
L

Context-oriented Programming With Only Layers

Robert Hirschfeld
Hasso-Plattner-Institute
University of Potsdam

Germany
hirschfeld@hpi.uni-potsdam.de

Hidehiko Masuhara
Mathematical and Computing Sciences

Tokyo Institute of Technology
Japan

masuhara@acm.org

Atsushi Igarashi
Graduate School of Informatics

Kyoto University
Japan

igarashi@kuis.kyoto-u.ac.jp

ABSTRACT
Most if not all extensions to object-oriented languages that
allow for context-oriented programming (COP) are asym-
metric in the sense that they assume a base implementation
of a system to be composed into classes and a set of lay-
ers to provide behavioral variations applied to those classes
at run-time. We propose L as an experimental language to
further explore the design space for COP languages. In this
position paper we talk about first steps towards the uni-
fication of classes and layers and with that the removal of
the asymmetry in composition mechanisms of contemporary
COP implementations.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming

General Terms
Languages, Design

Keywords
Context-oriented programming, modularity, layers, software
composition, sideways composition

1. INTRODUCTION
There are several proposals to extend programming lan-

guages in order to support context-oriented programming
(COP) [5]. While most COP extensions augment object-
oriented languages, the general approach to introducing
context-dependent behavioral variations by offering means
for changing the computation modules already defined in a
particular base language is more widely applicable.

For COP extensions such as ContextS [4], ContextJS [14],
or ContextFJ [6], such modules whose behavior can be ad-
justed are objects (classes, instances, or both) defined in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2040-5 ...$15.00.

Smalltalk [3], JavaScript, or Featherweight Java [8] respec-
tively. Here, layers mainly provide partial method defini-
tions that are composed into classes and so affect the be-
havior of a system.

That incremental approach to COP is practical because
it allows for existing code artifacts such as frameworks and
libraries written in the original base language to not only
be compatible with and so usable in systems based on such
COP language extensions, but also to be affected by them.

While ContextS is used in prototypes to explore core ideas
of COP in Squeak/Smalltalk [9], a more extensive Contex-
tJS code base contributed to both kernel-level and end-user
projects in Webwerkstatt [13] and Lively Kernel [10]. On
the more formal side, the core calculus of ContextFJ ben-
efits from the effort that went into Featherweight Java to
provide a lightweight semantics for a sufficiently expressive
COP language.

So far, language support for context-oriented program-
ming (COP) is asymmetric in that it only adds constructs
to the modularity mechanisms a particular language already
provides. This leaves language designers with yet another
language feature to deal with both in isolation and in inter-
action with all others.

While we are aware of how rich languages are perceived to
provide benefits to their users, we are interested in the op-
posite side of the spectrum of language design, where small
kernels with only a few concepts are at the core of a system.

To simplify COP, we propose to remove classes from the
language and to provide layers as the sole construct for
defining and composing behavior and behavioral variations.
This effort is based on our assumption that the abstraction
and composition mechanisms offered by layers are sufficient
to subsume those provided by classes in plain object-oriented
languages.

Our research prototype to explore this idea is L, an experi-
mental programming language that is based on our previous
work on ContextFJ [6, 7] to provide a minimal core calculus
for COP.

In the following we will give a short introduction to L by
discussing the translation of two examples taken from earlier
articles on a semantics [6] and a type system for dynamic
layer composition [7].

Since we are still looking at several issues still to be clar-
ified and resolved, we will describe only some of the ideas
of our ongoing work in this paper to illustrate how COP
programs written in L might look like (using two different
proposals for L) and what problems in its language and sys-

1

tem design still need to be addressed.

2. LAYERS
COP extensions that are based on object-oriented pro-

gramming languages provide layers of partial method defini-
tions to organize variations to the behavior defined in classes
of a base system. Such partial methods can be run around
or instead of methods defined in a base-level class or other
partial methods provided by other layers.

Layer Lp

Layer L2

Layer L1

Classes C

Objects O1 O2 On

m(1,1)

m(0,1) m(0,2)

m(1,2)

m(2,2)

m(p,n)

Figure 1: Layer Composition With Classes.

Such layer composition with classes is shown in Fig. 1.
There are two methods (m(0,1) and m(0,2)) implemented by
classes and four partial methods (m(1,1), m(1,2), m(2,2), and
m(p,n)) that belong to layers. Here, m(1,1) refines m(0,1), and
m(2,2) refines m(1,2), which itself is a refinement of m(0,2).
Partial method m(p,n) is special in that it does not refine
any other base-level or partial definition but introduces new
signatures instead.

m(1,1) m(1,2)

m(2,2)

m(p,n)

m(0,1) m(0,2)

Layer Lp

Layer L2

Layer L1

Layer L0

Objects O1 O2 On

Figure 2: L-style Layer Composition.

