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ABSTRACT
This paper proposes a new linguistic construct composite
layers and an extension of EventCJ with it. A compos-
ite layer is implicitly activated when the declared condition
is met. This extension bridges the gap between contexts
and units of behavioral variations that complicates programs
written in COP languages. In this proposal, only atomic
layers (layers that directly correspond to a context) can be
explicitly controlled by linguistic operations for layer acti-
vation. Composite layers (layers that are not atomic) are
declared with a proposition constructed from other layers.
Examples show that the extension simplifies programs and
enhances separation of concerns.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, packages

General Terms
Languages

Keywords
EventCJ, Atomic and composite layers, Implicit layer acti-
vation

1. INTRODUCTION
COP (Context-oriented Programming) [12] has been ex-

tensively studied to address the complexity raised in the de-
velopment of context-aware applications. Several COP lan-
guages provide a modularization mechanism called a layer
that modularizes behaviors executable under specific con-
texts, and a way to dynamically switch behaviors [3, 5, 7,
13]. In this paper, we call them layer-based COP languages.

There are two advantages in layer-based COP languages.
First, they separate context-dependent behaviors that cross-
cut several traditional module systems such as classes. Sec-
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ond, they provide linguistic mechanisms for disciplined dy-
namic adoption of context-dependent behaviors. For exam-
ple, ContextJ [3] and JCop [5] restrict the effects of layer ac-
tivation under specified control flows. EventCJ [13] provides
event-based layer transitions that make it easy to check con-
formance to the specification represented in the state tran-
sition model. Thus, it is easy to avoid unexpected conflicts
between behaviors in these languages.

Existing layer-based COP languages assume that a unit
of behavioral variations (i.e. a layer) corresponds to one con-
text (a specific state of the system and/or environment that
affects system’s behaviors). This assumption is observed
from the fact that, in these languages, to execute context-
dependent behaviors we explicitly specify layers correspond-
ing to the context determined by external change of status
or internal actions.

However, correspondence between contexts and layers is
not so simple. Each layer does not correspond to single con-
text but corresponds to combinations of union, intersection,
and negation of contexts. This gap between contexts and lay-
ers complicates programs written in layer-based COP lan-
guages. Specifically, independent models of context changes
are tangled in the layer activation code. For example, in a
mobile application, a user interface may depend not only on
a history of user’s operations but also on the state of the
executing machine (such as status of the battery), whose
changes may occur independently.

To bridge this gap, this paper proposes a new linguistic
construct composite layers and an extension of EventCJ (a
COP language with the feature of event-based layer tran-
sitions) [13] with it. In this proposal, layers are classified
into atomic layers and composite layers. An atomic layer
directly corresponds to a context. Only atomic layers are
explicitly controlled by linguistic operations for layer acti-
vation. A composite layer is declared with a proposition in
which ground terms are other layer names (true when ac-
tive). The layer is activated when and only when the propo-
sition holds. In other words, there are no ways to explicitly
activate composite layers.

We demonstrate how the extension simplifies the imple-
mentation of context-aware applications written in EventCJ
by using two examples, a multi-tabbed Twitter client and
the CJEdit program editor [4]. Both examples show that
our approach successfully simplifies programs and enhances
separation of concerns.

This paper is organized as follows. Section 2 introduces an
motivating example to show the problem. Section 3 sketches
our proposal to tackle the problem. Section 4 discusses re-



Figure 1: Context changes in the Twitter client.
The black circles indicate “initial contexts” in which
the system resides when it is born.

Figure 2: Correspondence between contexts and be-
haviors

lated work. Finally, Section 5 concludes this paper.

2. MOTIVATING EXAMPLE
In this section, we elaborate our motivation by using a

multi-tabbed Twitter client. This Twitter client is equipped
with multiple tabs, each of which displays the user’s timeline
(a list of tweets submitted by persons followed by the user),
which is updated when a person followed by the user posts
a tweet. At most one tab is focused at a time. A focused
tab frequently updates the timeline, while other unfocused
tabs infrequently update it. The user switches the focused
tab by clicking. Furthermore, when the executing machine
is running out of its battery, any tab (including the focused
one) updates its timeline infrequently, and an alert icon is
displayed.

