
Defaultification Refactoring: A Tool for
Automatically Converting Java Methods to Default

Raffi Khatchadourian
City University of New York, USA

raffi.khatchadourian@hunter.cuny.edu

Hidehiko Masuhara
Tokyo Institute of Technology, Japan

masuhara@acm.org

Abstract—Enabling interfaces to declare (instance) method
implementations, Java 8 default methods can be used as a
substitute for the ubiquitous skeletal implementation software de-
sign pattern. Performing this transformation on legacy software
manually, though, may be non-trivial. The refactoring requires
analyzing complex type hierarchies, resolving multiple implemen-
tation inheritance issues, reconciling differences between class
and interface methods, and analyzing tie-breakers (dispatch
precedence) with overriding class methods. All of this is necessary
to preserve type-correctness and confirm semantics preservation.
We demonstrate an automated refactoring tool called MIGRATE
SKELETAL IMPLEMENTATION TO INTERFACE for transforming
legacy Java code to use the new default construct. The tool,
implemented as an Eclipse plug-in, is driven by an efficient,
fully-automated, type constraint-based refactoring approach. It
features an extensive rule set covering various corner-cases
where default methods cannot be used. The resulting code is
semantically equivalent to the original, more succinct, easier to
comprehend, less complex, and exhibits increased modularity. A
demonstration can be found at http://youtu.be/YZHIy0yePh8.

Index Terms—refactoring, java, interfaces, default methods,
type constraints, eclipse

I. INTRODUCTION

Java 8 enhanced interfaces enable developers to write

default (instance) methods that include an implementation

that implementers will inherit if one is not provided [1].

Although originally intended to facilitate the addition of new

functionality to existing interfaces without breaking clients [2],

default methods can also be used [3] to substitute the skeletal
implementation pattern [4, Item 18], which is ubiquitous in

many software projects [5]. The pattern involves creating an

abstract skeletal implementation class that implementers can

extend. This class provides a partial interface implementation

and thus results in an interface that is easier to implement.

Advantages in migrating legacy code from using the skeletal

implementation pattern to default methods include foregoing

the need for subclassing, having classes inherit behavior (but

not state) from multiple interfaces [3], and facilitating local

reasoning [6]. Although advantageous, such a migration re-

quires significant manual effort, particularly in large projects,

as there are subtle language and semantic restrictions that must

be considered. One such restriction is that interfaces cannot

declare instance fields. The migration requires preserving type-

correctness by analyzing complex type hierarchies, resolving

issues arising from multiple (implementation) inheritance,

reconciling differences between class and interface methods,

and ensuring tie-breakers with overriding class methods, i.e.,

rules governing dispatch precedence between class and default

methods with the same signature, preserve semantics.

We demonstrate an automated refactoring tool named MI-

GRATE SKELETAL IMPLEMENTATION TO INTERFACE for

transforming legacy Java code to use default methods. The tool

assists developers in taking advantage of enhanced interfaces

in an efficient, fully-automated, and semantics-preserving fash-

ion. The approach is based on type constraints [7,8] and works

on large-scale projects with minimal intervention. Featuring an

extensive rule set that covers diverse corner-cases where de-

fault methods are prohibited, the approach identifies instances

of the skeletal implementation pattern and safely migrates

methods to corresponding interfaces as default methods.

The related PULL UP METHOD refactoring tool [8,9] ma-

nipulates a type hierarchy by safely moving methods from

a subclass up into a super class so that all subclasses may

inherit from it. This refactoring is fundamentally different

from migrating method definitions from skeletal implemen-

tations to interfaces as default methods in terms of its goals

and the targeted design pattern. Namely, its sole goal is

to reduce redundant code, whereas ours includes opening

classes to inheritance, allowing classes to inherit multiple

interface definitions, etc. Moreover, while the two refactorings

share some preconditions, i.e., conditions that must be met to

guarantee refactoring correctness, in terms of type constraints

violations, our approach deals with multiple inheritance, a

more complicated type hierarchy involving interfaces since

classes may implement multiple interfaces while extending a

class, semantic differences due to class tie-breaking, further

constraints on interfaces as they cannot declare fields, and

differences between class method headers and corresponding

interface method declarations. Lastly, while methods to be

pulled up typically are declared in a common class, in our case,

default methods may be migrated from multiple classes into

a single interface, pressing the need for a more widespread,

batch processing approach across classes and packages.

