
A Unified Context Activation Mechanism

Tetsuo Kamina
University of Tokyo

kamina@acm.org

Tomoyuki Aotani
Tokyo Institute of Technology

aotani@is.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

ABSTRACT
With the increase of research interest in context-oriented
programming (COP), several COP languages with different
characteristics have been proposed. Although they share
common language features to modularize context-dependent
variations of behavior, they take quite different ways to real-
ize them. Because of such differences, each language cannot
solely cover all use cases of implementing context-dependent
behavioral variations. In this paper, we propose a new COP
language Javanese that unifies several COP mechanisms into
general linguistic constructs. Specifically, it provides context
declarations to identify context and its specification of the
range of execution sequences where this context is active,
activate declarations to define the relation between contexts
and layers, and context group declarations that modularize
these declarations and specify the set of instances where they
are applied. This paper describes design of Javanese and an
implementation strategy.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Modules, packages

General Terms
Languages

Keywords
Context-oriented programming, EventCJ, Layer activation,
Composite layers

1. INTRODUCTION
With the increase of research interest in context-oriented

programming (COP), several COP languages with different
characteristics have been proposed. These languages take
quite different ways to represent dynamic changes of be-
havior with respect to context changes. Some COP lan-
guages activate layers under specific control flows by using

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2040-5 ...$15.00.

with-blocks [7, 4, 5]. Some other languages activate layers
by events, and how layer activation occurs is specified by
transition rules [12]. In some COP languages, the effect of
switching of contexts (layers) is global [8], while in other lan-
guages, such effect is restricted to a specific set of instances
[12], or a specific execution thread [7, 4, 5].

There are several tradeoffs between current COP mecha-
nisms. For example, with-blocks are convenient to restrict
activation of layers within a specific control flow; however,
they are not suitable to represent activation of layers be-
yond control flows. Specifying layer activation per-instance
is convenient to represent fine-grained control of behavioral
changes (e.g., instances of the same class may take different
behavior at the same time), while the global layer activation
allows us to represent more drastic changes of behavior that
affect the whole application.

Despite these differences, we observed that these languages
share a set of common goals: with respect to context changes,
all COP languages specify the range of execution sequences
where some execution entities (such as objects and threads)
are adapted to acquire new behavior. Most of them mod-
ularize such variations of behavior using layers, and all of
them identify, implicitly or explicitly, contexts and their re-
lation to behavior. In other words, each COP language can
represent only some specific cases of context-dependent be-
havioral changes.

In this paper, we propose a new COP language Javanese
that unifies several COP mechanisms into general linguis-
tic constructs. Specifically, Javanese realizes a context as a
property of the system that is activated by an action and
held active until another action that deactivates it occurs.
A context in Javanese is defined as a term of temporal logic
with a call stack, which can represent most of existing layer
activation mechanisms. Furthermore, besides existing layer
activation mechanisms that explicitly specify the action that
activate the layer, Javanese also supports implicit activation
of contexts and layers.

Javanese is a layer-based COP language, which provides
the modularization mechanism for context-dependent be-
havior using layers. Unlike most of existing layer-based COP
languages, Javanese provides activate declarations that re-
late a layer with a proposition where ground terms are con-
texts (true when active). A layer is implicitly activated when
that proposition becomes true. In other words, in Javanese,
all layers are composite layers [14].

Javanese also provides an abstraction mechanism for rep-
resenting a set of objects that are affected by layer activa-
tion. In Javanese, contexts and activate declarations are

grouped into a context group declaration, which specifies ob-
jects whose behavioral change is controlled by the enclosed
activate declarations. An object can subscribe/unsubscribe
context groups at runtime, and only the subscribers are con-
trolled by the context group. When objects subscribe (and
unsubscribe) that context group is specified by using an
AspectJ-like pointcut language. Furthermore, we can also
declare a global context group that affects all objects in the
application.

The rest of this paper is organized as follows. Section 2
reviews existing COP mechanisms, and discusses tradeoffs
between them. Section 3 sketches the design of Javanese.
Section 4 discusses implementation issues. Section 5 dis-
cusses related work. Finally, Section 6 concludes this paper
and delivers future directions of research.