In this application, there are two independent context
changes about the focus of a tab and the machine’s battery
level, respectively, both of which can be discovered by apply-
ing requirements engineering methods such as the method
proposed by Salifu et al. [15]. We identify three contexts,
namely TabIsFocused, TabIsUnfocused, and EnergySaved.
Context changes are modeled by using state machines, as
shown in Figure 11.

Behaviors of the application change with respect to cur-
rent contexts. There are two context-dependent behaviors:
“frequent update of timeline,” and “infrequent update of
timeline.” The correspondence between contexts and be-
haviors is shown in Figure 2. It shows that these behaviors
depend not on single context but on a combination of mul-
tiple contexts.

2.1 Problem description
1We may obtain other results from the requirements elicita-
tion process. For example, TabIsFocused may be considered
as a default state, which makes the state transition of focus
of the tab have just two states: a black circle and TabIsUn-
focused. We do not further discuss about the requirements
elicitation in this paper, but mention that our approach suc-
cessfully maps contexts onto layers in both cases.

Layer-based COP languages provide a mechanism to mod-
ularize context-dependent behaviors in a layer and to dy-
namically switch between layers. The behavior “frequent
update” in Figure 2 may be implemented in a layer, namely
TabIsActive, and “infrequent update” may be implemented
in another layer, namely TabIsInactive.

Layer-based COP languages dynamically activate and de-
activate layers with respect to current contexts. In these lan-
guages, we explicitly specify layers that are activated/deacti-
vated at particular execution points when a context changes,
which implies that there is an assumption that a layer de-
pends on single context. This mechanism complicates the
program; i.e., independent models of context changes are
tangled in the layer activation code. We explain this prob-
lem in the case of EventCJ [13].

In EventCJ, the execution points of layer switching are
specified by events. At first, we may assume that each
event corresponds to the label of edge in Figure 1 where
four events are identified; two of them, namely TabIsFo-

cused and TabIsUnfocused, change the focus of a tab, and
other two, namely BatteryLow and ACConnected, change the
status of battery.

However, this assumption does not hold. The problem
is that these events do not directly correspond to a layer
switching. For example, when TabIsFocused occurs, the
context about focus of a tab always changes to TabIsFo-
cused (Figure 1); however, TabIsActive becomes active only
when the system is not in EnergySaved. Thus, in EventCJ,
we have to declare TabIsFocused as an event that depends
on the status of battery. We may declare such event by
implementing a method that inspects the status of battery,
namely isBatteryLow, and calling this method from the if

pointcut in the event declaration:

1 event TabIsFocused(ChangeEvent e)

2 :after execution(void TabListener.stateChanged(*))

3 &&args(e)&&if(!Env.isBatteryLow())

4 :sendTo(e.getSrc().getSelected().controller());

In EventCJ, an event is declared with two specifications,
one of which indicates when the event is generated and an-
other one indicates where the event is sent. The former is
specified using AspectJ-like pointcut sublanguage [14], and
the latter is specified using the sendTo clause that lists in-
stances where the event is sent. The above event TabIsFo-

cused is generated when the focus of the tab is changed and
sent to the selected tab. The if pointcut ensures that the
event is generated only when the result of isBatteryLow is
false.