Our refactoring tool (available at http://git.io/v2nX0) is

implemented as an open source Eclipse (http://eclipse.org)

plug-in built atop of the Java Development Tools (JDT)

(http://eclipse.org/jdt) refactoring infrastructure [10]. Our tool

can process projects in batch, mining for occurrences of

the skeletal implementation pattern than can be converted to

978-1-5386-2684-9/17/$31.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Tool Demonstrations

984



default methods. A refactoring preview pane is provided, along

with detailed information of code that fails preconditions.

For the tool evaluation, an extensive refactoring test suite

was created, featuring 259 refactoring regression tests, trig-

gered via continuous integration. Each tests verifies that (i)

both the input and output code versions compile successfully

and (ii) the actual refactored version matches that of the

expected refactored version given the initial version of the

input source code. The usefulness of the tool was assess via the

analysis of 19 Java projects of varying size and domain with a

total of ∼2.7 million lines of code. Additionally, pull requests

(patches) of the refactoring results were submitted to popular

GitHub (http://github.com) repositories as a preliminary study.

The details of the underlying approach, as well as thorough

experimental results, can be found in our previous work [5].

Beyond [5], we make the following specific contributions:

Implementation details A thorough treatment of the novel

aspects of the tool implementation is presented in detail. This

includes the tool’s architecture, API usage, data representa-

tions, algorithms, and implementation issues and limitations.

Furthermore, the tool’s relationship to the PULL UP MEMBER

refactoring implementation is thoroughly explored.

User perspective A broad overview of how our tool is used

to perform large-scale refactorings is given. This includes

screenshots of the tool’s usage and a video demonstration.

Our hope is to receive valuable feedback on the improvement

of the user interface, as well as promote its usage.

II. ENVISIONED USERS

The users we envision our tool attracting are especially those

who are tasked with maintaining and/or improving legacy

(currently) Java systems. Our tool is most advantageous in

situations where legacy systems are using Java 8 and are

actively maintained. In this way, using our tool on these

systems would result in code that is more succinct and easier

to maintain, e.g., skeletal implementation classes may be

eliminated, as will be discussed in the following sections.

Since our tool takes advantage of the built-in, user-friendly

Eclipse refactoring infrastructure, developers with even little

refactoring experience may use our tool. Users may be those

that are tasked with refactoring an entire project or writing

new code in only portions of a large system. Since our tool

will identify possible instances of the skeletal implementation

pattern and that the resulting program will be semantically

equivalent to the original, users do not necessarily have to

possess a thorough knowledge of the pattern.

III. SOFTWARE ENGINEERING CHALLENGES

In this section, we discuss the Software Engineering chal-

lenges our tool is made to address. Fig. 1 portrays a screenshot

of the refactoring preview pane that a user is presented with

prior to executing the refactoring on a simplified example.

In order for such a pane to be displayed, the user (devel-

oper) selects Java elements of the Eclipse IDE, e.g., the

package explorer. MIGRATE SKELETAL IMPLEMENTATION

TO INTERFACE supports a wide range of element granularity,

from (multiple) methods up to (multiple) projects within an

Eclipse workspace. For example, if the user context-clicks

(right-clicks) a Java class in the Eclipse UI and selects our

refactoring option, the tool will traverse the entire class for

instance method definitions (implementations) that implement

an interface method in an interface explicitly specified as being

implemented by either the enclosing class or one of its parents.