2. EXISTING COP MECHANISMS
In this section, we review existing COP mechanisms from

the following viewpoints: how they select the range of exe-
cution sequences, how they specify targets of activation, and
how they identify “contexts” and relate them to behavior1.

2.1 Selecting Range of Execution Sequences
Specifying blocks. One of the most common ways to

activate context-dependent variations of behavior is using
with-blocks, which activates specified layers only within the
dynamic scope of the block [7, 4, 5]. For example, by taking
an example of pedestrian navigation system that changes
its behavior with respect to situations such as outdoors and
indoors, we can activate the layer Outdoors (that defines
behavioral variations that are executable only when that
system is in outdoors) by using the following with-block:

with (Outdoors) { .. }

By explicitly specifying the block-structured scope of acti-
vation, with-blocks make it easy to reason about some de-
sirable properties (e.g., there are no unintentional collisions
between layers).

Specifying definitive activation. Some COP languages
provide definitive activation, which is realized by imperative
operations to activate behavior that definitively affects the
rest of execution [8, 9]. For example, in Subjective-C [8], ac-
tivation and deactivation of contexts are written as follows:

[CONTEXT activateContextWithName: @"Outdoors"];

[CONTEXT deactivateContextWithName: @"Indoors"];

The first line activate the context Outdoors, and the second
line deactivate the context Indoors.

Specifying declarative layer switching. EventCJ [12]
supports event-driven layer switching, which activates/deac-
tivates layers upon generation of events. An event is declar-
atively defined using an AspectJ-like pointcut language:

event GPSEvent(int s)

:after call(void Nav.onStatusChanged(*))

&& args(s) && if(GPS.AVAILABLE==s);

This event declaration specifies that the event GPSEvent is
generated just after the call of onStatusChanged method

1This section is a summary of another paper submitted by
one of the authors.

declared in the class Nav, and if the class field GPS.AVAILABLE

is equal to the argument for onStatusChanged method call.
The layer switching upon event is declaratively specified

by using the following layer transition rule:

transition GPSEvent:

Indoors ? Indoors -> Outdoors | -> Outdoors;

This rule is interpreted as follows: when GPSEvent is gener-
ated, if the layer Indoors is active, then it is deactivated and
Outdoors is activated; otherwise, no layers are deactivated
and Outdoors is activated.

Unlike with-blocks, this approach enables us to repre-
sent layer activation beyond control flows. Furthermore,
by providing the model-checking mechanism to verify safety
properties of layer transitions, EventCJ compensates for the
loss of disciplined layer activation enforced by the block-
structured layer activation control.

2.2 Selecting Targets of Activation
Per-thread. One of the most common targets to ap-

ply context-dependent behavioral variations are current ex-
ecuting threads. The with-blocks inherently affect execut-
ing threads, because they change the behavior of control
flows. Another example of this per-thread activation can
be found in ContextErlang [16], which is a COP extension
to an actor-model programming language Erlang. In Con-
textErlang, we specify the process (that corresponds to an
executing thread) where the context-dependent behavioral
variations are applied (in this sense, it is also considered as
per-instance activation, which is discussed below).

Per-instance. In COP languages that do not activate
layers by using with-blocks, the targets to apply context-
dependent behavior are not restricted to executing threads.
For example, EventCJ activates layers in the per-instance
manner. In event declarations in EventCJ, we can specify
objects to which the specified event is sent:

event GPSEvent(Nav n, int s)

:after call(void Nav.onStatusChanged(*))

&& args(s) && target(n) && if(GPS.AVAILABLE==s)

:sendTo(n);

By using the sendTo specification, this event declaration
specifies that the GPSEvent is sent to the receiver of the
onStatusChanged method call, which is bound to n by using
the target pointcut. Since layer transition rules are applied
only to the receivers of the event, EventCJ controls layer
activation per-instance.

Global. Another way to select targets for activation is to
activate context-dependent behavior globally; i.e., we do not
select any targets but the whole application is affected by the
activation. This approach is taken by Subjective-C [8] and
Ambience [9]. Furthermore, in EventCJ, we can omit the
sendTo specification in the event declaration, which means
that the effect of event is global.

2.3 Layer vs Context
Another viewpoint to characterize COP languages is how

they identify contexts and relate them to behavioral varia-
tions.