This approach has two disadvantages. First, the program
does not directly reflect the model of context changes. For
example, TabIsFocused identified in Figure 1 and the above
event declaration are different; while the former is generated
whenever the tab is getting focused, the latter is generated
only when the result of isBatteryLow is false. In other
words, two context changes about the focus of the tab and
the status of battery are tangled in the same event decla-
ration. Second, this approach complicates the layer activa-
tion code. For example, when ACConnected in Figure 1 is
generated, in EventCJ there should be two different layer
transition rules: one for when the tab is in TabIsFocused,
and the other for when the tab is in the initial state. Thus,
we need to declare two different events for each case, and to



1 transition TabIsFocused:

2 TabIsUnfocused ? TabIsUnfocused -> TabIsFocused

3 | -> TabIsFocused;

5 transition TabIsUnfocused:

6 TabIsFocused ? TabIsFocused -> TabIsUnfocused

7 | -> TabIsUnfocused;

9 transition BatteryLevelLow: -> EnergySaved;

11 transition ACConnected: EnergySaved ->;

Figure 3: Context transition rules in the extension

develop two different layer transition rules for each event.
In other words, there is a gap between contexts and layers.

In EventCJ, every switching of layers is explicitly controlled
by layer transition rules. However, context changes do not
always trigger switching of layers.

3. OUR PROPOSAL
To tackle the aforementioned problem, we propose a new

linguistic construct called composite layers. A composite
layer depends on activation of other layers. It declares a
proposition in which ground terms are other layer names
(true when active), and is activated when and only when the
proposition holds. We also propose an extension of EventCJ
with composite layers.

In this paper, layers that are not composite are called
atomic layers. Only atomic layers can be activated explicitly
(by using layer transition rules).

3.1 Atomic layers
An atomic layer is a layer that directly corresponds to a

context. It is declared with existing syntax of layer declara-
tions. If there is a one-to-one correspondence between con-
texts and behaviors, we implement such behaviors in atomic
layers using partial methods. In the Twitter example, there
are no such correspondence; thus, we declare each context as
an atomic layer with an empty body. In the most of layer-
based COP languages, such layers are declares as follows:

1 layer TabIsFocused {}

2 layer TabIsUnfocused {}

3 layer EnergySaved {}

In the extension of EventCJ, only atomic layers are con-
trolled by layer transition rules. Since there is a one-to-one
correspondence between contexts and atomic layers, layer
transition rules can be mechanically derived from the state
transition model of context changes. For example, from
state transition models shown in Figure 1, we derive layer
transition rules shown in Figure 3. The syntax is the same
as that is shown in [1]. For example, the first transition
rule is read as, “upon the generation of TabIsFocused, if
TabIsUnfocused is active, then it becomes inactive and Tab-

IsFocused becomes active; otherwise, only TabIsFocused

becomes active.”

3.2 Composite layers
A composite layer is used to modularize behaviors that

depend on a combination of multiple contexts. It extends

the syntax of layer declarations; a composite layer is declared
with a condition that specifies when the layer is active:

1 layer TabIsActive

2 when TabIsFocused && !EnergySaved {

3 /* frequent update of timeline */

4 }

5 layer TabIsInactive

6 when TabIsUnfocused || EnergySaved {

7 /* infrequent update of timeline */

8 }

The when clause can refer to other layers to specify when it
is active. Each referred layer is interpreted as a proposition
that is true when it is active. Thus, the first layer declaration
shown above is read as, “TabIsActive is active when TabIs-

Focused is active and EnergySaved is not active.” Similarly,
the second layer declaration is read as, “TabIsInactive is
active when TabIsUnfocused or EnergySaved is active.”

This introduction of when clause raises discussion about
the style of layer declarations. Most of the layer-based COP
languages employ the so called layer-in-class style [2], which
means that layers are declared within classes. This style is
not suitable for this extension. In the layer-in-class style,
layer declarations for the same layer are distributed among
classes that contain that layer. Thus, the addition of the
when clause requires that there should be some mechanisms
to ensure the consistency of layer declarations and/or pro-
grammers have to write the same condition for every layer
declaration distributed among classes. The class-in-layer
style in which (partial definitions of) classes are declared
within a layer may avoid such inconvenience.

The aforementioned problem is tackled by the proposed
extension. The context transition rules shown in Figure 3 is
straightforwardly derived from the state machines in Figure
1. While designing and implementing events and context
transition rules about the status of the tab, we do not have to
consider the status of battery. Thus, the proposal enhances
separation of concerns. Furthermore, our approach reduces
the numbers of event declarations (i.e., we do not have to
declare multiple ACConnected events for each status of the
tab), which also reduces lines of layer transition rules.

