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ContextJ: Context-oriented Programming with Java

Malte Appeltauer Robert Hirschfeld Michael Haupt

Hidehiko Masuhara

The development of context-aware systems requires dynamic adaptation that challenges state-of-the-art

programming language support. Context-oriented programming (COP) provides dedicated abstractions for

first-class representation of context-dependent behavior. So far, COP has been implemented for dynamically-

typed languages such as Lisp, Smalltalk, Python, Ruby, and JavaScript relying on reflection mechanisms,

and for the statically-typed programming language Java based on libraries and pre-processors. ContextJ is

our compiler-based COP implementation for Java that properly integrates COP’s layer concept into the Java

type system. In this paper, we introduce ContextJ’s language constructs, semantics, and implementation.

We present a case-study of a ContextJ-based desktop application.

1 Introduction

For the evolution and maintainability of large

software applications, the modularization abstrac-

tions provided by the programming language of

use are crucial factors of success. The benefits of

object-oriented modularization aside, some require-

ments are not met by this paradigm.

For instance, program behavior can depend on

execution context information, such as control flow,

user information, network accessibility, and more.

Based on such context information it can be neces-

sary to dynamically adapt a system. With object-

orientation as a foundation, several approaches,

e. g., aspect-oriented programming [22] and feature-

oriented programming [8], have been emerged to

cope with variability and dynamic adaptation.

Context-oriented programming [19] (COP) is a

novel approach to dynamic composition, making it
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easier for example to adapt a user interface based

on the current user’s profile or to instrument a

server-side application to record events for settle-

ment according to a customer’s current rate plan.

COP introduces layers, an encapsulation mecha-

nism that can crosscut several modules of an ap-

plication. Behavioral variations are represented

by partial method definitions that can dynamically

override or extend their respective base methods.

Partial methods are grouped into layers. Layers

can be dynamically composed with other layers,

allowing fine-grained control over an application’s

run-time behavior. A broad introduction to COP is

provided in other literature [19]. The approach has

been implemented mainly for dynamic languages,

such as Lisp [10], Smalltalk [18], Python [31], and

Ruby [30].

Except for two mere proof-of-concept implemen-

tations of COP for Java [19] [5], the approach has

not been fully integrated into a statically typed lan-

guage yet. However, such languages gain increasing

relevance for development of Web and desktop ap-

plications relying on context information.

Based on our experiences with previous COP im-

plementations, we postulate the following two re-

quirements for a Java language extension. First,

our COP extension should be fully integrated into

the Java language. This includes an intuitive syn-

tax extension organically merging the COP con-
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cepts with the Java type system. Second, run-

time performance must be considered. Existing im-

plementations of COP extensions to dynamic lan-

guages extensively use the languages’ core features

and meta-level capabilities. Such a library-based

prototype for Java [19] is presented in Section 6,

however it suffers critical run-time costs (see Sec-

tion 5. 3). To overcome this issue, we need to use

an alternative implementation strategy.

The contributions of this paper are as follows.

• A ContextJ language specification extending

Java 1.6 and its comparison to previous ap-

proaches for Java.

• A compiler-based implementation that realizes

ContextJ’s enhanced method dispatch.

• Measurements with micro-benchmarks mea-

suring the performance impact of our language

extension.

Our paper is structured as follows. Section 2 mo-

tivates first-class representation of behavioral vari-

ations. Section 3 gives a brief overview of COP,

introduces ContextJ, and explains its features for

the modularization and run-time composition of

context-dependent concerns. Section 4 presents

a case study and compares a ContextJ-based im-

plementation with its AspectJ-based version. The

ContextJ compiler is presented in Section 5. Re-

lated work is discussed in Section 6. The paper is

summarized in Section 7.

2 Behavioral Variations

Context-dependent applications vary their be-

havior according to conditions arising at run-time.

The implementation of such variations can range

from if conditions in simple cases to dynamic class

reloading or recomposition in component-based ar-

chitectures. Context-specific adaptations can re-

quire changes in multiple locations in a system,

leading to scattered implementations and code tan-

gling. In any case, an appropriate representation of

variations is crucial for software understanding and

evolution. In this paper, we focus on behavioral

variations and their representation at source code

level.

In the following, we discuss different representa-

tions of behavioral variations and refer to a sim-

ple Java-based bank account example presented in

Fig. 1. The class Account contains methods to

Fig. 1 Bank accounts and transfers.

credit or debit money. A TransferSystem han-

dles the transfer of an amount of money from

one account to another. For quality manage-

ment purposes, an extensive logging mechanism

should be established for transactions. Since log-

ging consumes considerable execution time, it is

only applied to samples that are determined us-

ing loggingSample. Some banks have special se-

curity policy agreements for inter-bank transac-

tions. Depending on that policy, which is com-

puted by securityLevelHigh, transactions are es-
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pecially encrypted. Both concerns, logging and en-

cryption, require behavioral variations of dynamic

adaptations of control flow. We will present object-

oriented and aspect-oriented implementations of

this requirement and discuss their benefits and

weaknesses.

2. 1 Object-oriented Implementation

A näıve Java-based implementation is shown in

Fig. 2. The actual composition of context informa-

tion is represented by flags in a context object that

is passed as first argument to each method. The

code of behavioral variations is implemented by if

statements checking the respective field of the con-

text object; variations are represented by its corre-

sponding block.

The benefit of this solution is its simplicity: com-

position information can be passed as an argument;

each method can access these information an adapt

its behavior accordingly. However, some draw-

backs need to be discussed. Typically, behavioral

variations include adaptations in several objects

rather than a single place in a control-flow. Even

in our simple example, the encryption concern re-

quires adaptations in four methods. Although these

adaptations are semantically related, this relation-

ship cannot be made explicit in object-oriented lan-

guages. Developers can only infer from code struc-

ture or comments that the first if branches in

credit and debit are related. Thus, from a mod-

ularization perspective, the proposed implementa-

tion suffers from scattered implementations of vari-

ations and tangling of core and context-dependent

concerns in method bodies.