In L there are no classes. All behavior is described using
layer-based partial method definitions. Base-level method
definitions that would have been associated with classes in
most other COP systems are now associated with just an-
other layer.

Fig. 2 illustrates L-style layer composition. The main dif-
ference to the composition shown in Fig. 1 is that methods
m(0,1) and m(0,2) are now provided via Layer L0, which we
introduced as a replacement for all class-based method def-
initions previously associated with classes from C.

We will now translate a ContextFJ example [6] to L. Com-
mentary will be informal.

object Person {
String name , residence , employer;
Person(String _name , String _residence ,

String _employer) {
name = _name;
residence = _residence;
employer = _employer;

}
}

object Student extends Person {
String major;
Person(String _name , String _residence ,

String _employer , String _major) {
super(_name , _residence , _employer);
major = _major;

}
}

Listing 1: Objects Defining State.

Object Person in Lst. 1 defines three fields named name,
residence, and employer. All fields will be initialized dur-
ing instance creation. Note that with describing the fields
and the constructor our object definition is complete since
methods are defined elsewhere (in layers). Object Student

then refines Person by defining yet another field (major)
and a constructor to assist its initialization.

layer LPerson {
object Person {

String toString () {
return "Name: " + name;

}
}

}

layer LContact {
object Person {

String toString () {
return proceed ()

+ "; Residence: "
+ residence;

}
}

}

layer LEmployment {
object Person {

String toString () {
return proceed ()

+ "; Affil .: "
+ employer;

}
}

}

Listing 2: Layer Definitions.

We now define the behavior of Person (Lst. 2). In our
example, we have three layers LPerson, LContact, and LEm-

ployment and all of them provide a partial implementation
of method toString(). LPerson’s variant of toString()

defines the basic behavior to simply return a Person’s name.
LContact’s and LEmployment’s variants add to other partial
definitions of toString() by first calling such definitions
via proceed() and then appending either the Person’s res-
idence or employer respectively.

2

Instantiating objects and interacting with them works the
same way as in our class-based ContextFJ example [6]. A
sample transcript is depicted in Lst. 3.

We start <1> by creating a new instance of Person and
print out its string representation using an instance of a
Printer object. Since there is no other but the LCom-

mon layer active at this point in time, the result of the
println(..) message is "an Instance". After activat-
ing the LPerson layer <2>, println(..) leads to running
the partial method definition provided there, which prints
"Name: Atsushi".

// <1>
Person atsushi =

new Person("Atsushi", "Kyoto", "Kyodai");
new Printer (). println(atsushi);
==> "an Instance"

// <2>
with LPerson {

new Printer (). println(atsushi);
}
==> "Name: Atsushi"

// <3>
with LPerson {

with LContact {
new Printer (). println(atsushi);

}
}
==> "Name: Atsushi; \

Residence: Kyoto"

// <4>
with LPerson {

with LEmployment {
with LContact {

new Printer (). println(atsushi);
}

}
}
==> "Name: Atsushi; \

Affil.: Kyodai; \
Residence: Kyoto"

// <5>
with LPerson {

with LContact {
with LEmployment {

new Printer (). println(atsushi);
}

}
}
==> "Name: Atsushi; \

Residence: Kyoto; \
Affil.: Kyodai"

// <6>
with LPerson {

with LContact {
without LContact {

new Printer (). println(atsushi);
}

}
}
==> "Name: Atsushi"

Listing 3: Instance Creation and Interaction.

When we go on and start nesting layer activations as in
<3>, <4>, or <5>, some of the partial method difinitions
proceed() to the next layer and lead to augmenting the
results of subsequent activations of those partial methods.
Note from <4> and <5> that the activation order of lay-
ers directly corresponds to the execution sequence of partial
method definitions. In <6> we can see that by using with-

out layers can be retracted from a composition.
For bootstrapping this and the next example, we made

the following assumptions.
To ensure that every object exhibits a set of base behav-

iors, we introduce a Base object, which is our root of the
object hierarchy (Lst. 4). If an object does not explicitly
extend another object, it implicitly extends Base. Behavior
for Base and with that common behavior for all objects is
defined in Layer LCommon—here a default implementation of
toString().

object Base {}

layer LCommon {
object Base {

String toString () {
return "an Instance";

}
}

}

with LCommon {
// [[read -eval -print|main]]

}

Listing 4: Common Definitions for Base.