Background and Motivation. Fig. 1 consists of two panes,

namely, the “Original Source” and the “Refactored Source,”

with the former being in input to the tool and the latter the

proposed output. Users may select “Finish” if they agree with

the refactoring, and may revise the input parameters (e.g., files)

by unchecking them from the top section. In the each pane,

there are two types, namely, interface I and an abstract class

C. On the left, I declares a simple, single abstract method

m() (line 4). Class C implements I and thus provides a basic

implementation of m(). Since it is not meant to be directly

instantiated but rather to be used as a skeletal implementation

of I, Ci is declared as abstract. Instead of implementing I

directly, prospective implementers can subclass C and thereby

inherit “default” implementations of some or all of the in-

terface methods. Often times, such skeletal implementations

provide “default” method implementations that clients can

inherit from rather than providing their own if the implemen-

tation is applicable to them. Other times, such abstract skeletal

implementers provide complete implementations comprised of

more primitive interface methods that subclasses override.

Although useful, there are several drawbacks to the skeletal

implementation pattern, especially w.r.t. inheritance, modular-

ity, and bloat [5]. Classes extending C, for example, to benefit

from the provided skeletal implementations will not be able to

extend other classes. This could be problematic in situations

where classes implement multiple interfaces with each one

have its own corresponding skeletal implementer. Moreover,

there is no syntactic path between an interface and a skeletal

implementer; clients looking to take advantage of a skeletal

implementation must rely on either a global project analysis

and/or documentation. Lastly, skeletal implementers require

an additional, separate type, which could make already highly

complicated libraries more complicated.

Many of the aforementioned problems can be solved with

default methods that are part of the enhanced interface
feature of Java 8 [11, Ch. 9]. The right pane of Fig. 1 portrays

the refactored version of the left with m() removed from class

C and its body appended in the formerly abstract method m()

in interface I. Furthermore, in I, m() is now prefixed with the

default keyword. After the refactoring, class C is now empty;

whether it can be completely removed is explored below.

Now, implementers of I can simultaneously benefit from

the default implementation of m() and extend a different

class. Implementers also do not need to discover skeletal

implementers of I as default implementations are coupled with

the interface method declaration. Lastly, a new type is not

needed to represent the default method.

Although Fig. 1 portrays a scenario where the refactoring

succeeds, cases exist where executing the refactoring would

985



Fig. 1: Screenshot of the refactoring preview pane for the MIGRATE SKELETAL IMPLEMENTATION TO INTERFACE refactoring.

produce either type-incorrect or semantically-inequivalent re-

sults. For example, consider the following snippet:

interface I {void m();}
interface J {default void m() {/* ... */}}
abstract class C implements I,J {void m() {/*...*/}}

Here, migrating method C.m() to interface I as a default

method would cause a compilation error due to class C now

inheriting ambiguous method definitions of method m().

Default methods have many advantageous over the skeletal

implementation pattern, however, there are some potential

trade-offs. For example, placing implementations directly in

interfaces can violate some of the fundamental benefits of

interfaces acting as abstract data types (ADTs), where imple-

mentation details should not be included. Particular to default

methods in Java, there has been some reported performance

degradation in certain cases when using default methods [12].

However, this has been seen as a temporary JDK/JRE problem

that affects only a small number of cases [13].

Analysis Challenges. Although Fig. 1 is a simple example,

there are many other situations where determining whether it

is safe to convert a method to default may not be obvious:

• A particular skeletal implementer may provide a single

skeletal implementation for multiple interfaces, complicating

the processes of determining the target interface of where

the source class method shall be migrated to as a default

method. Our current implementation rejects input methods

with ambiguous target interfaces.

• A given interface may have multiple skeletal implementers;

which of these should be migrated to the interface as

a default method? Our current implementation performs

equivalence set merging to find the largest set of equivalent

source methods for migration and fails the others.

• A skeletal implementer may declare instance fields that are

used in the source method. Since instance fields cannot be

declared interfaces, is it possible to convert such methods to

default? Our current implementation does not allow methods

directly accessing fields to be refactored, but if the developer

is willing to make accessors and mutators part of the

interface, they are free to perform the ENCAPSULATE FIELD

and EXTRACT INTERFACE refactorings prior to ours.

• Lambda expressions require interfaces with a single abstract

method. Converting a method to default may invalidate this

requirement. Our approaches rejects methods that are part

of functional interfaces used in lambda expressions.