In addition, the use of context objects requires

modifications of any method signature and con-

text argument passing for any method call—tedious

tasks that could be implicitly conducted by a more

elaborate compiler or execution environment. The

aforementioned implementation strategy is only ap-

plicable if source code is accessible so that methods

can be extended. However, libraries and frame-

works only provide bytecode. Thus, adaptations of

classes require other, more complex approaches.

2. 2 Aspect-oriented Implementation

In the Java implementation, semantically related

behavioral variations are scattered over the appli-

cation’s decomposition, and tangled with its core

Fig. 2 Java-based implementation

of behavioral variations.

concerns. This issue is known as crosscutting con-

cerns (CCCs), program behavior that cannot be

adequately modularized with respect to the other

parts of a system [27]. Such concerns typically hin-

der software evolution and maintenance. Aspect-
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oriented programming (AOP) [22] supports mod-

ularization of CCCs with dedicated language con-

structs. In AOP, a CCC consists of functionality

that is executed at different join points, well-defined

points in a program’s control flow. The key abstrac-

tions of aspect-oriented languages are pointcuts,

predicates that describe a set of join points, and

advice, blocks of functionality that can be bound

to pointcuts.

Figure 3 shows an aspect-oriented implementa-

tion of the variations in our account example using

AspectJ [21], an aspect-oriented language extension

to Java. Its join point model includes method calls

and executions as well as field accesses. Advice

blocks introduce additional behavior before, after,

or around the join point.

In our implementation, aspects encapsulate

context-specific concerns. Pointcuts describe the

join points on which variations, represented by ad-

vice, should be executed. The dynamic evalua-

tion of the context composition is realized by if-

pointcuts (Lines 10, 19) that access a thread-local

context instance. This context instance must be

specified at the beginning of a composition (Lines

27–31).

Although this implementation eases the repre-

sentation of context-dependent behavior, there are

some conceptual issues left. First, the definition of

behavioral variations in advice is redundant. Their

corresponding pointcuts all have the same struc-

ture, but cannot be generalized because of their

concrete method signature bindings. Second, com-

position scope cannot be declared explicitly. In-

stead, composition start and end are defined pro-

grammatically; there is no block construct enforc-

ing scope. This can lead to fragile and incon-

sistent adaptations if composition statements are

not properly declared or executed. Third, vari-

ations are defined within aspects, isolating them

from their corresponding classes. We argue that

behavioral variations should be defined within the

scope of their respective object rather than in an

external module, and that compositions should be

clearly scoped to regions of code and dynamic ex-

tent.

To characterize the requirements for appropri-

ate representation of behavioral variations, we dis-

tinguish between homogeneous and heterogeneous

CCCs [1]. A homogeneous CCC executes the same

Fig. 3 AspectJ-based implementation of

behavioral variations.

functionality in multiple locations in a program’s

control flow graph. A typical example of such an

concern is simple logging, where the same function-

ality (e. g., writing system statistics into a file) oc-

curs on several places in a system (e. g., every time

a database is queried or a user executes an action).

AOP provides well suited abstractions to model

such CCCs; however, behavioral variations may in-

troduce completely different behavior at multiple

locations of a program, which we denote as het-

erogeneous CCCs. Even in our simple example,

the logging concern requires different functionality

at each join point it applies to. Thus, the biggest
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benefit of AOP, namely the declarative description

of one-to-many relations of source code, does not

affect our application.

If composition is applied statically at compile

time, concepts of feature-oriented programming [8]

(FOP), can be employed. FOP introduces the con-

cept of layers and their composition, which will be

explained in the following section. However, FOP

focuses on static composition, thus it is inappro-

priate for the representation of context-dependent

behavioral variations.

3 Context-oriented Programming

for Java

The COP paradigm features a new approach to

software modularization by supporting an explicit

representation of context-dependent functionality

that can be dynamically activated or deactivated.

Below, we introduce basic notions of COP relevant

in this paper.

COP assumes context to be everything that is

computationally accessible, such as a variable’s

value, control flow properties, or even external

events. Based on these primitives, context can

be modeled for more complex information such

as personalization, security settings, or location-

awareness.

Layers are a modularization concept orthog-

onal to classes, in which crosscutting context-

specific functionality can be encapsulated. Layers

can range over several classes and contain partial

method definitions that implement behavioral vari-

ations. To distinguish between the different kinds

of method definitions, we introduce the terms plain

method definition and layered method definition. A

plain method denotes a method whose execution

is not affected by layers. Layered methods con-

sist of a base method definition, which is executed

when no active layer provides a corresponding par-

tial method, and at least one partial method defi-

nition.

Layers are composed at run-time. Their partial

method definitions can be executed before, after,

around, or instead of the base method definition.

More than one layer of a composition may provide

a partial definition of the same method, therefore, a

partial method can proceed to the next partial def-

inition in the composition or, if no adequate varia-

tion exists, to the base method definition.

Layer composition is controlled per thread and is

by default scoped to the dynamic extent of a block

of statements. This fine-grained dynamic compo-

sition is essential for the development of context-

dependent systems.

Figure 4 (left) illustrates modularization with

layers. Each layer provides its behavioral varia-

tions while preserving the object-oriented decom-

position. Contrary, the AOP approach fully encap-

sulates CCCs and declaratively specifies variation

points within an application, as shown in Figure 4

(right). The main distinction between AOP and

COP is that the former allows for a joint specifi-

cation of when in the execution flow what kind of

functionality should be used, while COP separates

when (using explicit composition scopes) from what

(using layers and partial methods). Most AOP lan-

guages can mimic features of COP using pointcuts

and advice, though in an unwieldy manner.