Most COP languages are layer-based, where contexts are
implicitly identified as layers (modules that enclose context-

dependent behavior). In such languages, we explicitly spec-
ify layers to be activated with respect to context changes.

In non-layer-based COP languages such as Subjective-C
and Ambience, context-dependent behavior is not modular-
ized using layers. Instead, a context is reified as an ob-
ject that is implicitly used in the method invocation. Each
context-dependent method is defined with a context, which
can be combined with other contexts.

Recently, similar composition mechanisms are also pro-
posed in layer-based COP languages [6, 14]. Specifically,
composite layers mechanism in EventCJ [14] represents a
layer as a composition of contexts. In this mechanism, a
layer can be specified with a proposition where ground terms
are other layers (true when active). Such layer is implicitly
activated when that proposition becomes true. Only lay-
ers that do not specify such propositions, which are called
atomic layers, can explicitly be activated by layer transition
rules. In this sense, each atomic layer can be considered as
a context, and a composite layer defines a relation between
contexts and context-dependent behavior.

2.4 Tradeoffs
Each COP language cannot solely cover all use cases of im-

plementing context-dependent behavioral variations. First,
with-blocks are convenient to restrict activation of layers
within a specific control flows. However, they are not suit-
able to represent activation of layers beyond control flows.
For example, in the pedestrian navigation system, layer switch-
ing is executed in a callback method when some status changes
(such as changes in GPS signal intensity) are detected. On
the other hand, in Outdoors, we define partial methods dis-
play that displays a city map (instead of displaying a floor
plan, which is the behavior for Indoors) and getPos that
gets current user’s location from GPS, which are definitely
not called from those callback methods.

Second, the global layer activation allows us to represent
drastic changes of behavior that affect the whole application.
However, it cannot represent more fine-grained control of
behavioral changes. For example, as in the context-aware
Twitter client that supports multiple tabs [14], instances of
the Tab class may take different behavior at the same time.

Finally, layers are convenient to modularize related pieces
of code. In general, however, such modules do not directly
correspond to more fine-grained contextual information such
as running machine’s status. Thus, as noted in [14], several
pieces of layer activation code are scattered and tangled in
the program in layer-based COP languages.

Explicit vs implicit activation of behavior. Besides
the aforementioned tradeoffs, we also note that most existing
COP mechanisms activate variations of context-dependent
behavior explicitly. In with-blocks, we explicitly specify lay-
ers to be activated. In layer transition rules, we directly
control activation of layers by specifying the name of lay-
ers. Other non-layer-based COP languages also specify the
name of contexts in the program. Although composite lay-
ers are implicitly activated, all atomic layers still have to be
activated explicitly.

However, in some cases implicit activation of behavior is
more convenient than the explicit one. For example, assume
that StrongGPS is a context where GPS signal intensity is
strong. To determine when StrongGPS is active, it is more
understandable to declare that “StrongGPS becomes active

when the value of GPS.SIGNAL is higher than a threshold,”
than to specify the action as follows: “StrongGPS becomes
active when the callback method that changes the value of
GPS.SIGNAL and it is over the threshold after the execution
of the callback method.” The latter is also error prone in
particular when there are several such actions.

3. DESIGNING UNIFIED ACTIVATION
Section 2 discusses several COP mechanisms and their

tradeoffs. Despite these differences, we observed that such
mechanisms share a set of common goals. First, with respect
to context changes, all COP languages specify the range of
execution sequences where some execution entities such as
objects and threads are adapted to acquire new behavior.
Second, all COP languages provide a way to specify targets
where the specified behavior is adopted. Finally, all COP
languages identify, implicitly or explicitly, contexts and their
relation to behavior.

In this paper, we propose a new COP language Javanese
that unifies several COP mechanisms into general linguistic
constructs. Specifically, it provides the following constructs:
context declarations to identify context and its specification
of the range of execution sequences where this context is ac-
tive, activate declarations to define the relation between con-
texts and layers, and context group declarations that mod-
ularize these declarations and specify the set of instances
where they are applied.

Javanese is a layer-based COP language, which provides
the modularization mechanism for context-dependent be-
havior using layers. Currently, the syntax of layer is exactly
the same as that in EventCJ [12], which provides layer-in-
class style of layer declarations where we can define a set
of partial methods and activate/deactivate blocks. This
paper focuses on the mechanisms for layer activation, and
the style of layer declaration is considered out of scope.

