
Classes as Layers: Rewriting Design Patterns with COP
Alternative Implementations of Decorator, Observer, and Visitor

Matthias Springer‡ Hidehiko Masuhara‡ Robert Hirschfeld†,§

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan
† Hasso Plattner Institute, University of Potsdam, Germany

§ Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA
matthias.springer@acm.org masuhara@acm.org robert.hirschfeld@hpi.de

Abstract
This paper analyzes and presents alternative implementations
of three well-known Gang of Four design patterns: Decora-
tor, Observer, and Visitor. These implementations are more
than mere refactorings and take advantage of a variant of
context-oriented programming that unifies classes and layers
to overcome shortcomings in a conventional, object-oriented
implementation.

Keywords Design Patterns, Decorator, Observer, Visitor,
Context-oriented Programming, Layers

1. Introduction
Software design patterns are reusable blueprints for prob-
lems that occur frequently in software design. Among them
are the most prominent ones by “Gang of Four” [2]. We se-
lected three of their design patterns (Decorator, Observer, and
Visitor), identified shortcomings in a conventional object-
oriented implementation, and present an alternative imple-
mentation using layer-based context-oriented programming
(COP). These new COP implementations are not merely
refactorings of their OO counterparts; Decorator and Ob-
server differ in their semantics and solve functional inade-
quacies, in addition to making the source code in our opinion
more understandable by reducing object interaction.

The new implementations are based on a new concep-
tual idea for organizing partial methods. In most COP frame-
works, partial methods belong to a layer. In our system, there
is no dedicated layer construct and partial methods belong
to classes, allowing arbitrary objects to affect other objects
by intercepting (layering) their methods. The following sec-
tions will give an overview of the COP mechanism used in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

COP’16, July 17-22 2016, Rome, Italy
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4440-1/16/07...$15.00. http://dx.doi.org/10.1145/2951965.2951968

this paper and present the alternative implementations of the
three design pattern using that mechanism. For every design
pattern, we present an example, identify shortcomings in a
conventional implementation, show a COP-based implemen-
tation, and discuss consequences and possible disadvantages
of our solution.

2. Mechanism and Notation
For the implementation of the design patterns that we show
in Section 3, a number of features and mechanisms are re-
quired that are not typically found in COP frameworks. We
evaluated some of these features separately in our previous
work but not together in this combination. The code list-
ings shown in the remainder of this paper are written in an
imaginary dynamically-typed, class-based, object-oriented
programming language with Java-like syntax.

Partial Methods In layer-based context-oriented program-
ming [4], layers can refine methods of other classes. Such
refinements are called partial methods. When a layer is ac-
tive, the method lookup first looks for a corresponding partial
method in that layer, before falling back to the original im-
plmentation. Multiple layers can be active at the same time,
forming a layer composition stack.

Classes as Layers This work builds on top of ideas from
our previous work which unified layers and classes [7]. We
assume that there is no dedicated layer construct. Instead,
classes and their instances can act as layers. In addition to
member methods and static methods, classes can provide
member partial methods and static partial methods. A partial
method can refine existing methods or add new methods to
the target class.

Since layers are implemented by objects, arbitrary (layer)
objects can be activated/deactivated. We use the term layer
object to denote an object that acts as a layer in a certain
situation and affected object to denote the object whose
behavior is adapted. As long as a layer object is active (see
paragraph Layer Activation), its partial methods are in effect.
If the layer object is a class, its static partial methods are

http://dx.doi.org/10.1145/2951965.2951968

in effect. If the layer object is a non-class object, its class’s
member partial methods are in effect.

Accommodating State Layer objects can refine existing
and add new methods to affected objects (via partial meth-
ods), but they cannot add additional instance variables. There
are three reasons for this decision: First, it is unclear how
conflicts should be handled, i.e., what if two layer objects de-
fine an instance variable with the same name. Second, adding
new instance variables is difficult from an implementation
point of view, because they would have to be stored separate
from the other instance variables. Third, such functionality is
not required for the examples in this paper. Instead, a layer
object’s class can define its own instance variables that can
be accessed inside partial methods. If there is a one-to-one
mapping between a layer object and an affected object, this
is as if the instance variable belonged to the affected object.