• In cases where a class inherits the same method from both a

class and an interface where the interface method is default,

the interface method will “lose a tie” to the class. As

such, we must ensure that the dispatch semantics remain

intact after the refactoring. Otherwise, calls to the source

method will not dispatch to the target in the refactored

version but rather a method in a different class. Our current

implementation rejects methods in this situation.

Other issues include those related to empty skeletal im-

plementers, i.e., cases where all source methods have been

migrated to their targets. After the refactoring, further analysis

is required to safely remove them. For example, the class may

not be able to be removed if it is instantiated somewhere in the

code base. Other references of the class could arise w.r.t. in-

heritance. Due to the pattern structure, it is likely that the

skeletal implementer is being extended. Naturally, we would

replace the extension of subclasses with the implementation of

the destination interface, i.e., the interface for which the target

method was migrated. However, the subclass classes may have

its own subclasses with references to super that used to refer

to the super class of the (now empty) skeletal implementer.

If the replacement is performed, those references would now

refer to the interface rather than the super class.

Implementation Challenges. While [5] handles many of the

above issues, implementation-specific challenges include:

Architecture What is the best way to organize such a refac-

toring tool? As a research prototype, how can the tool simul-

taneously help real developers while being easily evaluated?

Reuse Given that the refactoring problem shares similarity

with the PULL UP METHOD refactoring, how can we best

leverage existing code from that plug-in here?

986



Fig. 2: High-level system workflow.

Applicability Do the various assumptions made in the ap-

proach scale to real-world software refactoring?

Validation Given the significant number of “corner-cases”

involved in this refactoring, how can we ensure to developers

that the resulting refactoring code will be type-correct and

semantically equivalent to the original?

Usability Challenges. There are also challenges specific

to developer adoption. A refactoring that makes such large

scale and broad changes may not be immediately appealing to

developers of mature and highly utilized projects due to risk.

As such, our tool needs to address this by incorporating UI

features to reduce risk in certain cases. These features were

essential in the tool’s evaluation via a pull request study [5].

Such challenges are addressed in the next section.

IV. IMPLEMENTATION

The MIGRATE SKELETAL IMPLEMENTATION TO

INTERFACE refactoring is implemented as an open source

plug-in for the Eclipse IDE (available at http://git.io/v2nX0).

Eclipse has been chosen for its existing, well-documented,

and well-integrated refactoring framework [10]. Our

tool has been built atop of this framework and utilizes

many of its features, including source code analysis

and transformation APIs (e.g., ASTRewrite), refactoring

preview pane (as shown in Fig. 1), precondition

checking (e.g., Refactoring.checkInitialConditions(),

Refactoring.checkFinalPreconditions()), and refactoring

testing (e.g., RefactoringTest). ITypeHierarchy,

which facilitates efficient traversals of a type

hierarchy in Eclipse, is used extensively in checking

refactoring preconditions. Furthermore, Eclipse is

completely open source for all Java development (see

http://jetbrains.com/idea/#chooseYourEdition) thus possibly

impacting more Java developers. Eclipse ASTs with source

symbol bindings are used as an intermediate representation.

Workflow. Fig. 2 depicts the high-level workflow for our

plug-in. The input to our tool is source code at various levels

of granularity (step 1). At the smallest level, the developer

may select a single method, or set thereof, for migration. At

the highest level, the plug-in works on (multiple) projects. In

this case, the tool will search through each project for method

implementations to be used as input to the refactoring.

Fig. 3: Architecture and plug-in dependency diagram.

Next, the developer is presented with options regarding the

invasiveness of the refactoring (step 2, discussed later). The

tool proceeds to perform simple checks on the input methods,

e.g., whether the input method is contained in a writable file, in

step 3. Traditionally, these basic checks can be repeated, with

the developer possibly selecting different elements to be used

as input to the refactoring. However, our tool slightly breaks

from this traditional behavior by simply filtering out method

definitions that fail the checks using a non-fatal error. In this

way, developers are free to execute the refactoring again with

any modifications they have made to their project(s).

The bulk of the computationally intensive precondition

checking occurs in step 4. Both fatal and non-fatal errors

are reported to the user in step 5. An example of a fatal

error is that no input methods have passed preconditions, as

such, no refactoring can take place. Conversely, an example

of a non-fatal error is where migrating a method would alter

program semantics and at least other one method has passed.

