
Unifying Multiple Layer Activation Mechanisms
Using One Event Sequence

Tomoyuki Aotani
Tokyo Institute of Technology

aotani@is.titech.ac.jp

Tetsuo Kamina
Ritsumeikan University
kamina@acm.org

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

ABSTRACT
Different context-oriented programming languages try to cap-
ture contexts with respect to different things, including a
computation, an object, and a device that executes a pro-
gram, by providing different layer activation mechanisms.
When we want to exploit all of those different kinds of con-
texts at the same time, it is not clear how the effects of those
contexts should be combined.
We develop LamFJ, a calculus for expressing various layer

activation mechanisms. It replaces the with and without ex-
pressions in ContextFJ with four expressions that fire con-
text change events, which models changes of each context.
LamFJ is not only powerful enough to express multiple layer
activation mechanisms but also clearly defines combined ef-
fects of those mechanisms. In addition to the supported
layer activation mechanisms in the paper, namely impera-
tive activation, per-object activation and dynamic scoping,
we aim at supporting other mechanisms like reactive and
structural activation with small extensions.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Languages

Keywords
Context-oriented programming, layer activation mechanisms

1. INTRODUCTION
Context-oriented programming (COP) [5] is an approach

to modularize behavioral variations of a program from the
viewpoint of the context that changes during execution of a
program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
COP ’14, July 28 – August 01 2014, Uppsala, Sweden
Copyright 2014 ACM 978-1-4503-2861-6/14/07$15.00.
http://dx.doi.org/10.1145/2637066.2637068

Contexts are defined with respect to a variety of things
such as a computation, an object and a device that exe-
cutes the program. To capture contexts with respect to var-
ious kinds of things such as a computation, an object and
a device that executes the program, several language mech-
anisms called layer activation mechanisms have been pro-
posed. Dynamic scoping available in ContextJ [11] and sim-
ilar languages [1,10,14] tries to capture contexts with respect
to a computation, i.e., from which method the computation
is executed. Per-object activation available in EventCJ [7]
and per-agent activation available in ContextErlang [13] try
to capture contexts with respect to each object and agent,
respectively, e.g., the tab represented by an object is selected
or not. Implicit activation available in PyContext [14] and
reactive activation available in Flute [2] try to capture con-
texts with respect to the device, e.g., whether the device
is indoors or outdoors. Imperative activation available in
Subjective-C [4] tries to capture contexts with respect to
the program itself, e.g., in which phase the program execu-
tion enters.

It is difficult to capture all kinds of contexts using only
one layer activation mechanism [9, 12]. Therefore, to cap-
ture contexts with respect to multiple things, it is necessary
to use multiple layer activation mechanisms. This situation
is not rare. For example, in Android applications, we often
need to capture contexts with respect to the status of the
device and a computation. Using imperative activation is
preferable for capturing contexts with respect to the status
of the device because it affects the overall computations of
the program. On the other hand, using dynamic scoping is
preferable for capturing contexts with respect to a compu-
tation because we need to delimit the effects of the contexts.

The aim of the study is to provide a simple guideline and
foundation for developing clear semantics of the COP lan-
guages that allow programmers to use multiple layer activa-
tion mechanisms at the same time in a program. As a first
step of the work, we propose LamFJ, a calculus for express-
ing various layer activation mechanisms in the paper. It
replaces the with and without expressions in ContextFJ [6]
with four expressions that fire context change events, which
model changes of each context. LamFJ is not only powerful
enough to express multiple layer activation mechanisms but
also clearly defines effects of those mechanisms.

The rest of the paper is organized as follows. Section 2
shows an example in which it is necessary to use multiple
layer activation mechanisms at the same time and provides
our claim on how the effects of the mechanisms should be
combined. Section 3 formalizes our claim. Later on, we

Activity launched

Activity shutdown

onStop()

onStart()

Activity running

onDestroy()

onRestart()

Figure 1: Life cycle of an activity

1 class MyActivity extends Activity{

2 void anInitializer(){...}

3 void onStart(){ anInitializer(); ... }

4 void onRestart(){

5 with(Restart){ onStart(); }

6 }

7 layer Restart{

8 void anInitializer(){...}

9 }

10 }

Figure 2: A code skeleton of Activity using COP for
initialization

review related work in Section 4 and conclude the paper in
Section 5 along with showing directions of our future work.