Partial methods effectively belong to the target class, i.e.,
a class different from the layer class. Method calls and
instance variable references inside a partial method are by
default resolved in the target class, but we assume that the
thisLayer keyword can be used to access instance variables
of the layer class.

• Keyword thisObject1: Lookup in the affected object
• Keyword thisLayer: Lookup in the layer object
• Keyword this: Try lookup in affected object, then layer

object
• No keyword given: same as this

The following listing shows the this and thisLayer in
a simple example with a member method foo and a member
partial method bar.

class A { // target class
def a;
def b;

}

class B { // layer class
def b;
def c;

def A.bar() { // partial method for A.bar
this.a; // -> A.a
this.b; // -> A.b
this.c; // -> B.c
thisLayer.a; // -> error
thisLayer.b; // -> B.b
thisLayer.c; // -> B.c

}

def foo() {
this.a; // -> error

1 Not used in this paper, only mentioned for the sake of completeness.

this.b; // -> B.b
this.c; // -> B.c
thisLayer.a; // thisLayer undefined
/* ... */

}
}

If the affected object or layer object is a class, then this or
thisLayer references static methods and fields. Otherwise,
it references member fields.

Layer Object Activation We assume that layer objects can
be activated globally, in a block scope, and for a certain
affected object. In the first case, a layer object is activated by
calling its activate method and remains active in the entire
program until it is deactivated explicitly. In the second case,
a layer object is activated using with statements taking the
layer object as an argument and followed by a block, within
which the layer object remains active. In the third case, a
layer object is activated only for a single affected object by
calling the affected object’s activate method with the layer
object as an argument, and the layer object remains active
until it is deactivated explicitly. This is contrary to the first
two cases, where more than one object might be affected (all
instances of classes for which a partial method is defined).

def affectedObject = new A();
def layer = new B();

// global activation
layer.activate();
layer.deactivate();

// block scope activation
with (layer) { /* active in here */ }
without (layer) { /* inactive in here */ }

// per-object activation
affectedObject.activate(layer)
affectedObject.deactivate(layer)

There must be a mechanism in place to determine the
precedence of these three activation mechanisms. For exam-
ple, if a layer object is activated globally and then deactivated
for a single affected object, that deactivation should have
precedence over the previous layer object activation. The de-
tails do not matter in this work; previous work has proposed
various mechanisms [6].

3. Design Patterns
This section presents three well-known design patterns [2]:
Decorator, Visitor, and Observer. For every pattern, there
is an example implementation using the COP mechanism
described in Section 2.

3.1 Decorator
The Decorator design pattern is used to add responsibilities to
an object at run-time. A Decorator is typically implemented
as a wrapper object holding a reference to the original object.
Multiple Decorators can be applied by wrapping the object
multiple times.

One disadvantage of a wrapper implementation is that re-
sponsibilities cannot be added or removed dynamically with-
out loss of object identity. After wrapping a Decorator around
an object, the resulting wrapped object has an object identity
different from the original object (object schizophrenia [5]).
If that wrapped object should be used everywhere the original
object is in use, it has to be replaced one by one.

COP Implementation A Decorator is a layer object with
partial methods for modified or additional behavior and is
activated only for the decorated (affected) object. A partial
method can issue a proceed call to combine the new behav-
ior with the original one. As soon as a Decorator object is
activated, it is active wherever the (original) decorated object
is used, solving the problem of object identity. In cases where
a Decorator adds state to a decorated object, there should be
exactly one decorated object per Decorator object, with the
additional state as instance variables of the Decorator object
(many-to-one relationship between layer objects and affected
object).

