
1

Reflection on

(Reflection and)

the Power of Pointcuts

(or Aspects)
Hidehiko Masuhara

(The University of Tokyo)

2

Computational reflection

• is computation about its own

computational process [Smith’84, Maes’87]

• is useful to add controls

into concurrent objects

➢load-balancing, scheduling, distribution,

time-warping, optimization…

➢ABCL/R[Watanabe88],

ABCL/R2[Masuhara92] …

3

We didn’t conquer the world

• Difficult to program because of

hard-to-predict effects

➢Changes at meta-level cannot be localized

• Difficult to develop tools

because of flexibility

in semantics

compilers,

static analysis

debuggers,

IDEs, …

4

Aspect-oriented programming
[Kiczales97]

• offers limited ability

➢i.e., advice, or hooking on method calls

• but can realize many killer applications

• while enabling us to provide tools

➢e.g., AJDT, static analysis

Can AOP get closer to reflection
without losing good properties?

5

Commonality and difference

between Reflection & AOP

Common: can “hook” on everything

Different when we selectively hook

meta
aspect

6

Key difference: namespaces

Reflection reifies

base-level names to

values at meta-level

Aspects live in the

base-level namespace

s = “ma” + “in”;
m = o.getClass()

.getMethod(s);
m.appendInstructions(…);

import com.acme.Main;
after():
call(int Main.main(..)) {
… }

tools can rely on

those names

7

Enrich pointcuts in AOP

with meta-information

• Allow aspects to “hook” by using
richer information

➢like forward control flow / dataflow / results
of static analysis and test executions

• Then they can modularize more things

➢like security / optimization

• Challenge:
without contaminating namespaces

8

Dataflow pointcut for AspectJ
joint work with Kazunori Kawauchi

• can hook based on “where

the data comes from”

• useful for security aspects,

e.g., selective data sanitization

aspect XssSanitizingAspect {
around (String s) :

call(void print(String)) && args(s) {
proceed(quote(s)); } }

all outputs shall be

quoted to avoid XSS

those only

originating from

user inputs

9

Sanitization with

dataflow pointcut

• More declarative; more robust against

changes

aspect XssSanitizingAspect {
around (String s) :

call(void print(String)) && args(s) &&

dflow[s, userinput]
(call(String get())
&& returns(userinput)) {

proceed(quote(s)); } }

when there is

a dataflow from

get() to print()

10

SCoPE AspectJ compiler
joint work with Tomoyuki Aotani

• brings the power of reflection into AOP

➢can selectively hook based on

user-defined static analysis

➢like forward control flow, dataflow,

safety checks

• has conservative effects on semantics

➢does not contaminate namespaces

11

An example: making safety

aspect more efficient

• Safety aspect replaces null argument

with a default value
void around(URL a) : call(* request(URL)) && args(a) {
if (a == null) a = new DefaultURL();
proceed(a);

} any call to

request method

T v;
if (…) v = new URL(…);
request(v);

request(new URL(…));

how to exclude

obviously non-null

cases?

12

with SCoPE: define and use

“maybeNull” pointcut

1. Get an existing static analysis package
(e.g., FindBugs)

2. Write a method that runs the analysis on a
given method name

3. Add “if” pointcut into the safety aspect

static boolean maybeNull(tjp){
return FindBugs.nullCheck(tjp.getMethod()…); }

void around(a) : call(* request(URL)) && args(a)

&& if(maybeNull(tjp)) {

13

Implementation

issues & approach

• Observing other aspects’ effects

• Exploiting existing compiler

implementations

• Our approach

➢analyze woven code &

backpatch to eliminate runtime checks

➢conservative effect in semantics:

merely eliminating conditional branches

aspect

14

Static analyses realized with

SCoPE

• Null pointer check (via FindBugs)

• “Predictive” control flow [Kiczales03]

• Side-effect freeness

• The Law of Demeter [Lieberherr03]

• Checking class structures, like existence of

fields, methods, constructors

• Regular expression-based matching

• …

15

Execution times relative to

manual selection (fastest)

0

0.5

1

1.5

2

regex hasfield LoD pcflow

SCoPE pure AspectJ

no runtime overheads in SCoPE!

16

Summary

• Living in the same namespace is

crucial to providing tools

• We can bring the power of reflection

into aspects

➢by selectively hooking based on user-

defined static analysis

➢can be useful for security and optimization

➢without contaminating namespaces