2. MOTIVATION

2.1 Example: an Android application
Initialization and battery-aware computing, which changes

behavior depending on the status of the battery, are exam-
ples of context-dependent behavior in Android applications.
An activity is one of the important components in android

applications. It provides a screen that shows the user inter-
face and allow users to interact and is presented by an object
of class Activity. Figure 1 shows a simplified life cycle of
activities.1 The boxed nodes show the method name that
are called by the framework. The oval nodes explain what
happens at each phase. Suppose an application is launched.
The activity that provides the main screen is then launched,
and the application framework sends onStart to the activ-
ity to initialize data for the screen. Later on, suppose the
device goes to sleep. Then the application framework sends
onStop to the activity. When the device wakes up and the
application gets focused, onRestart is called to the activity
to initialize and restore data.
Initialization and restoring are often similar tasks, and

it is good practice to use COP to modularize them. We
show in Figure 2 the code skeleton that uses the with-block

1See http://developer.android.com/reference/
android/app/Activity.html for details.

1 <receiver android:name=".PowerConnRecver">

2 <intent-filter>

3 <action android:name="..ACTION_POWER_CONNECTED"/>

4 <action android:name="..ACTION_POWER_DISCONNECTED"/>

5 </intent-filter>

6 </receiver>

7 ...

8 class PowerConnRecver extends BroadcastReceiver{

9 void onReceive(Context c,Intent intent){

10 if(intent.getIntExtra("plugged",0)==0)

11 deactivate(Plugged);

12 else

13 activate(Plugged);

14 }}

Figure 3: Switching the context with respect to
power

1 with(L){

2 deactivate(L);

3 m1();

4 activate(L);

5 without(L){

6 m2();

7 }

8 m3();

9 }

10 m4();

Figure 4: Two layer mechanisms activates and de-
activates the same layer

within onRestart to capture the context with respect to the
initialization task.

To achieve battery-aware computing, we need to monitor
changes on the status of the battery. In Android applica-
tions, BatteryManager broadcasts all battery and charging
details when they are changed. To capture the information,
we develop and register event handlers for particular events
on the battery.

Figure 3 shows how we can capture the context with re-
spect to power connection. In lines 1–6, we show a con-
figuration file that registers PowerConnRecver as the event
handler for the events ACTION_POWER_CONNECTED and AC-

TION_POWER_DISCONNECTED, which are fired when the device
is plugged in and unplugged, respectively. PowerConnRecver
(lines 8–14) declares onReceive, which receives the battery
details as an object of class Intent and activates and deacti-
vates Plugged layer using imperative activation (i.e., acti-
vate and deactivate operations) if power is connected and
disconnected, respectively.

2.2 Issue and our claim
It is not clear how the effects of multiple layer activation

mechanisms should be combined. Figure 4 is an example
that uses imperative activation (the deactivate and acti-

vate operations) and dynamic scoping (the with and with-

out blocks). Unlike with the Android application example
shown in the previous section, one layer is activated and de-
activated using the two layer activation mechanisms. Does

layer L affect invocation m1() at line 3? What about invo-
cations m2() at line 6, m3() at line 8 and m4() at line 10?
To answer the question, we claim that the effect of con-

text change event ϵ, which is either activation of some layer,
deactivation of some layer or cancel of some context change
event, precedes the effect of context change event ϵ′ if (1) ϵ′

is cancel or is canceled, or (2) ϵ is not cancel, is not canceled
and is fired more recently than ϵ′. A context change event
ϵ is canceled if cancel of ϵ is fired. An activation event of
layer L is fired when L is activated using imperative acti-
vation (i.e., activate(L)) or the execution enters the with

block that specifies L. Similarly, a deactivation event of layer
L is fired when L is deactivated using imperative activation
(i.e., deactivate(L)) or the execution enters the without

block that specifies L. Cancel of ϵ is fired when the execu-
tion escapes from the with or without block that fires ϵ.
The claim should not be strange. If we ignore cancel, it is

actually analogous to the principle in COP languages that
layer L precedes layer L’ if L is activated more recently than
L’.
If we assume that methods m1, m2, m3 and m4 invoked

in Figure 4 do not fire any context change events, context
change events are fired and methods are invoked in the fol-
lowing order if we execute the program:

ϵ1 < ϵ2 < m1() < ϵ3 < ϵ4 < m2() < ϵ−1
4 < m3() < ϵ−1

1 < m4()

mi() denotes invoking method mi(). ϵ−1
i denotes cancel of

ϵi. ϵi denotes the following context change events:

• ϵ1: entering the with block at line 1

• ϵ2: deactivating layer L at line 2

• ϵ3: activating layer L at line 4

• ϵ4: entering the without block at line 5

Now we can answer the questions. Layer L does not affect
invocation m1() because ϵ2 is the most preceding context
change event, which deactivates L. Similarly, it does not af-
fect invocation m2() because ϵ4 is the most preceding con-
text change event, which deactivates L. It is a little bit tricky
to answer the remaining two questions about invoking m3()

and m4(). The most recent event for m3() is ϵ−1
4 , but it can-

not be the most preceding context change event because it
is cancel. ϵ4, which is the next most recent event for m3(),
also cannot be the most preceding event because it is can-
celed. Thinking in this way, we find that the most preceding
context change event for m3() is ϵ3. Because ϵ3 activates L,
L affects m3(). ϵ3 is also the most preceding context change
event for m4(). Therefore, L also affects m4().

3. LamFJ
As a formalization of our claim shown in Section 2, we

develop LamFJ, a calculus for expressing various layer ac-
tivation mechanisms and combining their effects. It removes
with and without blocks from and adds context change events
and event firing expressions to ContextFJ. Context change
events model activation and deactivation of layers. An event
firing expression specifies a context change event to be fired.
LamFJ supports three layer activation mechanisms, namely

imperative activation, per-object activation and dynamic
scoping, and should be considered as a common intermediate
language for COP languages that support those mechanisms.

Operators and blocks to activate and deactivate layers are
supposed to be expressed using event firing expressions.

LamFJ does not allow layers to add new methods which
are not declared in classes as ContextFJ. This does not only
make the type system straightforward but also make it triv-
ial to prove type soundness. Therefore, we omit its type
system and proofs of type soundness.

3.1 Syntax
Let metavariables C, D and E range over class names; f

ranges over field names; L over layer names; m ranges over
method names; and v,w and z range over addresses, which
include the null address denoted as ·; x and y range over vari-
ables, which include a special variable this. The abstract
syntax of LamFJ is as follows:

CL ::= class C ◁ C {T f; K M}

K ::= C(C x, C y){super(x); this.f=y;}

M ::= C m(C x){return e;}

e ::= v | x | new C(e) | e.f | e.m(e) | proceed(e)
| e;e | super.m(e) | v<C,L,L>.m(e)
| ϵL ↑ e | ϵL@e ↑ e | e ↓ ϵL | e ↓ ϵL@e

ϵ ::= α | δ | σ | σ−1 | π | π−1

Overlines denote sequences, e.g., f stands for a possibly
empty sequence f1, · · · , fn and similarly for C, x, e, and so
on. The empty sequence is denoted by •. We also abbrevi-
ate a sequence of pairs, writing“C f” for“C1 f1, · · · , Cn fn”,
where n is the length of C and f, and similarly “C f;” as
shorthand for the sequence of declarations“C1 f1;. . . Cn fn;”
and “this.f=f;” for “this.f1=f1;. . . ;this.fn=fn;”. We
use commas and semicolons for concatenations. Sequences
of field declarations, parameter names, layer names, and
method declarations are assumed to contain no duplicate
names.