Example Figure 1 shows the data structure for a computer
game that is based on 2D grid representation. The game
consists of a matrix of game fields. Every game field has
references to its neighboring fields and methods for draw-
ing the field and for handling incoming entities. For exam-
ple, the player entity might enter the game field from a
neighboring field. Game fields can be decorated with the
BurningFieldDecorator, representing a field that is on fire
and causes damage to entering entities. This Decorator also
modifies the draw method to show a fire animation.

-left : Field
-right : Field
-top : Field
-bottom : Field

+draw()
+enter(entity)

Field

-damage

+Field.draw()
+Field.enter(entity)

BurningFieldDecorator

def Field.enter(entity) {
 entity.health -= thisLayer.damage;

proceed(entity);
}

Figure 1: Example: Decorator Methods as Partial Methods

A field field can be set on fire by creating a decorator
for it and applying it, as shown in the following listing.

def decorator = new BurningFieldDecorator();
decorator.damage = 15;
field.activate(decorator);

This example is hard to implement with a conventional
Decorator, because the decorated object is referenced by its
four neighboring fields. Whenever a field is wrapped with
a Decorator, these references would have to be replaced by
the decorated object. An alternative implementation could
use object composition with a set of Decorator items (one
of them being fire) for every field instead of a Decorator:
Every field would act as a container for items and references
would always point to fields instead of field wrappers. Field
methods would delegate to item methods internally.

Consequences A COP Decorator implementation can dif-
fer from a conventional object-oriented implementation in a
way that might not be anticipated by the programmer: Dec-
orator methods are not only visible from the outside (when
calling a method on the decorated object), but also from in-
side. This can be a problem if a method should behave dif-
ferently in both cases. For example, a scroll bar Decorator
might add the proportions of the scroll bar to the values re-
turned by methods width and height, even if text rendering
(implemented in the text box) depends on the original imple-
mentation.

One limitation of a COP implementation of the Decorator
design pattern is that the Decorator is always specific to a
class, because COP relies on static types for the target class
in the partial method signature even in dynamically-typed lan-
guages. For example, the Decorator in the example can deco-
rate only Field objects but not other objects with the same
method. The partial method could, however, target methods
of an interface (or superclass) instead of a concrete class in
statically-typed languages (e.g., the superclass Object).

3.2 Visitor
The Visitor design pattern is used to modularly add new op-
erations to a set of classes, typically forming a tree structure,
without having to modify these classes. Every class has an
accept method taking a Visitor as an argument and calling
a type-specific method on the Visitor in a double-dispatch
fashion. The Visitor design pattern allows programmers to
separate the base functionality of a set of classes from addi-
tional concerns that are only needed in certain situations and
encapsulated in the Visitor class.

One disadvantage of a double-dispatch implementation is
complex object interaction. Applying an operation provided
by a Visitor to an object of unknown type requires calling an
accept method on the object with the Visitor as an argument,
which will then call the type-specific visit method.

COP Implementation A Visitor is a layer object with par-
tial visit methods for all classes in the object structure.
These methods do not refine existing base methods but are
new methods. Within a visit method, it is possible to call
the visit methods of associated objects directly and without
double dispatch. Note, that visit methods can be renamed,
making it possible to use multiple visitors at the same time,
as long as there are no name clashes between visitor methods.

Expr

-value

NumberExpr

-left
-right

PlusExpr

-left
-right

MultiplyExpr

(a) Classes for Arithmetic Expressions

-countPlus
-countMultiply

+NumberExpr.visit()
+PlusExpr.visit()
+MultiplyExpr.visit()

OperationCounterVisitor

def PlusExpr.visit() {
 thisLayer.countPlus++;
 left.visit();
 right.visit();
}

(b) Operations Counter Visitor

Figure 2: Example: Visitor Methods as Partial Methods

A Visitor can maintain internal state as instance variables of
the Visitor object. In contrast to a conventional Visitor im-
plementation, a COP-based Visitor is reduced to a container
for partial methods and maybe internal state (i.e., the Visi-
tor disappears and becomes part of the affected objects). In
particular, there is no accept method anymore.