3. 1 ContextJ

We discuss ContextJ’s language features along

the implementation of encryption and logging in

our example. The syntax production rules are

specified in Extended Backus-Naur Form (EBNF),

where terminals are shown in fixed font. Con-

textJ extends the set of Java terminal symbols with

layer, with, without, proceed, before, and after.

We omit standard Java elements by using “...” and

present only the ContextJ constructs and their en-

try points into the Java syntax [15].

3. 1. 1 Modularization

Layer. ContextJ extends the Java type system

with layers, special non-instantiable types, and pro-

vides the layer-in-class style [19]; that is, layers

are defined within classes, and classes thereby carry

their own context-specific variations. The syntactic

structure of the construct is shown below.

ClassBodyDeclaration ::=

... | LayerDefinition

LayerDefinition ::=

layer Identifier { PartialMethodDefinition* }

A layer consists of an identifier and a list of

partial method definitions. A partial method def-

inition’s signature must correspond to that of a
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Fig. 4 Modularization techniques. left: COP, right: AOP.

method of the enclosing class or its superclass. Fi-

nal methods cannot be extended by layers.

Layer Type. Layers are referenced by layer type

identifiers that must be made visible to the com-

pilation unit by using a layer import declaration,

corresponding to type import declarations.

ImportDeclaration ::=

... | LayerImportDeclaration

LayerImportDeclaration ::=

import layer Identifier ;

Partial Method Definitions. Layer defini-

tions can contain partial method definitions. A par-

tial method definition of a method M overrides

the default definition of M during the activation

of its layer. Partial method definitions allow dif-

ferent strategies to proceed to their corresponding

method. Besides the default around behavior, par-

tial methods can provide functionality that should

be executed before or after a particular method.

This intention can be expressed with the modifiers

before and after for partial methods, denoting

that their behavior should be executed before or

after the method execution. An after method is

always executed after the original method, even if

it throws an exception. This semantics corresponds

to after returning or throwing advice of AspectJ-

like languages.

PartialMethodDefinition ::=

[ before | after ] MethodDeclaration

For explicit invocation of the next partial method

definition (or the default method), the built-in

pseudo method proceed can be used. Both the re-

turn type and the expected arguments of proceed

conform to the method’s signature.

Expression ::=

... | Proceed

Proceed ::=

proceed( ArgumentList )

Figure 5 depicts the separate declaration of two

layers that implement crosscutting concerns. For

example, the definition of EncryptionLayer in

Account (Lines 6–16) contains partial definitions

of methods that encrypt or decrypt method pa-

rameters and then call the next partial defini-

tion with the encrypted values. The same layer

provides a partial definition of a method within

TransferSystem (Lines 34–40).

The partial methods in Lines 7–15 and 24–28 in-

voke the next definition by calling proceed with

the new parameters. LoggingLayer (Lines 17–29)

introduces logging functionality to the methods.

Some of its partial method definitions contain the

after modifier, which means that they are exe-

cuted after the computation of their next partial

definition. To use layer identifiers in a class, the

enclosing compilation unit must declare them first

(Lines 1–2).

3. 1. 2 Dynamic Composition

Layer Activation. To control scoped layer acti-

vation, ContextJ introduces a new block statement,
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Fig. 5 Layers for encryption and logging.

with, that can be used in method bodies. The

with block provides an argument list that contains

layer type expressions denoting the layers to be ac-

tivated. More precisely, expressions of type Layer,

Iterable<Layer>, or Layer[] are valid arguments;

the usage of any other type will cause an runtime

exception. If all with arguments are evaluated to

an empty list (or null), no layer will be activated.

The specified layers are only active for the dy-

namic extent of the with block. This implies that

the activation of a particular layer is confined to

the threads in which the layer was explicitly acti-

vated. Layer activation does not propagate to new

threads; they start with no layers being active.

Block ::=

... | LayerActivation

LayerActivation ::=

with(ArgumentList) {BlockStatement*}

Like standard Java block statements, with state-

ments can be nested. The list of active layers is then

extended with the arguments of the inner layer ac-

tivation. If more than one active layer provides a

partial definition for a method, the order of layer

activation defines the proceed chain. The list of ac-

tive layers is traversed according to the last-in-first-

out principle: the most recently activated layer is

visited first. When a layer is activated or deacti-

vated more than once, only its most recent activa-

tion or deactivation is effective.

ContextJ supports the direct and indirect enu-

meration of a sequence of layers to be activated.

Layer identifiers can be directly passed to the ar-

gument list.

Figure 6 presents different layer compositions in

our account example. The nested composition ac-

tivates LoggingLayer and a list of layers returned

by transferComposition (Lines 4–7). Lines 8–10

contain another activation using a list of layer iden-

tifiers in a single with block.

Layer Deactivation. We provide a means to

express the exclusion of a certain layer from a com-

position. This is because, if several layers provide

a partial definition of a certain method, it may be

possible that these definitions interfere with each

other. The without block construct works con-

trariwise to with in the sense that layers specified

by without are deactivated for its dynamic extent.

All other properties regarding thread locality and

nesting hold as described for layer activation above.

Block ::=

... | LayerDeactivation

LayerDeactivation ::=

without(ArgumentList) {BlockStatement*}



Vol. 28 No. 1 Feb. 2011 279

Fig. 7 Progression of a method invocation through a list of active layers.

Fig. 6 Different kinds of layer activation.

Figure 6 (Lines 27–33) contains a partial method

declaration of transfer that uses without to pre-

vent the logging layer from monitoring the transac-

tion.

Layer Composition. Figure 7 illustrates the

execution of transfer in Lines 6 and 9 in List-

ing 6. The invocation is first dispatched to

EncryptionLayer, then to LoggingLayer, and fi-

nally to the base method. The base method of

transfer invokes credit and debit methods on its

Account parameters. Both active layers also pro-

vide partial methods for them, thus the method

calls again pass the layers, as depicted in Figure 7.