3.1 Context Declarations
In Javanese, a context is defined as a property of the sys-

tem that is activated by an action and held active until
another action that deactivates it occurs. In Javanese, a
context is declared with a term of temporal logic with call
stacks, which consists of active-until expressions that specify
the active-event and until-event that activate and deactivate
context respectively, if expressions that specify the condi-
tion when that context is active, and cflow expressions that
specify the control flows where that context is active.

The syntax of context declaration is as follows:

context ContextName Term ;

It starts with the keyword context followed by the name
of context. The detailed syntax for terms to specify when
that context is active is discussed in the subsequent sections.

Active-until expressions. An active-until expression
specifies events that activate and deactivate the context by
using AspectJ-like pointcut language. For example, the con-
text GPSon, which is activated just after the call of onSta-

tusChanged method and if the value of GPS.AVAILABLE is
equal to the argument for the method call, and deactivated
just after the call of the same method and if the value of
GPS.AVAILABLE is not equal to the argument, is defined as
follows:

context GPSon

active(int s) :after call(

void Nav.onStatusChanged(*)) && args(s)

&& if(GPS.AVAILABLE==s)

until(int s) :after call(

void Nav.onStatusChanged(*)) && args(s)

&& if(GPS.AVAILABLE!=s);

An active-until expression specifies an active-event, which
activates the context, and an until-event, which deactivates
the context. The specification of active-event starts with the
keyword active followed by the list of local variable declara-
tions that are bound in the pointcut expressions. The point-
cut expressions are written with either :before or :after

modifiers in order to specify when the event shall be fired
before or after the execution of an action matching the point-
cuts. Thus, these events are similar to those in EventCJ [12].
An until-event is also specified in a similar way.

Cflow expressions. Besides event-based representation
realized by the active-until expressions, Javanese also sup-
ports context activation in the per-control-flow style. This
is realized by the following cflow expression:

context RouteSearching

cflow(call(void Nav.calcRoute()));

This context declaration specifies that the context Route-

Searching is active only under the control flow specified
by the cflow expression, which is the whole execution of
the calcRoute method declared in the Nav class. Note that
cflow expressions are not a particular case of active-until
expression when the specified call is recursive. In the case
of recursion, a cflow expression activates the context during
the execution of the first call of the specified method.

Conditional expressions. As discussed in Section 2,
implicit activation of contexts is sometimes more convenient
than the explicit one. To support implicit activation, Ja-
vanese provides the if expressions that specify the condition
when the context is active. For example, the abovemen-
tioned context GPSon can be declared by using the if expres-
sion as follows:

context GPSon if(GPS.AVAILABLE==true);

In the if expressions, we can use any boolean-type Java ex-
pressions. We can also use variables declared in the enclosing
context group declaration (discussed in Section 3.3).

3.2 Activate Declarations
Unlike most existing layer-based COP languages, in Ja-

vanese, the activation of layers cannot be controlled explic-
itly. Instead, it provides a way to declare when the layer
is active in terms of contexts by using activate declarations.
An activate declaration assigns a proposition where ground
terms are names of contexts (true when active) to a layer.
The layer is active when this proposition is true. For exam-
ple, assuming that the layer Outdoors is active only when
both contexts GPSon and StrongGPS are active, we specify
the activate declaration for Outdoors as follows:

activate Outdoors when GPSon && StrongGPS;

This declaration starts with the keyword activate, which is
followed by the name of layer whose activation is controlled

1 contextgroup PNav(GPS gps) pertarget(GPS.new(..)) {

2 subscribers(Nav nav, GPS g) :

3 call(void Nav.setGPS(GPS)) && target(nav)

4 && args(g) && if(g==gps)

5 { subscribe(nav); }

7 context GPSon

8 active(int s) :after call(

9 void Nav.onStatusChanged(*)) && args(s)

10 && if(GPS.AVAILABLE==s)

11 until(ChangeEvent e) :after call(

12 void Nav.onStatusChanged(*)) && args(s)

13 && if(GPS.AVAILABLE!=s);

15 context StrongGPS

16 if(GPS.SIGNAL>=gps.currentValue());

18 activate Outdoors when GPSon && StrongGPS;

19 activate Indoors when !GPSon || !StrongGPS;

20 }

Figure 1: Context group declaration for the pedes-
trian navigation system

by this declaration. The condition is specified in the when

clause. In this condition, we can use the logical operators
||, &&, and ! to compose contexts.