A class definition CL consists of its name, its superclass
name, field declarations C f, a constructor K, and method
definitions M. A constructor K is a trivial one that takes ini-
tial values of all fields and sets them to the corresponding
fields. Unlike the examples in the last section, we do not
provide syntax for layers; partial methods are registered in
a partial method table, which is explained below. A method
M takes x as arguments and returns the value of expression
e. The method body consists of a single return statement
and all constructs return values. An expression e can be
an address, variable, object creation, field access, method
call, sequential composition of two expressions, super call,
proceed call, a special form of method call v<C,L,L>.m(v),
or one of the four forms of event firing expressions that fires
a context change event ϵ on layer L, denoted as ϵL. A value is
an address v. A context change event is either an activation
denoted as α, deactivation denoted as δ, activation counter
increment denoted as σ, activation counter decrement de-
noted as σ−1, deactivation counter increment denoted as π,
or deactivation counter decrement denoted as π−1.

Instead of using cancel events to handle the semantics
of with and without blocks as shown in Section 2, LamFJ
uses activation conters [3]. σ and π are supposed to be fired
when entering with and without blocks, respectively. σ−1

and π−1 are supposed to be fired when escaping from with

and without blocks, respectively.
We have four forms of event firing expressions. ϵL ↑ e

is supposed to be used to realize the two operators acti-

vate and deactivate in imperative activation. It fires glob-
ally the context change event ϵ on layer L. For example,
activate(L) and deactivate(L) followed by an expression
e is expressed as αL ↑ e and δL ↑ e, respectively, in LamFJ.
ϵL@e ↑ e′ is similar. It runs e′ after firing ϵL to an ob-
ject e, which realizes per-object/agent activation available
in EventCJ and ContextErlang. e ↓ ϵL is also similar to
ϵL ↑ e, but the subexpression e is evaluated before the event
is fired. We can express dynamic scoping using ϵL ↑ e and
ϵL ↑ e. For example, with L e and without L e in Con-
textFJ are expressed as σL ↑ (e ↓ σ−1

L) and πL ↑ (e ↓ π−1
L),

respectively.
The expressions v and v<D,L′,L>.m(w), where L′ is as-

sumed to be a prefix of L, are special run-time expressions
and not supposed to appear in either classes, partial meth-
ods or the main expression. v<D,L′,L>.m(w) means that m

is going to be invoked on v. The annotation <D,L′,L> de-
notes a cursor that indicates where method lookup should
start when either a method or proceed are invoked. More
concretely, <D,(L1; · · · ; Li),(L1; · · · ; Ln)> (i ≤ n) means that
the search for the method definition will start from class D in
layer Li. For example, the usual method invocation v.m(w),
whose receiver and arguments are already reduced to values,
is semantically equivalent to v0<C,L,L>.m(v), where an ob-
ject new C(w) for some values w is at the address v. The
triple plays the role of a cursor in the method lookup pro-
cedure and the behavior of super and proceed calls as in
ContextFJ.
An LamFJ program (CT,PT, e) consists of a class table

CT that maps a class name to a class definition, a partial
method table PT that maps a triple C, L, and m of class, layer,
and method names to a method definition, and an expression
e that corresponds to the body of the main method. In the
paper, we assume CT and PT to be fixed and satisfy the
following sanity conditions:

1. CT(C) = class C ... for any C ∈ dom(CT).

2. Object ̸∈ dom(CT).

3. For every class name C (except Object) appearing any-
where in CT, we have C ∈ dom(CT);

4. There are no cycles in the transitive closure of the
extends clauses.

5. PT(m, C, L) is a method definition for any (m, C, L) ∈
dom(PT).

3.2 Operational semantics
The operational semantics of LamFJ is given by a reduc-

tion relation of the form e | s, h, t −→ e′ | s′, h′, t′, read
“expression e with store s and history h at time t is re-
duced to e′ with s′ and h′ at time t′”. A store s is a partial
function from addresses v to objects new C(v). We write
[v0 7→ new C(v)]s to denote a partial function that maps
v0 to new C(v) and other addresses w to s(w). We also
write dom(s) for the set {v | s(v) is defined}. A history h is
{⟨v, t, ϵL⟩}, a set of triples of addresses, times and context
change events on layers. Time stamp t is an integer.
The rules are shown in Figure 6. Note that LamFJ em-

ploys call-by-value and the evaluation order of subexpres-
sions is deterministic. The property is important because
we need to know in what order layers are activated.