To ensure that the behavior defined in LCommon is avail-
able to all objects, this layer is deployed via with around a
location central to the execution of a script or program such
as the read-eval-print loop of the interpreter or the entry
points (such as main) into the system.

object Printer {}

layer LCommon {
object Printer {

void println(Base o) {
// PRIMITIVE_println(o.toString ());

}
}

}

Listing 5: Common Definitions for Printer.

We also made Printer’s println(..) available via the
LCommon layer (Lst. 5). So far, LCommon and the objects
it directly applies to can be considered to be part of L’s
runtime.

3. STATE DECLARATION
Allowing partial class definitions to introduce object fields

is of great interest to us since a feature like that would help
decreasing dependencies between such definitions by reduc-
ing centers [1] (such as those for state declarations) and so
allow for layers that are more robust.

In our next example, based on ContextFJ code from our
2012 paper on a type system for dynamic layer composi-
tion [7], we describe one of several approaches to decentral-
ized state declaration we are investigating for future versions

3

of L. (Note that the version of L used here is slightly differ-
ent from that in the previous example: State definitions of
an object can be distributed across several layers and there
are only no-arg constructors.)

The basic idea is that fields of an object can be declared
redundantly. While every partial definition of an object can
repeat the declaration of a field, all the declarations refer to
the same field.

layer LCustomer {
object Customer {

String name;
void setName(String _name) {

name = _name;
}

}
}

layer LConnection {
object Connection {

Customer from , to; // <1>
void setFrom(Customer _from) {

from = _from;
}
void setTo(Customer _to) {

to = _to;
}
void complete () { ... }
void drop() { ... }

}
}

layer LTiming {
object Timer {

void start() { ... }
void stop() { ... }
int getTime () { ... }

}
object Connection {

Timer timer; // <2>
void setTimer(Timer _timer) {

timer = _timer;
}
void complete () {

proceed ();
timer.start ();

}
void drop() {

timer.stop ();
proceed ();

}
int getTime () {

return timer.getTime ();
}

}
}

layer LBilling { // requires LTiming
object Connection {

Timer timer; // <3>
void setTimer(Timer _timer) {

timer = _timer;
}
void charge () {

// cost = ... getTime ()...;
// ... charge cost on caller ...

}
void drop() {

proceed ();
charge ();

}
}

}

Listing 6: Redundant Field Declarations.

In this example, partial layers, classes, and methods are
defined similarly to the previous ones (Sec. 2). The differ-
ence we can see here (Lst. 6) is that fields, such as those
of Connection, can be put in several of its partial defini-
tions (like from, to, and timer in <1>, <2>, and <3>),
and that some of them, while denoting the same field, can
appear redundantly (like timer in <2> and <3>).

// for convenience , available from somewhere
Connection simulate () {

Customer a = new Customer ();
a.setName("Atsushi");
Customer h = new Customer ();
h.setName("Hidehiko");
Connection c = new Connection ();
c.setFrom(a);
c.setTo(h);
c.complete ();
c.drop ();
return c;

}

with LTiming {
with LBilling {

Connection c = simulate ();
new Printer (). println(c.getTime ());

}
}
==> "712" // seconds <sigh >

Listing 7: Instance Creation and Interaction.

The workspace for composing and using our objects and
layers looks similar to that of the previous example (Lst. 7).
simulate() is there only for convenience and can be located
elsewhere.

4. RELATED WORK
Here we would like to mention a few other approaches to

language design, which also aim at limiting the core concepts
of the language and also asymmetries in the modularity and
composition mechanisms provided.

The work on hyperspaces and multi-dimensional separa-
tion of concerns [16], which lead to Hyper/J [15], tried to
address the dominant decomposition problem by allowing
features of a system to be organized along dimensions and
implemented independently of each other as so-called hyper-
slices. Hyper/J systems do not start out from a particular
set of base classes, but allow for the implementation of indi-
vidual concerns that can be reasoned about and understood
in isolation. Compared to L and other COP languages, Hy-
per/J’s compositon of slices happens at compile-time.