3.3 Context Group Declarations
To modularize related context and activate declarations,

Javanese provides context group declarations. More pre-
cisely, a context group declaration provides three functions:
to group related declarations into one module, to specify the
set of instances where these declarations are applied, and to
specify instances that the context group observes.

An example of context group declaration is shown in Fig-
ure 1. The line 1 specifies the name of context group and
how it is instantiated. The pertarget clause specifies that
the context group PNav is instantiated when the instance of
GPS is created, and this context group observes the target
of this instance creation (in this case, the created instance),
which is bound to the variable gps. Currently, Javanese sup-
ports only pertarget and perthis clauses for context group
instantiation. More expressive mechanisms to specify a set
of related instances remains as future work, though we as-
sume that the mechanism like association aspects [15] may
be applied for this purpose. If no pertarget and perthis

clauses are used in the context group declaration, this con-
text group is singleton; i.e., it is created at the beginning
of execution of the application, and remains until termina-
tion of the application. A singleton context group does not
observe any objects.

Lines 2-5 in Figure 1 specify the set of instances where en-
closed context and activate declarations are applied. These
instances are called subscribers of this context group. In Ja-
vanese, we declaratively specify subscribers by using AspectJ-
like pointcut language. The subscription occurs when the
setGPS method is called. The line 5 specifies that the tar-
get of the setGPS method call is subscribed to this context
group. In this code block, we can also use the unsubscribe

statement, which specifies the object to be unsubscribed

1 global contextgroup PNav {

2 context GPSon

3 active(int s) :after call(

4 void Nav.onStatusChanged(*)) && args(s)

5 && if(GPS.AVAILABLE==s)

6 until(ChangeEvent e) :after call(

7 void Nav.onStatusChanged(*)) && args(s)

8 && if(GPS.AVAILABLE!=s);

10 context StrongGPS

11 if(GPS.SIGNAL>=GPS.CURRENT_VALUE);

13 activate Outdoors when GPSon && StrongGPS;

14 activate Indoors when !GPSon || !StrongGPS;

15 }

Figure 2: Global context group declaration

from this context group.
Note that we can use multiple subscribe statements within

the code block, and we can use multiple subscribers state-
ments within the same context group declaration. Thus,
compared with EventCJ where receivers of event can be
specified only from the same join-point, we can more flexibly
specify the set of instances where context and layer activa-
tion is applied.

Lines 7-13 and 15-16 declare contexts GPSon and Strong-

GPS by using an active-until expression and an if expression,
respectively. Note that we use the variable gps declared in
line 1 in the if expression. The line 18 specifies that the Out-
doors layer is active only when both GPSon and StrongGPS

are active, and the line 19 specifies that the Indoors layer
is active only when neither GPSon nor StrongGPS are active.

Global context groups. As discussed in Section 2,
global layer activation is convenient to represent drastic changes
of behavior that affect the whole application. For this pur-
pose, Javanese provides global context groups that enclose
context and layer declarations applied to every object within
the application.

Figure 2 shows the global context group version of the
pedestrian navigation system. A global context group does
not contain any subscribers specifications to specify ob-
jects to be subscribed and unsubscribed. Instead, every ob-
ject is implicitly considered to be subscribed to the global
context group. Note that this global context group is sin-
gleton, and thus it can observe only global variables such
as public class variables. Thus, assuming that the class GPS

has a class variable CURRENT_VALUE that is updated when the
current GPS signal intensity is changed, the if expression in
the context StrongGPS is modified to access this variable.

