1995.

(5]

(11]

(12]

(21]

(22]

(23]

(24]

(25]