If no fatal errors are present, the tool provides the developer

with a preview of the proposed changes (step 7) and performs

the transformation (step 8) upon the developer’s confirmation.

Our tool supports undo capabilities in the case the developer

changes their mind after executing the transformation.

Architecture and Dependencies. Fig. 3 portrays the overall

plug-in architecture and dependency overview of our refactor-

ing tool. It consists of four plugins that are organized into two

categories, i.e., internal plug-ins (those not directly interacting

with the developer) and user-facing plug-ins (those directly

interacting with the developer and utilizing a UI). As shown in

Fig. 3, the core and test plug-ins are not accessible outside of

the development environment, while UI and eval are invoked

via the Eclipse interface. Splitting the UI into two plug-ins, i.e.,

the UI plug-in for normal usage and eval plug-in for evaluating

the research aspect of the tool, is, we believe, a novel concept

in source code analysis and transformation research prototype

design. In this way, the deployment artifact of the plug-

in does not include the evaluation portion (i.e., buttons to

generate experimental data files) of the tool, nevertheless,

both the evaluation and user plug-ins are available to the

987



researchers. Doing so makes the plug-in particularly useful

for both tasks. On the other hand, the test plug-in is not part

of the deployable artifact. The foundational Eclipse plug-ins

and their dependencies are also depicted in Fig. 3.

Relationship to Other Refactoring Plug-ins. The plug-in

menu options are coupled with other reorganization refac-

toring support in Eclipse. Although our approach is type

constraint-based (see [5]), similar to the current Eclipse PULL

UP METHOD refactoring, our implementation is completely

separate from the type constraints generated by the JDT. In

other words, type constraints serve as a conceptual basis.

Some of our implementation leverages and adapts code from

the current Eclipse PULL UP METHOD refactoring, especially

those related to determining if a code entity is accessible

from another type. However, several important changes were

necessary to achieve the integration. For example, the current

PULL UP METHOD refactoring is not well-suited for batch

processing as its pulled up members must originate from

the same declaring type. Since Java 8 default methods are

a new feature that developers may want to adopt to entire

projects, we felt the need to modify the existing code to

process on the project-level for this particular refactoring. As

such, our plug-in accepts both fine-grained (e.g., individual

methods) and course-grain (e.g., multiple projects) inputs.

Other modifications included considerations related to modern

Java features such as generics and lambda expressions.

Technical Details. Although a thorough treatment of techni-

cal details can be found in [5], here, we discuss several aspects

of how our implementation realizes the concepts set-forth by

type constraints. As mentioned earlier, we make extensive use

of ITypeHierarchy to traverse the input methods’ relationships

to other types in the project. The goal is to check of particular

type constraints would be violated as a result of the refactoring.

To demonstrate the imperative-style code that realizes the

more declarative-style type constraints, consider the constraint

for method invocation. This constraint applies to any pro-

gram construct in the form of E.m(E1, . . . , En) to a virtual

method M where E is an expression. Such a construct may

appear within an input method body being refactored to a

default method. The constraint’s purpose is to preserve type-

correctness when the method invocation is moved to the

interface. In short, we must ensure that there is a corresponding

method in the type hierarchy of the destination interface when

E = this as the type of this will change after the refactoring.

One of the corresponding type constraints for method

calls is [E] ≤ Decl(M1) ∨ · · · ∨ [E] ≤ Decl(Mk) where

RootDefs(M) = {M1, . . . ,Mk}, meaning that the type of

E must be a (sub)type of the type declaring one of the

called method’s root definitions. Informally, root definitions

are the top-most types in a type hierarchy declaring a method.

Preserving the validity of this constraint guarantees that there

is a corresponding method in the destination interface.

In our implementation, we use ITypeHierarchy to

check that the called method exists in the destina-

tion interface’s “super type” hierarchy via a call to

IType.newSupertypeHierarchy(). A super type hierarchy is

one containing the type in question and all of its super types.