3.4 Discussion
We discuss how Javanese unifies several COP mechanisms.
First, the active-until expressions and activate declara-

tions simplify layer transition rules in EventCJ, and cover
all use cases expressed by them. As discussed in [14], layer
transition rules suffer from the scattered and tangling prob-
lem, which is addressed by the application of composite lay-
ers. Using composite layers, however, it is observed in sev-
eral case studies that most transitions of atomic layers (i.e.,

layers directly controlled by events) have just two states,
and thus we can simply declare a context instead of a set
of transition rules. Some cases where transitions of atomic
layers have more than two states can also be represented
using active-until expressions, by identifying each state as a
context. As in EventCJ, both per-instance and global acti-
vations are also supported in Javanese.

Second, context declarations support several kinds of terms.
Cflow expressions provide a declarative style of with-blocks,
which is similar to the syntax of JCop [5]. Although there is
a semantical difference between cflow expressions and with-
blocks in that the latter activate layers per-thread manner,
both cover several same use cases to activate layers only
under specific control flows. Similarly, a definitive activa-
tion is represented by an active-until expression in a global
context group. In Javanese, these different mechanisms are
integrated in the same linguistic mechanism to declare when
the contexts are active using temporal logic.

Finally, we discuss that Javanese is more expressive than
existing COP languages. First, context declarations support
if expressions. This allows us to represent implicit context
activation, which is not supported by most existing COP
mechanisms. Furthermore, the subscribers specification in
Javanese enhances the expressive power of the per-instance
activation mechanism in EventCJ, where only instances ac-
cessible from the join-point of events can be selected as tar-
gets of events. Javanese addresses this problem by separat-
ing when these targets are subscribed from when the event
that activates a context occurs.

4. NOTES ON IMPLEMENTATION
Basically, a Javanese program is translated into an As-

pectJ program. In this translation, the active-event and
until-event of active-until expressions are translated into cor-
responding pointcut declarations. Layer activation performed
by the activate declarations are translated into advice blocks.
This compiler creates a table for each layer that maps combi-
nations of contexts to states of the layer. Cflow expressions
are also translated in a similar manner except that, in the
advice code, we need to count the depth of call stack to ap-
propriately handle the case when the specified control flow
contains recursive calls.

Unlike two other expressions, if expressions are translated
into the body of the layered method (i.e., a method that
consists of a set of partial methods) where the control of
calls of partial methods and the original method is encoded;
if the condition in the if expression holds, it delegates the
method call to the partial methods, otherwise, it delegates
it to the original method.

Implementation of layers is similar to that in EventCJ; a
layer is translated into an inner class, and partial methods
are translated into method declarations within that inner
class. To enable per-instance layer activation, an instance
variable that refers to an instance of layer manager is intro-
duced to each class that declares layers.

5. RELATED WORK
We firstly introduce relevant COP languages that are not

fully discussed in Section 2. Asynchronous layer activation
is supported by ContextErlang [16], which is a context-
oriented extension to Erlang. In ContextErlang, context
activation is modeled as a message sent from a supervisor

process called context manager. As in EventCJ, the mes-
sage can be broadcasted, or sent to the processes run on
a specified node. PyContext [18], which is a Python-based
framework for context-oriented programming, also supports
layer activation that goes beyond specific control flows by
providing implicit layer activation.

LEAD/LEAD++ [1, 2] also supports a mechanism similar
to implicit layer activation. In this language, a method con-
sists of several implementations, each of which is assigned
a condition. Only the implementation where this condition
holds is selected to execute. This condition is changed with
respect to states of the objects used in that condition, called
metaobjects. Programmers can change state of the metaob-
jects through API provided by the language.

Tanter et al. proposed context-aware aspects [17], aspects
whose behaviors depend on contexts. This concept is real-
ized as a framework where a context is defined as a pointcut,
which is similar to AspectJ’s if pointcut but also able to re-
strict the past contexts. Contexts are composable, because
they are realized as pointcuts.

6. CONCLUSIONS AND FUTURE WORK
This paper summarizes differences and commonalities of

existing COP languages, and proposes a new COP language
Javanese that unifies several COP mechanisms into general
linguistic constructs. It provides context declarations, acti-
vate declarations, and context group declarations to support
wide variety of existing COP mechanisms into one COP lan-
guage. Furthermore, it supports implicit activation that has
not been supported by most existing COP languages. This
solves the tradeoffs between existing COP mechanisms and
make Javanese expressive enough to naturally implement al-
most all COP applications supported by existing COP lan-
guages by using one language.