3. 1. 3 Reflection API

With the constructs presented so far we are

able to handle most common scenarios for be-

havioral variations. For situations requiring spe-

cial reasoning about layer, we provide a reflec-

tion API that gives access to inspect and ma-

nipulate layers, their composition and their par-

tial methods at run-time. The API consists of

three classes of the contextj.lang package, namely

Layer, Composition, and PartialMethod. The

superclass of all layers, Layer, provides meth-

ods to access a layer’s enclosing composition and

partial method definitions. Composition objects

allow access to their layers and the (de-) acti-

vation of layers. PartialMethod is the meta-

class of partial methods, corresponding to Java’s

java.lang.reflect.Method class. As Method, it

inherits from AccessibleObject and implements

the Member interface, which are both defined in the

package java.lang.reflect. Table 1 describes the

API methods.

As an example for the use of the API, we want to

assert that no other layer provides a partial defini-

tion for transfer. Fig. 8 presents an implementa-
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Table 1 The ContextJ reflection API.

contextj.lang.Layer

static Layer forName(String) Returns the layer associated with the given string name

Composition getComposition() Returns the enclosing layer composition

boolean isActive() Returns true if the layer is activated

boolean providesPartialMethodFor(String) Determines if the layer provides a partial definition for a

method with signature represented by the parameter

PartialMethod[] getPartialMethods() Returns an array of PartialMethod objects reflecting all the

partial methods provided by the layer

PartialMethod getPartialMethod(String) Returns a PartialMethod object representing a partial method

of the layer with the signature specified by the parameter

contextj.lang.Composition

Layer[] getLayers() Returns an array of the layers of the composition

void activateLayer(Layer) Activates a layer in the current composition

void deactivateLayer(Layer) Deactivates a layer in the current composition

contextj.lang.PartialMethod

Layer getDefiningLayer() Returns the layer defining this partial method

Class getDeclaringClass() Returns the declaring class of the partial method

Class[] getExceptionTypes() Returns an array of the exception types

String getName() Returns a string representation of that method

Class getReturnType() Returns the return type of the method

int getModifiers() Returns the Java language modifiers for the method represented

by this Method object, as an integer

Object invoke(Object target, Invokes the underlying partial method on the specified object

Object... args) with the specified parameters

Fig. 8 Use of reflection API.

tion of such behavior. First, we access the current

composition (Line 3) and retrieve an array of all

active layers (Line 4). For each active layer except

EncryptionLayer we check if it provides a partial

definition of transfer (Lines 6–7). If it does, we

throw a runtime exception.

4 Case Study

　 Interactive development environments (IDEs)

nowadays provide a large feature set for editing and

managing source code, including specific editors for

file-based, source code-based, or debugging based

representation of a program, imposing considerable

complexity on developers. To ease the use of com-

plex work-flows, IDEs often offer context-specific

perspectives that emphasize important and hide ir-

relevant functionality.

We have developed CJEdit, a little IDE whose

GUI provides context-specific user interface (UI)

behavior. CJEdit is a simple programming environ-

ment for ContextJ that provides behavioral varia-

tions for the tasks programming and documenting.

It supports syntax highlighting, an outline view, a

compilation/execution toolbar and rich text com-

menting features, such as font and color modifica-

tions. In addition, the IDE relieves the user from

manually switching perspectives and automatically

changes them depending on the actual context of

use. The UI is recomposed upon these context

switches, which are triggered whenever the text

cursor moves from text to code blocks and vice

versa. The creation of new text and code blocks

can be declared by the developer using a toolbar
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Fig. 9 Context-dependent GUI compositions in CJEdit.

button. Figure 9 shows two screenshots of CJEdit’s

GUI compositions.

The editor’s underlying document tree represents

each text line as a text block node. Each block pro-

vides information about its type (code node or com-

ment node). The application is recomposed and

redrawn whenever the type of the focused block

changes from rich text to code block, and vice

versa. This change is explicitly activated by enter-

ing or leaving the programming activity (by press-

ing the code button) or on moving the text cursor

between blocks of different types. The composi-

tion is triggered by the onCursorPositionChanged

event. The method getCurrentBlockActivity re-

turns a String representation of the focused node

type and is used to determine node type changes.

CJEdit’s core is implemented using Java and the

Qt Jambi GUI Framework [26]. The editor con-

sists of approximately 3,500 lines of code in 38

classes. In previous work [4], we presented a Con-

textJ based implementation of CJEdit’s context-

aware functionality. Here, we compare a more

elaborate ContextJ implementation with an As-

pectJ version, since both approaches provide multi-

dimensional separation of concerns, as motivated in

Section 2. We will focus on the implementation of

the CJEWindow class, which is responsible for han-

dling GUI composition. For brevity we present only

two layers with few partial methods.

4. 1 AspectJ Implementation

In our AspectJ implementation (see Figure 10),

we separate the definition of behavioral variations

from the base program. Partial method definitions

are represented by advice to which execution point-

cuts are bound that specify the method’s signa-

tures (Lines 25–34). Auxiliary members can be in-

troduced via inter-type declarations (Lines 20–23).

Dynamic activation is controlled by if pointcuts

that must be declared for any advice (Lines 27, 32).

It restricts advice execution to join points within

the control flow of onCursorPositionChanged at

which the focused text block type describes the as-

pect’s concern. For dynamic activation, a thread-

local composition list has to be maintained. Most

of the adapted methods are private. Thus, our as-

pect requires privileged access to private members

and therefore breaks encapsulation.

The complete implementation for CJEdit con-

sists of five concrete aspects (layers) and one ab-

stract aspect (providing auxiliary methods). They

provide advice (behavioral variations) for nine

methods in three classes. In addition, a context

class represents the actual composition and man-
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Fig. 10 Dynamic composition with AspectJ.

ages a thread local composition list. The imple-

mentation consists of about 740 lines of code.