3.3 Another example: CJEdit [4]
To verify the proposed approach is effective in other appli-

cations, we introduce another example CJEdit, a program
editor providing different functionalities with respect to the
cursor position [4]. CJEdit is a program editor that en-
hances the readability of programs by providing different
text formatting techniques for code and comments. The
code part is formatted in a typewriter format with syntax
highlighting, and the comment part is formatted in a rich
text format (RTF) that supports multiple fonts, text sizes,
decorations, and alignments. Furthermore, CJEdit provides
different GUI components depending on whether the pro-
grammer writes code or comments.

There are two context changes about cursor position and
text region, respectively. The former has two states, namely
CursorOnCode and CursorOnComments, and the latter has
two states, namely RenderingCode and RenderingComments.
Figure 4 shows state transition models for both context
changes2.

2Having default states (i.e., the states that are not Cur-



Figure 4: Context transition system in CJEdit

There are five context-dependent behaviors that change
with respect to current contexts. Each of them can be mod-
ularized by layers. We list these behaviors with layer names
as follows:

• CursorOnCode: showing the GUI components for code
editing functionalities such as outline view of the pro-
gram structure.

• CursorOnComments: showing the GUI components for
RTF functionalities such as menu items and tools for
fonts, text sizes, decorations, and alignments.

• RenderWithHighlighting: rendering the program text
in typewriter format with syntax highlighting.

• RenderWithoutHighlighting: rendering the program
text in typewriter format without syntax highlighting.

• RenderingComments: rendering comments in RTF.

We summarize correspondence between contexts and be-
haviors in Figure 5. While the former three behaviors di-
rectly correspond to contexts CursorOnCode, CursorOnCom-
ments, and RenderingComments, respectively, the latter two
do not; RenderWithHighlighting depends on two contexts
CursorOnCode and RenderingCode, and RenderWithoutHigh-

lighting depends on CursorOnComments and Rendering-
Code.

We can implement CJEdit by EventCJ with composite
layers. The former three behaviors that have one-to-one
correspondence to contexts can be implemented by the fol-
lowing atomic layers:

1 layer CursorOnCode {

2 /* code editing functionalities */

3 }

4 layer CursorOnComments {

5 /* comments editing functionalities */

6 }

7 layer RenderingComments {

8 /* rich text formatting */

9 }

sorOnCode and CursorOnComments, and not Rendering-
Code and RenderingComments, respectively) in the model
is a precise interpretation of the original implementation of
CJEdit, which is not in any contexts at the very beginning
of its startup.

1 transition MoveOnCode:

2 CursorOnComments ?

3 CursorOnComments -> CursorOnCode

4 | -> CursorOnCode;

6 transition MoveOnComments:

7 CursorOnCode ?

8 CursorOnCode -> CursorOnComments

9 | -> CursorOnComments;

11 transition StartCodeRendering

12 RenderingComments ?

13 RenderingComments -> RenderingCode

14 | -> RenderingCode;

16 transition StartCommentRendering

17 RenderingCode ?

18 RenderingCode -> RenderingComments

19 | -> RenderingComments;

Figure 6: Layer transition rules for CJEdit by our
proposal

For context RenderingCode, there are no one-to-one re-
lations to any behaviors. Thus, we declare it as an atomic
layer with an empty body:

layer RenderingCode {}

Using atomic layers, we implement the remaining behav-
iors as composite layers:

1 layer RenderWithHighlighting

2 when RenderingCode && CursorOnCode {

3 /* displaying code with syntax highlighting */

4 }

5 layer RenderWithoutHighlighting

6 when RenderingCode && CursorOnComments {

7 /* displaying code without syntax highlighting */

8 }

Figure 6 shows layer transition rules that are simply de-
rived from state machines shown in Figure 4. Note that, as
in the Twitter example, two independent models of context
changes (that will be tangled in the original EventCJ) are
separated in the layer transition rules.