Example Figure 2(a) shows the class diagram for the tree
node classes in an arithmetic expressions library. The library
supports numeric literals, plus operations, and multiplica-
tion operations. Figure 2(b) shows the layer-based operation
counter Visitor, which counts how often plus operations and
multiplication operations appear in an expression. To that
end, the layer object has two integer variables for counting
these operations.

Before the Visitor can be used, it must be activated, for
example using block-scoped layer activation. The Visitor can
then be invoked by calling the visit method on the expres-
sion object. Inside a visit method, another subexpression
can be visited by invoking its visit method without double
dispatch.

def visitor = new OperationCounterVisitor();
with (visitor) {
expression.visit();

}
println(visitor.countPlus + ", " + ←↩

visitor.countMultiply);

Note that per-object activation on expression is not
sufficient, because the Visitor would then not be active for
subexpressions.

Consequences In a traditional Visitor implementation, li-
braries often provide abstract Visitor classes with visit
methods containing the object traversal code. A concrete Vis-
itor would then overwrite visit methods with visiting code
and a super call to visit associated objects. The following

listing shows how an abstract Visitor can be implemented
with COP.

abstract class ExpressionVisitor
def PlusExpr.visit() {
left.visit();
right.visit();

}

/* ... /*
}

class OperationCounterVisitor extends ←↩
ExpressionVisitor {

def PlusExpr.visit() {
thisLayer.countPlus++;
super.visit();

}

/* ... */
}

The interesting part of this example is the super call:
Should this statement invoke the visit method in the su-
perclass of PlusExpr or the partial visit method in the
superclass of OperationCounterVisitor? In our previous
work, we proposed the concept of an effective superclass hier-
archy [7], i.e., a mechanism that formalizes the semantics of
super calls. According to that mechanism, every class C in
the superclass hierarchy is prepended with one (partial) class
per active layer L, containing partial methods defined in L
for that class C. Consequently, the super call in the example
would call the partial method in ExpressionVisitor2.

3.3 Observer
The Observer design pattern is used to deliver changes in the
state of a subject to an observer. A subject typically maintains
a list of observers and notifies them via their update method
whenever its state changes. Information about the changed
state is either directly passed as an argument to the update
method or queried by the observer.

One shortcoming of this implementation is that there
are no levels of notification. For example, some observers
might only be interested in a certain kind of events, while
others want to be notified about all state changes. However, a
conventional implementation of the Observer design pattern
does not let multiple observers specify when they should be
notified3.

COP Implementation An observer is a layer object with
partial methods for the methods that trigger state changes.

2 In the absence of other active layer objects, a super call in that partial
method would try to lookup visit in Expression (starting with partial
methods provided by layers), i.e. there is no proceed statement but the
semantics of super is extended.
3 The related Publish-subscribe pattern [1] does support this feature.

Such a partial method calls proceed and then triggers the
change reaction code in the observer. The collection of ob-
servers and the code broadcasting change notifications to
observers disappears and is hidden in the method lookup
mechanism and proceed calls.

Example Figure 3 shows the class diagram for a user man-
ager component. The user manager acts as the subject and
supports checking credentials, creating new user accounts,
and changing permissions for a given user. Two observers,
a login monitor and a security log are defined. The login
monitor is a live view for user activity and shows the num-
ber of successful and failed login attempts in a bar chart.
The security log records more severe events such as account
creation or changing user permissions, but not successful or
failed login attempts. The crucial point in this example is
that different events are relevant for the login monitor and
the security log, which cannot be adequately handled in a
conventional Observer implementation with only a single no-
tification mechanism.