Fig. 11 Dynamic composition with ContextJ.

Fig. 12 Dynamic composition with ContextJ.

4. 2 ContextJ Implementation

Figure 11 shows the implementation of the pro-

gramming activity-specific widgets using ContextJ

layers (Lines 15–27). By default, text blocks refer
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to the layers responsible for rich text commenting

behavior. If the user switches to the programming

activity (by pressing the code button in the tool-

bar), subsequently created text blocks are linked

with programming environment-specific layers.

The application is recomposed and its GUI re-

drawn whenever the current block type switches.

The dynamic composition of our previously spec-

ified layers is depicted in Lines 10–12. For

layer composition, ContextJ provides a with state-

ment that specifies the layers to be activated,

and the dynamic extent for which the composi-

tion is valid. Recomposition can be triggered by

the onCursorPositionChanged event handler that

checks if the block type of the previously focused

block is different to that of the current block. If

so, the method calls drawWidgets to update the UI

using the current block’s layer composition.

The ContextJ implementation consists of five lay-

ers spanning over three classes that provide behav-

ioral variations for nine methods. Layer represen-

tation requires 400 lines of code.

4. 3 Discussion

The ContextJ implementation is more concise

than the AspectJ solution. In our examples, the

total number of lines of code is significantly re-

duced, which is due to ContextJ’s provision of ap-

propriate abstractions for composition variations.

Since the adapted methods are private members of

CJEWindow, it is also more natural to define their

variations within the same lexical scope as with

ContextJ, instead of in an external aspect.

For heterogeneous concerns, ContextJ is better

suited than AspectJ, as our case study shows.

In turn, for the encapsulation of homogeneous

crosscuts—if they constitute a one-to-many rela-

tionship between adaptation code and its locations

in an execution flow—AspectJ has some benefits.

Security concerns in CJEdit are a good exam-

ple of homogeneous crosscutting. The application

offers user management functionality that controls

printer and file access. To ensure that only logged-

in users are able to open, save, and print files, iden-

tical security logic must be implemented at differ-

ent source code locations. Figure 12 sketches an

AspectJ aspect providing this behavior. A point-

cut describes the methods requiring authentication

(Lines 2–5). Authentication logic itself is encap-

sulated in an advice (Lines 7–12). Since ContextJ

does not support quantification, three redundant

partial methods are needed (one per method re-

quiring authentication) that implement the afore-

mentioned around advice. Encapsulation of quan-

tification is subject of ongoing work on ContextJ.

5 Implementation

We developed a compiler for ContextJ because

the reflection-based implementation approaches

(see Section 6) taken for COP extensions to dy-

namic languages are not suitable for Java.

5. 1 Layer-aware Message Dispatch

Since we want to use ContextJ with existing

Java tools and environments, our compiler is byte

code compatible with Java. To generate plain Java

byte code from ContextJ source code, we devel-

oped a translator from ContextJ’s abstract syntax

tree (AST) to that of Java. This translator, as de-

scribed in the following, is implemented as re-write

rules that are executed during compilation.

First, we describe the general steps of layer-aware

method lookup at runtime. For a call to a method

M and a list of active layers L:

1. Find the last layer Li ∈ L that contains a par-

tial method definition (MLi) for method M .

2. If a MLi exists, execute it.

3. If MLi contains a proceed expression, lookup

the next layer Lx ∈ L, x < i that contains MLx

and repeat Step 2, else continue with Step 4.

4. Execute the original method definition.

The dynamic structure of L can be implemented

as an ordered list consisting of layer objects. For

the implementation of layer lookup we use inheri-

tance: Each layer Li is subtype of ConcreteLayer,

which in turn inherits from Layer. If no layer is

activated, the layer list only consists of one Layer

element. For each layered method M , Layer pro-

vides a delegation method that simply calls M , cor-

responding to Step 4.

To traverse the layer list in Steps 1 and 3,

ConcreteLayer overrides these methods and im-

plements a delegation to the next layer in the list.

Each Li that provides a MLi overrides the delega-

tion method of ConcreteLayer with a call to MLi ,

which is implemented in the same class as M . Its

signature corresponds to M ’s, except for the first
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Fig. 13 Mapping of a ContextJ program to Java.

parameter, whose type is Li. The first parameter

allows to distinguish multiple partial definitions of

M . Layer activation can be implemented in a

simple way: Basically, the with block is replaced

by two static methods of Layer that allow to add

and remove items from the list.

Mappings for Account and EncryptionLayer are

shown in Figure 13. Note that the Java source code

presented here is not generated but directly trans-

formed into byte code during compilation.

5. 2 Compiler Implementation

The implementation of the ContextJ compiler is

an extension of JastAddJ [13], an open Java com-

piler based on the JastAdd [17] compiler frame-

work. Typically, compiler extensions require adap-

tations in several modules, such as the scanner,

parser, abstract syntax tree (AST), and semantic

analysis. JastAdd is a modular compiler framework

that uses aspect-oriented techniques to encapsulate

specifications into dedicated modules. During the

compiler build process, the separate specifications

are woven into one executable compiler.

For lexical analysis, JastAdd employs JFlex [23],

a scanner generator for Java. Each keyword spec-

ification provides a corresponding terminal symbol

that can be used in the parser and is woven into

the scanner at build-time. This is how the Con-

textJ keywords are introduced.

JastAdd provides an object-oriented abstract

grammar from which the Java AST representation

is generated. The abstract grammar does not con-

tain any behavior specification; this is done by sep-

arate attribute and equation specifications. For a

modularized specification, inter-type declarations

are used to extend existing trees. We extend the

Java AST definition by node types for layers, par-

tial method definitions, the proceed expression,

and layer activation and deactivation.