Early versions of AspectJ [11]—back then one of the pri-
mary languages for research on aspect-oriented program-
ming (AOP [12])—did not distinguish between classes and
aspects. There were only aspects. This unification however
has been subsequently given up. We do not know for sure
about the reason, but assume that by having classes to which
aspects can be added, the impact of tools like AspectJ can
be much higher since they can be applied to existing sys-
tems written in the primary language the AOP extension is
provided for.

Self [17] and Newspeak [2] are two other languages that
inspired us—Self for its simplicity gained from removing

4

classes from Smalltalk (prototypes unify classes and their in-
stances) and its uniform message-based access to slots and
Newspeak for its consistent use of nested classes and late
binding for modularity.

5. OUTLOOK
L is our experimental language for exploring COP mod-

ularity mechanisms. In this position paper we describe our
first attempt to unify classes and layers and so remove the
asymmetry of module constructs observed in other COP sys-
tems, where a base system is factored along static class hi-
erarchies and dynamic variations of that are provided via
layer composition.

In Sec. 2 we illustrate how a COP program, which relies
only on layers to define its computation, might look like.
We also describe a small runtime environment that provides
common functionality (here the printing of objects) and a
way to make its functionality available.

Using a slightly different version of L in Sec. 3, we sketch
our idea on how to make state declaration more robust by al-
lowing field declarations of an object to be distributed across
several partial definitions and to be redundant.

We are working on several issues for consolidating L
and making it more practical including object initializa-
tion, stateful layers, object initialization, subtractive com-
positions via without, and the interaction between state ex-
tension and layer refinement.

L is in an early stage. There are many open questions and
to many of them we still do not have good answers yet. But
hopefully L will converge to something that might be more
helpful in investigating interesting modularity and langauge
design problems.

6. REFERENCES
[1] C. Alexander. The Nature of Order: An Essay on the

Art of Building and the Nature of the Universe.
Routledge, 2004.

[2] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai,
W. Maddox, and E. Miranda. Modules as Objects in
Newspeak. In Proceedings of ECOOP’10, volume 6183
of Lecture Notes in Computer Science, pages 405–428.
Springer, 2010.

[3] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[4] R. Hirschfeld, P. Costanza, and M. Haupt. An
Introduction to Context-oriented Programming with
ContextS. In Generative and Transformational
Techniques in Software Engineering II, volume 5235 of
Lecture Notes in Computer Science, pages 396–407.
Springer, 2008.

[5] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented Programming. Journal of Object
Technology, 7(3):125–151, 2008.

[6] R. Hirschfeld, A. Igarashi, and H. Masuhara.
ContextFJ: A Minimal Core Calculus for
Context-oriented Programming. In Proceedings of
FOAL’11. ACM, 2011.

[7] A. Igarashi, R. Hirschfeld, and H. Masuhara. A type
system for dynamic layer composition. In Proceedings
of FOOL’12. ACM, 2012.

[8] A. Igarashi, B. C. Pierce, and P. Wadler.
Featherweight Java: A Minimal Core Calculus for
Java and GJ. ACM Trans. Program. Lang. Syst.,
23(3):396–450, May 2001.

[9] D. H. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: the Story of Squeak, a
Practical Smalltalk Written in Itself. In Proceedings of
OOPSLA’97, pages 318–326. ACM, 1997.

[10] D. H. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and
T. Mikkonen. The Lively Kernel A Self-supporting
System on a Web Page. In Self-Sustaining Systems,
volume 5146 of Lecture Notes in Computer Science,
pages 31–50. Springer, 2008.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In Proceedings of ECOOP’01, volume 2072 of
Lecture Notes in Computer Science, pages 327–353.
Springer, 2001.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of
ECOOP’97, volume 1241 of Lecture Notes in
Computer Science, pages 220–242. Springer, 1997.

[13] J. Lincke. Webwerkstatt. http://lively-kernel.
org/repository/webwerkstatt/webwerkstatt.xhtml.
Accessed: 2013-04-04.

[14] J. Lincke, M. Appeltauer, B. Steinert, and
R. Hirschfeld. An Open Implementation for
Context-oriented Layer Composition in ContextJS.
Elsevier Journal on Science of Computer
Programming, Special Issue on Software Evolution,
2011.

[15] H. Ossher and P. L. Tarr. . CACM, 44(10):43–50, Oct.
2001.

[16] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S.
Jr. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In Proceedings of ICSE’99,
pages 107–119. IEEE Computer, 1999.

[17] D. Ungar and R. B. Smith. Self: The Power of
Simplicity. In Proceedings of OOPSLA’87, pages
227–242. ACM, 1987.

5