fields(C) = C f

fields(Object) = •

class C ◁ D {C f; ...} fields(D) = D g

fields(C) = D g, C f

mbody(m, C, L′, L) = x.e in D, L′′

class C ◁ D{... C0 m(C x){return e;} ...}

mbody(m, C, •, L) = x.e in C, •

PT(m, C, L0) = C m(C x){ return e; }

mbody(m, C, L′;L0, L) = x.e in C, (L′;L0)

class C ◁ D{...M} m ̸∈ M mbody(m, D, L, L) = x.e in E, L′

mbody(m, C, •, L) = x.e in E, L′

PT(m, C, L0) undefined mbody(m, C, L′, L) = x.e in D, L′′

mbody(m, C, (L′;L0), L) = x.e in D, L′′

Figure 5: Auxiliary functions

The first rule reduces a subexpression. We define an eval-
uation context E as follows:

E ::= [] | new C(v,E,e) | E.f | v.m(v,E,e)

| v<C,L,L>.m(v,E,e) | E;e | ϵL@E ↑ e

| v ↓ ϵL@E | E ↓ ϵL@e

It represents an expression with a hole (denoted as []) some-
where inside it. We write E[e] for either object creation,
field access, method invocation, sequential composition and
event firing obtained by replacing the hole in E with e.

The second rule reduces an object creation new C(v) to
a new address v0 that is not in the domain of s and is not
equal to the null address, and extends the store so that the
extended store maps v0 to new C(v).

The third rule is for field access. Auxiliary function fields
takes a class name C and returns the fields in class C and its
ancestors (Figure 5).

The forth rule reduces a sequencial composition of value
v and expression e to e.

The next four rules are for firing events. The first rule of
the four fires an context change event ϵ on layer L globally.
It adds a triple ⟨·, t, ϵL⟩ to history h and increments the time
stamp using function succ. The second rule of the four fires
a context change event ϵ on layer L to object s(v). Therefore
it adds ⟨v, t, ϵL⟩ to h and increment the time stamp. The
other two rules are defined similarly.

The last three rules are for method invocation. The only
interesting rule is the first one of the three. It initializes the
cursor of the method lookup procedure. Auxiliary function
actives takes a history h and address v, and returns a se-
quence of layers that are active on the object addressed by
v. It is defined as follows:

actives(h, v) =
seq({pick(L, γ(p), θ1(p), θ2(p)) | L ∈ Λ, ▷(v,L)h = p})

Λ is the set of all of the layer names. ▷(v,L)h is a sub-history

e | s, h, t −→ e′ | s′, h′, t′

E[e] | s, h, t −→ E[e′] | s′, h′, t′

v0 ̸∈ dom(s) ∪ {·}
new C(v) | s, h, t −→ v0 | [v0 7→ new C(v)]s, h, t

s(v) = new C(w) fields(C) = C f

v.fi | s, h, t −→ wi | s, h, t

v;e | s, h, t −→ e | s, h, t

ϵL ↑ e | s, h, t−→e | s, h ∪ {⟨·, t, ϵL⟩}, succ(t)