By default, JastAdd uses the Java-based parser

generator Beaver [12], a LALR(1) parser genera-

tor. The system is able to consume the tokens that

are generated by JFlex. Beaver accepts a context

free grammar, expressed in EBNF, and converts it

to a Java class that implements a parser for the

language described by the grammar.

For the implementation of the behavior shown in

Section 5. 1, we make use of JastAdd’s re-writing

facilities. Typically, re-write rules change a cer-

tain AST node or subtree, or replace it with an-

other. We use this technique to translate ContextJ-

specific nodes into Java nodes that implement their

behavior. For the implementation of layer-aware

message dispatch the re-write rules introduce a

class for each layer L and several methods for each

of L’s partial methods.

In the following, we describe the transformation

steps to generate these methods.
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Fig. 14 AST transformation of ContextJ

nodes to Java nodes.

1. For each layer L, a class Lclass will be created

as a subtype of contextj.lang.Layer

2. A new parameter of type Lclass is inserted

into the parameter list of each partial method

definition ML. Subsequently, ML is moved to

the enclosing class. When all partial methods

of L have been transformed, L is removed from

the member list of its enclosing class.

3. For each ML a forwarding method Mforward

is created in Lclass. It calls ML with its own

instance as first parameter.

4. The body of a base method Mbase is moved

to a new method M base.

5. For each ML a default forwarding method

Mforward is created in contextj.lang.Layer.

It calls Mforward on the next layer of the com-

position. If the composition does not contain

any more layers it calls M base with its own

instance as first parameter.

6. The body Mbase will be replaced by a call to

Lclass
first.M

forward, where Lclass
first is the outermost

layer in the thread local composition.

In addition to this transformations, the compiler

provides auxiliary transformations for static, pri-

vate, or protected methods. Figure 14 gives an ex-

ample of ContextJ syntax and its transformation

into Java.

Finally, the compiler generates byte code for the

transformed layers. The application can then be

executed as a plain Java program.

5. 3 Benchmarks

This section discusses our run-time measure-

ments, based on the Java Grande Forum Bench-

mark Suite [9], for which we developed, in the fash-

ion of [16], a set of micro-benchmarks to assess the

performance of layer-aware method dispatch. The

micro-benchmarks were run on an 1.8 GHz dual

core Intel Core2Duo with 2GB main memory run-

ning on Windows XP. All benchmarks are executed

once for warm-up before the actual measurement to

assure that the execution environment is in steady

state—i. e., optimizations have been applied—when

results are collected.

Below, we will first describe each of the three

different measurements we applied. The section is

then concluded by a discussion of the various re-

sults.

5. 3. 1 Plain vs. Layered Methods

In order to measure the overhead of the execu-

tion of a layered method compared to an identical

plain method, we set up a micro-benchmark that

executes different types of plain methods and lay-

ered methods without active layers. The bench-

mark includes self calls and calls to another object

of synchronized and non-synchronized instance and

class methods.

The benchmark applies two flavors of plain Java

methods. The first, called implicit composition,

checks a thread-local composition object for con-

text presence and thus requires synchronization

and locking. The second, called parameterized

methods, extends the interfaces of all involved

methods by one parameter that carries context in-

formation and can be queried for it (see Figure 2. 1).

Figure 15 (top) illustrates the results of this

benchmark. If calls are sent to synchronized meth-

ods, none of the three different approaches excels,

as synchronization is an expensive operation. As

they avoid synchronization altogether, plain pa-

rameterized methods are significantly faster than

their layered counterparts, but also than plain

methods using implicit composition. By trend,

implicitly composed plain methods perform worse

than layered methods, even though both apply syn-

chronization to check thread-local state. The rea-

son for layered methods’ better performance is that

the ContextJ compiler generates code that uses vir-

tual methods instead of if/else-style conditionals,

which can be better optimized by the virtual ma-

chine.

5. 3. 2 Layer-aware Message Dispatch

Another set of benchmarks measures the over-

head caused by the execution of an increasing num-
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Fig. 15 Micro benchmarks of ContextJ. top: Execution of different method types.

bottom: Execution time with increasing number of behavioral variations;

left: for different Java-based COP implementations; right: for plain Java

solutions compared to ContextJ (logarithmic scale).

ber of partial methods. We again compare the

throughputs of plain methods and layered meth-

ods. The measurement consists of a plain method

and ten integer fields (c01–c10). The method con-

tains ten nested if branches, where each branch

increments one field, so that, if a control flow cov-

ers all ten nested branches, all fields will have been

incremented afterwards. The two strategies for con-

ditional branching mentioned above (implicit com-

position and parameterized methods) are applied

again in this setting. The benchmark version using

layers contains one base method m that increments

c01, and nine layers. Each layer provides a partial

definition for m that increments one distinct field

and then proceeds to the next layer.

The results are presented in Fig. 15 (bottom

right; note the logarithmic scale). The layered

method throughput decreases with an increasing

number of layers from approximately 40,000 to

10,000, which is a performance decrease of 75%.

Plain method call throughputs range from 300,000

for a method that increments one field down to

77,000 for a method incrementing 15 fields. Again,

the performance decrease equals approximately

75%, with overall performance being about one or-

der of magnitude larger.

5. 3. 3 Java COP Implementations

The preceding measurements compare the run-

time behavior of ContextJ with Java. Since one

goal of our compiler-based implementation is to

provide a competitive COP implementation in

Java, we applied the previous benchmark setting

to ContextJ and the two preceding implementa-

tions, namely ContextJ* and ContextLogicAJ. The

results are presented in Fig. 15 (bottom left).

ContextJ and ContextLogicAJ exhibit roughly

equal performance characteristics. We expected

this result since both approaches transform COP

syntax into (almost the same) plain Java code at

compile-time or weaving time, respectively. Con-

textJ supports however more features and comes

with a dedicated, more declarative syntax than

ContextLogicAJ.

