Reflection on
(Reflection and)
the Power of Pointcuts

(or Aspects)
Hidehiko Masuhara

(The University of Tokyo)

Computational reflection

* IS computation about its own
computational process [Smiths4, Maes 87]

* |s useful to add controls
INto concurrent objects

»load-balancing, scheduling, distribution,
time-warping, optimization... _~—

» ABCL/R[Watanabess] f’ ‘f
ABCL/R2Masuhara92] <:/§ ; ' ~ O

2

We didn’t conquer the world

* Difficult to program because of
hard-to-predict effects

»Changes at meta-level cannot be localized

* Difficult to develop toolsif compilers, h
because of flexibility static analysis
IN semantics L debuggers,

S AT IDEs, ...
O < S\ -

Aspect-oriented programming
[Kiczales97/]

 offers limited ability
»>l.e., advice, or hooking on method calls

 but can realize many killer applications
» while enabling us to provide tools

»e.g., AJDT, static analysis @@
A

Can AOP get closer to reflection
without losing good properties?

Commonality and difference
between Reflection & AOP

Common: can “hook” on everything
il

ct
e~

Different when we selectively hook

Key difference: namespaces

Reflection reifies Aspects live in the
base-level names to base-level namespace
values at meta-level
s="ma" +"in"; import com.acme.Main;
m = o.getClass() after():

.getMethod(s); call(int Main.main(..)) {
m.appendInstructions(...);)

E {tools can rely on
LS~ those names
Cﬁ.\&ﬁ —

Enrich pointcuts in AOP
with meta-information

» Allow aspects to “hook™ by using
richer information

» like forward control flow / dataflow / results
of static analysis and test executions

* Then they can modularize more things
»like security / optimization

» Challenge:
without contaminating namespaces

Dataflow pointcut for AspectJ

joint work with Kazunori Kawauchi

 can hook based on “where

the data comes from”

/

 useful for security aspects,

e.g., selective data sanitiza;& /

\J
all outputs shall be

aspect XssSanitizingAspect
around (String s) :

those only

originating from

user inputs

\

J

{L

guoted to avoid XSSJ

call(void print(String)) && args(s) {

proceed(quote(s)); }}

Sanitization with
dataflow pointcut

aspect XssSanitizingAspect {
around (String s) :
call(void print(String)) && args(s) &&
dflow[s, userinput] R
(call(String get()) " there is

&& returns(userinput))& dataflow from
proceed(quote(s)). }} get() to print()

* More declarative; more robust against
changes

SCoPE Aspectd compller

joint work with Tomoyuki Aotani

 brings the power of reflection into AOP

»can selectively hook based on
user-defined static analysis

> like forward control flow, dataflow,
safety checks

 has conservative effects on semantics
»does not contaminate namespaces

10

An example: making safety
aspect more efficient

Safety aspect replaces null argument

with a default value

void around(URL a) : call(* request(URL)) && args(a) {
if (a == null) a = new DefaultURL();

proceed(a); ~
) how to exclude any call to
obviously non-null request method
cases?

Tv; N~
if () v=new URL(.): request(new URL(...));

request(v);

11

with SCoPE: define and use
“maybeNull” pointcut

1. Get an existing static analysis package
(e.g., FindBugs)

2. Write a method that runs the analysis on a
given method name

static boolean maybeNull(tjp)X
return FindBugs.nullCheck(tjp.getMethod()...); }

3. Add “if” pointcut into the safety aspect

void around(a) : call(* request(URL)) && args(a)
&é& if(maybeNull(tjp)) {

12

Implementation
Issues & approach

* Observing other aspects’ effects
* EXxploiting existing compiler

Implementations %
« Our approach @

»analyze woven code &
backpatch to eliminate runtime checks

»conservative effect in semantics:
merely eliminating conditional branches

13

Static analyses realized with
SCoPE

Null pointer check (via FindBugs)
“Predictive” control flow [Kiczales03]
Side-effect freeness

The Law of Demeter [Lieberher03]

Checking class structures, like existence of
fields, methods, constructors

Reqgular expression-based matching

14

Execution times relative to
manual selection (fastest)

B8 SCoPE B pure AspectJ

hasfield

no runtime overheads in SCoPE!

15

Summary

 Living In the same namespace IS
crucial to providing tools
* We can bring the power of reflection

INto aspects
» by selectively hooking based on user-
defined static analysis

»can be useful for security and optimization
»Wwithout contaminating namespaces

16