ϵL@v ↑ e | s, h, t−→e | s, h ∪ {⟨v, t, ϵL⟩}, succ(t)

v ↓ ϵL | s, h, t−→v | s, h ∪ {⟨·, t, ϵL⟩}, succ(t)

v′ ↓ ϵL@v | s, h, t−→v′ | s, h ∪ {⟨v, t, ϵL⟩}, succ(t)

s(v) = new C(z) actives(h, v) = L

v<C,L,L>.m(w) | s, h, t −→ e | s′, h′, t′

v.m(w) | s, h, t −→ e | s′, h′, t′

class C′′ ◁ D{...}

mbody(m, C′, L′, L) = x.e in C′′, •
v<C′,L′,L>.m(w) | s, h, t −→ v /this
w /x
v<D,L,L> /super

 e | s, h, t

mbody(m, C′, L′, L) = x.e in C′′, (L′′; L0)
class C′′ ◁ D{...}

v<C′,L′,L>.m(w) | s, h, t −→
v /this
w /x
v<C′′,L′′,L>.m /proceed
v<D,L,L> /super

 e | s, h, t

Figure 6: Reduction rules

of history h whose elements are related to object v and layer
L. More concretely, ▷(v,L)h contains every triple ⟨v′, t, ϵL′⟩
in h if v′ is the null address or is equal to v and L′ is equal
to L, i.e., ▷(v,L)h = {⟨t, ϵ⟩ | ⟨v′, t, ϵL′⟩, v = v′, L = L′}. γ(p)
finds the most recent activation α or deactivation δ in his-
tory p, i.e., γ(p) = maximum{⟨t, ϵ⟩ | ⟨t, ϵ⟩ ∈ p, ϵ ∈ {α, δ}}
where maximum{⟨t1, ϵ1⟩, · · · , ⟨tn, ϵn⟩} = ⟨ti, ϵi⟩ and ti is
the largest among {tk | 1 ≤ k ≤ n}. θ1(p) and θ2(p) are
the states of the two activation conters computed from his-
tory p, i.e., θ1(p) =

⊗
{⟨t, ϵ⟩ | ⟨t, ϵ⟩ ∈ p, ϵ ∈ {σ, σ−1}} and

θ2(p) =
⊗

{⟨t, ϵ⟩ | ⟨t, ϵ⟩ ∈ p, ϵ ∈ {π, π−1}}.
⊗

{⟨t1, ιi⟩, · · · }
counts how many times with and without blocks are opened
and closed, i.e.,

⊗
{⟨t1, ιi⟩, · · · } = ⟨t1, ιi⟩ ⊗ ⟨t2, ιj⟩ ⊗ · · ·

where ⟨t1, ιi⟩ ⊗ ⟨t2, ιj⟩ = ⟨max(t1, t2), ι
i+j⟩ and ι ∈ {σ, π}.

Here we regard σ and π as σ1 and π1, respectively. pick takes
a layer name, a pair of a time stamp and context change
event which is either α or δ, and two pairs of a time stamp

and context change event which is either σi or πi for some
integer i, and returns a pair of a time stamp and the layer
name. The time stamp is −1 if L is not active and intuitively
the maximum value among the three time stamp given as
the arguments otherwise. It is defined as follows:

pick(L, ⟨t, ϵ⟩, ⟨t′, σi⟩, ⟨t′′, πj⟩) = ⟨t′′′, L⟩, where

t′′′ =

 −1 if t < t′′ ∧ (i = 0 ∨ t′ < t′′) ∧ j ̸= 0
δ(t, ϵ) if (t > t′′ ∧ i = 0) ∨ (t > t′ ∧ j = 0)
t′ if (t′ > t′′ ∨ j = 0) ∧ t < t′ ∧ i ̸= 0

and δ(t, ϵ) = t if ϵ = α and −1 otherwise. The last function
seq takes a set of pairs of a time stamp and a layer name,
and creates a sequence of layer names by simply sorting the
elements in the input in the ascendant order removes the
elements whose time stamp is a negative number and drops
time stamps.

The others are similar to ContextFJ. Auxiliary function
mbody takes a method name m, class name C and two se-
quences of layer names L′ and L and returns the body ex-
pression to be evaluated if m is invoked to an object of type C
in the environment where the layers L are active (Figure 5).

4. RELATED WORK
ContextJS [10] is a COP language based on JavaScript.

It provides an open implementation platform in which pro-
grammers can implement their own layer activation mecha-
nisms thanks to the powerful meta programming facilities
of JavaScript. The study shows how to realize dynamic
scoping, imperative activation and structural activation that
captures contexts with respect to data structures on the
platform. The big difference between our work and Con-
textJS is whether or not use meta programming. Meta pro-
gramming is powerful but is easily breaks language seman-
tics. Our approach tries to find a minimal language mecha-
nism that is powerful but still permits reasoning about about
the program.