ContextJ and ContextLogicAJ perform signifi-

cantly better than the Java 5 based ContextJ*

approach. With more than one active layer,

ContextJ* constantly processes approximate 1,500

method calls per millisecond. This is 6 to 16 times

slower than ContextJ and ContextLogicAJ.
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5. 3. 4 Discussion

In the following, we will discuss two aspects of

the results presented above. On the one hand, the

observed ContextJ performance characteristics will

be regarded as opposed to plain Java implementa-

tions, and on the other, as opposed to other COP

implementations’ characteristics.

Comparing layered methods to plain Java im-

plementations, the former exhibit significant per-

formance downgrades. The Java code of layered

message lookup generated by the ContextJ com-

piler contains thread-local method invocations that

cannot be easily optimized by the Java VM. How-

ever, except for the overall overhead, intensive use

of layers increases execution time of layered meth-

ods only proportional to plain methods. Neverthe-

less, future work on ContextJ must consider per-

formance optimizations; e. g., it is conceivable to

adopt an approach similar to parameterized meth-

ods (cf. Sec. 5. 3. 1).

The performance data we have collected result

from running micro-measurements, so they have

to be taken with a grain of salt. In a micro-

measurement application, the mechanism whose

performance is to be assessed occurs in relative iso-

lation: it is not observed in a real application envi-

ronment. Thus, performance results typically look

better or worse than they can be expected to be if

the mechanism in question was put to use before

the background noise of application logic. More-

over, micro-measurements do not deliver fully ac-

curate results, as they have a strong tendency to-

wards measuring the capabilities of the used virtual

machine’s just-in-time compiler, instead of the per-

formance of the mechanism under consideration.

As of this writing, there is no full-fledged bench-

mark suite for COP languages available. Such a

benchmark suite also goes beyond the scope of this

paper; we consider it an important building block

of future work.

In the comparison of ContextJ with other COP

implementations for Java, it is apparent that Con-

textJ and ContextLogicAJ are almost on par. We

argue that ContextJ still has an advantage over

ContextLogicAJ, due to increased declarativeness

of context-specific variation descriptions.

6 Related Work

In this section, we discuss existing COP language

extensions with emphasis on previous approaches

for Java. In addition to the alternative Java-based

and AspectJ-based implementations of behavioral

variations presented in Sections 2 and 4, we inves-

tigate other aspect-oriented languages and feature-

oriented systems.

6. 1 Context-oriented Programming

COP has been implemented for several host lan-

guages and adopted to their host language-specific

requirements. We give an overview of these imple-

mentations, in particular of Java-based predeces-

sors of ContextJ.

6. 1. 1 COP for Dynamic Languages

ContextL [10] [11] was the first COP extension to

a programming language. It is based on Lisp and

extends the Common Lisp Object System (CLOS).

Layers can be defined for classes, functions and

methods. At run-time, layers can be (de)activated

for a certain control flow.

Subsequently, several meta-level libraries for dy-

namic programming languages were developed,

namely ContextS [18] for Smalltalk, ContextR [30]

for Ruby, ContextJS for JavaScript, ContextPy [20]

and PyContext [31] for Python, and ContextG for

Groovy. A minimal subset of ContextJ, cj, is im-

plemented for the delMDSOC kernel [29].

Another approach to context-orientation is Am-

bience and its underlying Ambient Object Sys-

tem [14] (AmOS). AmOS is a prototype-based ob-

ject system built on top of Common Lisp that sup-

ports behavioral adaptations with partial method

definitions and context objects, which correspond

to COP layers. At any method call in AmOS, re-

ceiver methods are first looked up in the current ac-

tivation and then in further enclosing lexical scopes.

If no appropriate method is found in the lexical

scope, the lookup continues in a graph of context

objects delegating to each other. The delegation

chain between these context objects can be modi-

fied dynamically, achieving context-specific behav-

ior.

These context-oriented extensions are imple-

mented using the respective language’s meta-level

facilities; none of them utilizes bytecode transfor-
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mation as ContextJ does. Few of them (most no-

tably, ContextL and cj ) provide syntactic means

for layers and layer composition; most express both

constructs by existing means. A dedicated syntax

such as that of ContextJ eases static program anal-

ysis and allows for meaningful error messages at

compile-time. In addition, static analysis can be

employed for compile-time optimizations. A thor-

ough comparison of COP languages and their fea-

tures is provided in [2].

6. 1. 2 COP for Java

The first ideas about a ContextJ language have

been presented in [11] to improve the accessibil-

ity of the ContextL code discussed in that pa-

per. The authors introduced ContextJ syntax only

in a pseudo-code manner and neither provided a

feature-complete syntax nor a language specifica-

tion, let alone a full implementation. Neverthe-

less, a proof-of-concept implementation called Con-

textJ* [19] exists.

This Java 1.5 library implements the core con-

cepts of COP, i. e., layer definition and activation

without any extension to the syntax or semantics

of the language. Figure 16 exemplifies layer dec-

laration using ContextJ* by an implementation of

our account example.

Concrete layers are represented by subclasses of

Layer (Lines 2–3). Partial methods are defined

in a LayerDefinitions container (Lines 22–37).

Each layer declaration is a pair of a layer class

references and an anonymous class that specifies

its partial methods. The base methods (Lines

13–21) execute the layer aware lookup by call-

ing LayerDefinitions.select. Layer composition

uses the static method with followed by a struc-

ture of method calls and anonymous class defini-

tions (Lines 42–45). For more details about Con-

textJ* and its usage, we refer to [19].

As this example illustrates, layers and partial

methods can be defined independently of base

methods. However, the proper use of ContextJ* re-

quires developers to write boilerplate code adhering

to the following idioms:

• Classes providing partial methods must imple-

ment a specific interface guaranteeing at least

the signatures of layered methods. Whenever

a new partial method is defined, this interface

must be modified (Lines 6–7, 9).