The checking is achieved via the following code snippet; full

source can be found in our open source repository:
mInHier = isInHier(calledMeth, destInterSuperHier);
boolean isMethInHier(IMethod m, ITypeHierarchy h) {
return Stream.of(h.getAllTypes()).anyMatch(t -> {
IMethod[] meths = t.findMethods(m);
return meth != null && meths.length > 0;});}

Real-world Applicability. To increase real-world applicabil-

ity, we relaxed a closed-world assumption utilized by our ap-

proach as detailed in [5]. A closed-world assumption is useful

for the conceptual basis of automated refactoring approaches

as it allows the algorithm designer to assume that all code

that could ever be affected by the refactoring be present at the

time of its execution. While useful in algorithm formulation,

it is typical for (i) source code of libraries, frameworks, and

remote (e.g., web-based) services not to be present as input to

the tool, and (ii) clients depending (or will be depending in the

future) on the refactored software to not even be associated

with the input project let alone present.

Thus, to make our approach applicable to real-world sce-

narios, we relaxed the above described assumption on several

fronts. For example, if an input method’s destination interface

is outside of the considered source code, it is conservatively

labeled as non-migratable (i.e., failed precondition).

Usability and Managing Risk. We also offer the developer

several options to the refactoring for reducing client impact

exist. For instance, we allow the developer to choose whether

empty skeletal implementation classes should be removed.

For those not removed, we offer the option to deprecated so

that clients can plan for their future removal. Furthermore, if

such classes extend a super class not implementing all of the

implemented interfaces, regardless of client code, the class is

not removed and references not replaced with the super type.

We additionally require no mismatches involving exception

throws clauses and return types between source and target

methods. Lastly, an option to not consider non-standard (out-

side java.lang) annotation differences is available, which may

be useful in projects not using such processing frameworks.

Developers have several other options, including whether

to include only abstract classes as input, which increases the

likelihood classes that truly are skeletal implementers.

V. EVALUATION

Our tool successfully converted ∼20% of methods possibly

participating in the skeletal implementation pattern to inter-

faces as default methods [5] in 19 real-world, open source

projects of varying size and domain with a total of ∼2.7

million lines of code. Our approach is extremely conservative,

and thus 20% is respectable considering that the approach

is fully automated. Moreover, many of the changes made

by the tool are widespread, and developers do not need

to carefully analyze large and complex code bases to take

advantage of default methods for their legacy code. Many

of the precondition failures were related to inaccessibility

of members between skeletal implementers and destination

interfaces and access to instance fields.

988



The correctness of the refactoring approach was validated

in several ways. First, we ensured that no compilation errors

existed before and after the refactoring. Furthermore, we

verified that all unit tests results were identical before and

after the refactoring. A preliminary pull request study was

also performed to ensure that the musically produced results

matched what experienced developers may have written. Four

projects accepted our pull requests, and the tool’s results were

integrated into the projects. This indicates that it is useful.

To validate our implementation, our plug-in features an

extensive refactoring test suite with over 200 refactoring tests.

Such tests consist of “before” and “after” files. The “before”

file is used as input to the tool and the output is matched

against the “after” file. The significant number of test cases

exercises many corner-cases that appear in the refactoring.

VI. RELATED WORK

Current Eclipse refactorings do not have the capability to

deal with default method conversions. In fact, when attempt-

ing to “pull up” a method from a class to an interface,

Eclipse states that the method already exists in the destination

interface. Moreover, as previously discussed, the PULL UP

METHOD refactoring is not typically widely applicable; it

normally applies to a single class. This is because issuing

this refactoring on a broad scale has potentially disruptive

and widespread results. In contrast, our refactoring has more

of a subtle effect and can be issued throughout the project.

Nevertheless, it may be possible to combine our refactoring

with PULL UP METHOD depending on the target.

Another important difference between our tool and PULL

UP METHOD is related to a “stubbing” behavior. For example,

in PULL UP METHOD, if an instance method call in the

source method exists, that method may be available in the

target type. If it is not, an abstract method (stub) can be

created in the target type to compensate. However, in our

case, there may be no relationship between the called instance

method and the destination interface. For example, if the called

instance method is in the skeletal implementer, then, there is

a relationship. However, the called method may be inherited

from another class that does not implement the interface.