4. RELATED WORK
Most of the existing COP languages manage layer activa-

tion per-thread manner by using the block structure (called
with-block) [3, 5, 7, 11]. This style of layer activation makes
it difficult to develop applications in which context-dependent
behaviors inherently occur per-instance, like the Twitter
client shown in this paper.

The tangling problem of layer activation occurs in those
COP languages, and thus the proposed approach may also
effective in them. For example, in ContextJ [3] we need to
use a workaround using first-class layers to store effective
layers in a variable, and activate the stored layers whenever
a context-dependent behavior is needed. For example, in
CJEdit we switch active layers in the following method in
which a context change occurs:

1 void onCursorPositionChanged() {



Figure 5: Correspondence between contexts and behaviors in CJEdit

2 if (Layer.isActive(CursorOnComments)) {

3 /* Deactivate CursorOnComments */

4 /* Activate CursorOnCode */

5 /* Other managements for highlighting.. */

6 } else { .. }

7 }

We need to manage layer switching with considering not only
cursor position but also text highlighting, whose changes oc-
cur independently and should be separately described. Im-
plicit activation of composite layers addresses this problem.

Ambience [10] and its successor AmOS [9] are prototype-
based context-oriented languages featuring multimethods and
subjective dispatch. Unlike layer-based COP languages, a
context is reified as an object that is implicitly argumented
to the method invocation. Thus, each context-dependent
method is defined with a context, which can be a combined
context that is similar to a composite layer. While a compos-
ite layer is declared with an arbitrary proposition, Ambience
and AmOS only support intersections.

Subjective-C [8] is an extension of Objective-C with context-
orientation concepts. Like Ambience and AmOS, in Subjective-
C, context-dependent behaviors are defined for each method
using the #context annotation that specifies a context on
which the method depends. It provides a small domain-
specific language (DSL) to represent relations between con-
texts.

Tanter et al. proposed context-aware aspects [17], aspects
whose behaviors depend on contexts. This concept is real-
ized as a framework where a context is defined as a pointcut,
which is similar to AspectJ’s if pointcut but also able to re-
strict the past contexts. Contexts are composable, because
they are realized as pointcuts.

Costanza and D’Hondt proposed a method to analyze the
dependency between layers using feature diagrams [6], where
each feature is mapped onto a layer. They provide an ex-
tension of ContextL [7] to represent composite layers (layers
that correspond to composite features). Since their proposal
can represent relations between layers like “layer A includes
one of layers B, C, and D” and/or “layer X includes all layers
Y and Z,” it shares similarities with our approach. The dif-
ference is that their approach provides direct activation of
composite layers, where other layers depending on activated
layers are automatically activated. In contrast, our proposal
activates all composite layers implicitly and all atomic layers
explicitly.

Asynchronous layer activation is supported by ContextEr-
lang [16], which is a context-oriented extension to Erlang. In

ContextErlang, context activation is modeled as a message
sent from a supervisor process called context manager. As
in EventCJ, the message can be broadcasted, or sent to the
processes run on a specified node. PyContext [18], which is a
Python-based framework for context-oriented programming,
also supports layer activation that goes beyond specific con-
trol flows by providing implicit layer activation.

5. CONCLUDING REMARKS
In this paper, we presented an extension of EventCJ in

which layers are classified into atomic and composite layers.
Contexts determined by external change of status or inter-
nal actions are directly mapped onto atomic layers, and thus
context changes are directly represented by layer transition
rules. A layer that depends on other layers is declared as
a composite layer that specifies a condition about when the
layer becomes active. All composite layers are implicitly
activated when the condition becomes true. This proposal
addresses the problem of the gap between contexts and lay-
ers, which suffers most of the existing layer-based COP lan-
guages.

As future work, we are planning to formally define op-
erational semantics of this extension, and to implement an
efficient compiler.
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