We deliver the directions of future work as follows. First,
it is interesting to precisely define the semantics of Javanese.
Several COP calculus has been proposed to date, in particu-
lar for with-blocks [10, 11], event-based layer transition [3],
and its extension to composite layers [13]. Javanese unifies
several activation mechanisms into one linguistic construct
called context declarations. To precisely define the seman-
tics of context and compare it with existing calculus will
provide us deeper insight of COP semantics.

Second, in current version of Javanese, any extension mech-
anisms for context groups are not considered. To make con-
text groups extensible and reusable, it is desirable to facil-
itate some composition mechanism to context groups, such
as inheritance, redefinition (overriding) of contexts and acti-
vate declarations, and/or trait-like composition mechanism.

Third and finally, some verification mechanism should be
considered in Javanese to compensate for the disciplined
layer activation mechanism. The with-blocks explicitly spec-
ify the scope of activation by using blocks, which makes it
easy to reason about some desirable properties. EventCJ
supports automaton-based model checking. Similar mecha-
nism should also be considered in Javanese.

7. REFERENCES
[1] Noriki Amano and Takuo Watanabe. LEAD: a

linguistic approach to dynamic adaptability for
practical applications. In IFIP TC2 WG2.4 Systems
implementation 2000 : languages, methods and tools,
pages 277–290, 1998.

[2] Noriki Amano and Takuo Watanabe. LEAD++: an
object-oriented language based on a reflective model
for dynamic software adaptation. In TOOLS 31, pages
41–50, 1999.

[3] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko
Masuhara. Featherweight EventCJ: a core calculus for
a context-oriented language with event-based
per-instance layer transition. In COP’11, 2011.

[4] Malte Appeltauer, Robert Hirschfeld, Michael Haupt,
and Hidehiko Masuhara. ContextJ: Context-oriented
programming with Java. Computer Software,
28(1):272–292, 2011.

[5] Malte Appeltauer, Robert Hirschfeld, Hidehiko
Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-specific software composition in
context-oriented programming. In SC’10, volume 6144
of LNCS, pages 50–65, 2010.

[6] Pascal Costanza and Theo D’Hondt. Feature
descriptions for context-oriented programming. In
DSPL’08, 2008.

[7] Pascal Costanza and Robert Hirschfeld. Language
constructs for context-oriented programming – an
overview of ContextL. In DLS’05, pages 1–10, 2005.

[8] Sebastián González, Micolás Cardozo, Kim Mens,
Alfredo Cádiz, Jean-Christophe Libbrecht, and Julien
Goffaux. Subjective-C: Bringing context to mobile
platform programming. In SLE’11, volume 6563 of
LNCS, pages 246–265, 2011.

[9] Sebastián González, Kim Mens, and Alfredo Cádiz.
Context-oriented programming with the ambient
object systems. Journal of Universal Computer
Science, 14(20):3307–3332, 2008.

[10] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko
Masuhara. ContextFJ: a minimal core calculus for
context-oriented programming. In FOAL’11, pages
19–23, 2011.

[11] Atsushi Igarashi, Robert Hirschfeld, and Hidehiko
Masuhara. A type system for dynamic layer
composition. In FOOL’12, 2012.

[12] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. EventCJ: a context-oriented programming
language with declarative event-based context
transition. In AOSD’11, pages 253–264, 2011.

[13] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. A core calculus of composite layers. In
FOAL’13, pages 7–12, 2013.

[14] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. Introducing composite layers in EventCJ.
IPSJ Transactions on Programming, 6(1):1–8, 2013.

[15] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu
Ubayashi, Saeko Matsuura, and Seiichi Komiya.
Association aspects. In AOSD’04, pages 16–25, 2004.

[16] Guido Salvaneschi, Carlo Ghezzi, and Matteo
Pradella. ContextErlang: Introducing context-oriented
programming in the actor model. In AOSD’12, 2012.

[17] Éric Tanter, Kris Gybels, Marcus Denker, and
Alexandre Bergel. Context-aware aspects. In SC’06,
volume 4089 of LNCS, pages 227–242, 2006.

[18] Martin von Löwis, Marcus Denker, and Oscar
Nierstrasz. Context-oriented programming: beyond
layers. In ICDL’07, pages 143–156, 2007.