Other refactorings [8,14,15] reorganize type hierarchies,

though not for default methods. [16] and [17] transform Java

programs to use lambda expressions and enumerated types,

respectively, while [18] demacrofies C++11 programs.

VII. CONCLUSION & FUTURE WORK

A refactoring tool that incorporates an efficient, fully-

automated, type constraint-based, semantics-preserving ap-

proach that migrates the skeletal implementation pattern in

legacy Java code to instead use default methods has been

demonstrated. The tool is implemented as an Eclipse IDE

plug-in and was evaluated using several techniques.

In the future, we plan to compensate for situations where

source methods directly accessing fields or methods outside

destination interfaces. Since interfaces cannot declare instance

fields, fields may be encapsulated in the skeletal implementers

and corresponding methods declared in the destination inter-

face. A similar methodology could be employed for missing

accessed methods, and missing static fields could be directly

moved. However, all peer implementers must supply imple-

mentations. We also plan to improve refactoring speed [19].

REFERENCES

[1] Oracle Corporation, “Java Programming Language Enhance-
ments.” [Online]. Available: http://docs.oracle.com/javase/8/
docs/technotes/guides/language/enhancements.html

[2] ——, “Default methods,” 2016. [Online]. Available: http:
//docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

[3] B. Goetz, “Interface evolution via virtual extensions
methods,” Oracle Corporation, Tech. Rep., Jun. 2011.
[Online]. Available: http://cr.openjdk.java.net/~briangoetz/
lambda/Defender%20Methods%20v4.pdf

[4] J. Bloch, Effective Java, 2nd ed. Addison Wesley, 2008.
[5] R. Khatchadourian and H. Masuhara, “Automated refactoring

of legacy Java software to default methods,” in International
Conference on Software Engineering, 2017.

[6] R. Khatchadourian, O. Moore, and H. Masuhara, “Towards
improving interface modularity in legacy java software through
automated refactoring,” in International Conference on Modu-
larity Companion, 2016.

[7] J. Palsberg and M. I. Schwartzbach, Object-oriented type sys-
tems. John Wiley and Sons Ltd., 1994.

[8] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban,
and B. De Sutter, “Refactoring using type constraints,” ACM
Transactions on Programming Languages and Systems, 2011.

[9] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[10] D. Bäumer, E. Gamma, and A. Kiezun, “Integrating refactoring
support into a Java development tool,” in ACM SIGPLAN con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, 2001.

[11] J. Gosling, B. Joy, G. L. Steele, G. Bracha, and A. Buckley, The
Java Language Specification. Addison-Wesley Professional,
2014.

[12] L. Rytz, “Performance of using default methods to compile
scala trait methods,” 2016. [Online]. Available: http://scala-lang.
org/blog/2016/07/08/trait-method-performance.html

[13] G. Wilkins, “eclipse/jetty.project pull request #773,” Webtide,
2016. [Online]. Available: https://git.io/v56qs

[14] I. Moore, “Automatic inheritance hierarchy restructuring and
method refactoring,” in ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications,
1996.

[15] Z. Alshara, A.-D. Seriai, C. Tibermacine, H. L. Bouziane,
C. Dony, and A. Shatnawi, “Migrating large object-oriented
applications into component-based ones: Instantiation and in-
heritance transformation,” in International Conference on Gen-
erative Programming: Concepts & Experience, 2015.

[16] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Crossing
the gap from imperative to functional programming through
refactoring,” in ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, 2013.

[17] R. Khatchadourian, “Automated refactoring of legacy Java soft-
ware to enumerated types,” Automated Software Engineering,
vol. 24, no. 4, pp. 757–787, Dec. 2017.

[18] A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating C++
programs through demacrofication,” in International Conference
on Software Maintenance, 2012.

[19] J. Kim, D. Batory, D. Dig, and M. Azanza, “Improving refac-
toring speed by 10x,” in International Conference on Software
Engineering, 2016.

989



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