ServalCJ [8, 9] is a Java-based COP language that allows
programmer to use imperative activation, implicit activa-
tion, dynamic scoping and per-object activation freely in
a program. It unifies the four mechanisms by introducing
three language constructs, namely context declaration, acti-
vate declaration and context group declaration. Using Ser-
valCJ as a frontend language and LamFJ as a foundation
of intermediate language would be one option to develop a
practical COP language that supports multiple layer activa-
tion mechanisms.

5. CONCLUSIONS AND FUTURE WORK
This paper discusses an issue on language semantics that

allows programmers to use multiple layer activation mech-
anisms to capture contexts with respect to various kinds of
things. We claimed that more recently fired context change
events should precede others and formalized it by develop-
ing a calculus called LamFJ. LamFJ is not only powerful
enough to express multiple layer activation mechanisms but
also clearly defines combined effects of those mechanisms.

There are several directions for future work. One direction
is to support more layer activation mechanisms including
implicit/reactive layer activation and structural activation
[10]. Another direction is developing an extensible compiler
that supports the idea in LamFJ for the future researches
and developments of COP languages.

6. REFERENCES
[1] Malte Appeltauer, Robert Hirschfeld, Hidehiko

Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-specific software composition in
context-oriented programming. In SC ’10, pages
50–65, 2010.

[2] Engineer Bainomugisha, Jorge Vallejos, Coen
De Roover, Andoni Lombide Carreton, and Wolfgang
De Meuter. Interruptible context-dependent
executions: A fresh look at programming
context-aware applications. In Onward! ’12, pages
67–84, 2012.

[3] Nicolás Cardozo, Sebastián González, Kim Mens, and
Theo D’Hondt. Safer context (de)activation: Through
the prompt-loyal strategy. In COP’11, pages 2:1–2:6,
2011.

[4] Sebastián González, Nicolás Cardozo, Kim Mens,
Alfredo Cádiz, Jean-Christophe Libbrecht, and Julien
Goffaux. Subjective-C: bringing context to mobile
platform programming. In SLE’10, pages 246–265,
2011.

[5] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125–151, 2008.

[6] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko
Masuhara. ContextFJ: a minimal core calculus for
context-oriented programming. In FOAL ’11, pages
19–23, 2011.

[7] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. EventCJ: a context-oriented programming
language with declarative event-based context
transition. In AOSD ’11, pages 253–264, 2011.

[8] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. A unified context activation mechanism. In
COP’13, pages 2:1–2:6, 2013.

[9] Tetsuo Kamina, Tomoyuki Aotani, Hidehiko
Masuhara, and Tetsuo Tamai. Context-oriented
software engineering: A modularity vision. In
MODULARITY ’14, pages 85–98, 2014.

[10] Jens Lincke, Malte Appeltauer, Bastian Steinert, and
Robert Hirschfeld. An open implementation for
context-oriented layer composition in ContextJS.
Science of Computer Programming, 76(12):1194–1209,
December.

[11] Michael Haupt Malte Appeltauer, Robert Hirschfeld
and Hidehiko Masuhara. ContextJ: Context-oriented
programming with java. Computer Software,
28(1):272–292, 2011.

[12] Guido Salvaneschi, Carlo Ghezzi, and Matteo
Pradella. Context-oriented programming: A software
engineering perspective. Journal of Systems and
Software, 85(8):1801–1817, 2012.

[13] Guido Salvaneschi, Carlo Ghezzi, and Matteo
Pradella. ContextErlang: Introducing context-oriented
programming in the actor model. In AOSD’12, pages
191–202, 2012.

[14] Martin von Löwis, Marcus Denker, and Oscar
Nierstrasz. Context-oriented programming: Beyond
layers. In ICDL ’07, pages 143–156, 2007.