• Each Layer must provide partial method def-

Fig. 16 Bank account implementation

using ContextJ*.

initions for all methods of this interface, even

if it does not intend to change the method’s

behavior (Lines 23, 27, 33).
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Fig. 17 Bank account implementation

using ContextLogicAJ.

• Base methods must manually trigger layer se-

lection (Lines 14, 17, 20).

• Layer activation requires the generation of an

anonymous class Block whose (Lines 42–46)

eval method contains the actual code.

All these guidelines required by the library in-

crease code fragility. In the following, we describe

a pre-compiler that was developed based on an

aspect-oriented language; this compiler overcomes

some of these issues.

ContextLogicAJ [5] [3] is an aspect-oriented pre-

compiler that offers more convenient layer decla-

ration constructs than ContextJ*. It is based on

a LogicAJ [24] aspect library. As in ContextJ*,

layers are represented by subclasses of a Layer

class, as shown in Figure 17 (Lines 1–2). Partial

method declarations are distinguished by the type

of their first parameter, which represents their cor-

responding layer (Lines 6–27). Calls of the static

method proceed are join point hooks for Context-

LogicAJ’s aspect that takes care for the correct

method lookup. Layer composition is controlled

with (de)activateLayer (Lines 32, 34). Context-

LogicAJ does not provide a scoped activation but

expects the developer to explicitly deactivate layers

at the end of a composition.

In comparison to ContextJ*, partial methods can

be defined more conveniently, but still some idioms,

such as declaring a dummy layer class, parame-

terizing methods with layer types, and explicitly

(de)activating, need to be considered. ContextJ

abandons these idioms, adopting first-class layers

and layer composition.

6. 2 Aspect-oriented Programming

Throughout this paper, we discussed the repre-

sentation of behavioral variations and compared

AspectJ- and ContextJ-based implementations.

The main concern of AOP languages is the declar-

ative description of control-flow graph locations at

which certain pieces of functionality should be ex-

ecuted (see Section 2. 2). Aspect weaving, as the

adaptation process is called in AOP, can be applied

at compile-, load-, or run-time. Classic AOP lan-

guages such as AspectJ only support static weaving

at compile- and load-time, whereas COP languages

explicitly target dynamic adaptation.

Some aspect-oriented languages, such as CaesarJ

and JAC also support dynamic weaving. Cae-

sarJ [6] comes with an alternative module concept

by unifying classes, aspects, and packages. Its as-

pects can be deployed at run-time using different

kinds of dynamic scope, much like ContextJ lay-

ers. The language supports virtual classes [25], a

concept that enables dynamic class extension, de-

pending on the caller’s scope. The ability of virtual

classes to extend modules is similar to layers. How-

ever, class extension with layers is not bound on the

caller’s module but differs depending on the current
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layer composition.

JAC [28] (Java Aspect Components) is an AOP

framework supporting dynamic weaving. JAC is

based in Javassist, a meta-programming framework

for Java. It does not require a language extension.

Instead, aspects are represented by objects. As-

pect methods can wrap application methods (ad-

vice) or introduce new methods (inter-type decla-

rations). Run-time aspect composition is managed

by a wrapping controller object.

Dynamic weaving as supported by CaesarJ and

JAC allows for controlling and scoping aspect-

based adaption at run-time. The aspect-oriented

version of our ongoing example presented in Fig-

ure 3 can be enhanced by aspect deployment scope,

much like ContextJ’s with statement. However, the

aforementioned conceptual differences remain.

AOP aims to tame crosscutting concerns by

introducing pointcut-based quantification. Most

behavioral variations, however, are heterogeneous

crosscuts that require different functionality at each

join point; a declarative description of join points

is not necessary. In that regard, AOP can be ap-

plied for behavioral variations, but introduces un-

necessary complexity. From a modularization per-

spective, a major distinction of the presented Java-

based aspect languages and ContextJ is the source

location of partial method definitions. ContextJ

supports layer-in-class declaration and therefore

differs from aspect-oriented encapsulation.

6. 3 Feature-oriented Programming

Feature-oriented programming (FOP) [8] ad-

dresses the process of step-wise refinement for

product-line development. The Java-based

AHEAD Tool Suite [7] is an implementation

of FOP. As programming language, it supports

Jakarta which extends Java with constructs such as

class refinements for static feature-oriented compo-

sition. Layers in Jakarta are distinct files describing

static class refinements. The foundations of FOP

and COP are similar: Both introduce new or alter-

native program behavior through features or lay-

ers, respectively. However, FOP applies compile-

time composition of feature variations in contrast

to run-time composition as provided by COP.

7 Summary and Conclusion

The modularization of dynamic adaptation is a

well known topic that is addressed by several pro-

gramming paradigms and language extensions. To

assess their usability and expressiveness, these ap-

proaches need to be applied to different language

domains. In that regard, Java-like languages are

an important domain for the assessment of new lan-

guage abstractions, due to their popularity and use

in a wide range of software systems.

In this paper, we present ContextJ, a context-

oriented programming language extension to Java.

ContextJ provides first-class support for layers and

constructs for their dynamic composition. Layers

are integrated into the Java type system as non-

instantiable types and can be referred to like com-

mon Java types. We describe modularization and

dynamic composition of layers and their behavioral

variations. We show the design and implementa-

tion of our ContextJ compiler and its layer-aware

method lookup. In a case study, ContextJ is ap-

plied to the implementation of a context-aware pro-

gramming environment containing several hetero-

geneous crosscutting concerns. In comparison to

an alternative AspectJ-based implementation, we

identify some advantages of our layer-based ap-

proach for representing these specific crosscuts.

In future work, we will continue to apply Con-

textJ to several problem domains for dynamic

context-specific adaptations and analyze the ex-

pressiveness of the abstractions ContextJ provides.
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