ConcreteUserManager

+checkCredentials(user, pass)
+createAccount(user, pass)
+setPermissions(user, perm)

<<Interface>>
UserManager-chart

+UserManager.checkCredentials(u, p)

LoginMonitor

-log

+UserManager.createAccount(u, p)
+UserManager.setPermissions(u, p)

SecurityLog

Figure 3: Example: Observer as Layer

Both observer classes define member partial methods
for the respective methods in UserManager. The following
listing shows an example for LoginMonitor.

class LoginMonitor {
def UserManager.checkCredentials(u, p) {
def result = proceed(u, p);
if (result) {
thisLayer.chart.bars["successful"]++;

} else {
thisLayer.chart.bars["failed"]++;

}
return result;

}
}

Observers can be added (and removed) using layer activa-
tion statements. In the following listing, both observers are
activated for a user manager instance manager.

def loginMonitor = new LoginMonitor();
def securityLog = new SecurityLog();
manager.activate(loginMonitor);
manager.activate(securityLog);

Consequences The example presented in the previous para-
graph uses per-instance activation to observe a specific object.
Global activation allows an observer to observe all instances
of a class. For example, the login monitor could observe all
user managers in a system if it is activated globally.

The partial methods of an observer should be confined to
the public methods of the subject, as they would otherwise
rely on internal implementation details and violate encapsu-
lation. Moreover, in comparison to a conventional implemen-
tation, a COP-based implementation provides less flexibility
as to when a change notification should be triggered. It is not
possible to insert those notifications at an arbitrary point in-
side a method, because an observer can only listen to method
call events. This limitation, in turn, might prevent entangle-
ment of object responsibilities and change notifications.

Object-oriented Implementation Notification levels can be
implemented without context-oriented programming using
only object-oriented programming by providing multiple
Observer interfaces. For every level, the subject maintains
a separate list of observers and notifies only these observers
about state changes corresponding to that level. In contrast to
the COP approach, all notification levels have to be known at
subject design time and cannot be introduced later.

4. Related Work
Previous work has analyzed the implementation of GoF de-
sign patterns in Java with AspectJ [3]. Contrary to this work,
the authors do not change the design patterns themselves,
but present a more modular and reusable implementation.
The Observer design pattern is implemented with an abstract
Observer aspect consisting of an abstract subjectChange
pointcut, add/remove observer methods, a weak hash map
for storing observers per subject, and advice for triggering
observer updates. The authors propose AspectJ open classes
for implementing the Visitor design pattern and attaching
advice to implement the Decorator design pattern. These
mechanisms are similar to our implementation approach, but
context-oriented programming allows dynamic reordering of
Decorators (using layer object (de)activation statements).

Previous work on Reflective Designs [5] shows how the
Decorator design pattern and the Visitor design pattern can be
implemented in AspectS. The authors propose using aspects
and around advice to implement the Decorator pattern, which
is identical to our approach. Decorators/proxies are instance-
specific: aspects are instantiated and then activated for spe-
cific subjects (objects), which is similar to layer instances and
our proposed mechanism for layer activation. Three differ-
ent mechanisms are mentioned for implementing the Visitor
design pattern: (a) an aspect providing the double-dispatch
protocol, (b) one aspect containing all visit methods, and
(c) a more generic implementation using traversal strategies.
The second approach is similar to our approach, but it re-
mains unclear whether such an aspect is an instantiation and
how it is activated.

5. Summary and Future Work
In this paper, we presented alternative implementations of
three well-known design patterns, based on an idea that uni-
fies classes and layers. The Decorator implementation solves
the problem of loss of object identity. The Observer imple-
mentation provides multiple notification levels and reduces
object interaction. The Visitor implementation avoids dou-
ble dispatch, also reducing object interaction. One limitation
of COP-based implementations is that the method lookup
does not distinguish between internal/external method calls
(e.g., this.foo vs. object.foo), limiting opportunities for
encapsulation.

Future work might analyze more than just these three de-
sign patterns, take into account real applications, and evaluate
ideas for internal/external partial methods. This would allow
a method to have different behavior, depending on whether
it was called from code within the object or from external
code. This would not only bring the Decorator implementa-
tion closer to its OO implementation (c.f. scroll bar exam-
ple), but also allow for a COP implementation of the Adapter
design pattern, which is hard to implement using COP if
method name clashes exist between the original interface and
the adapter interface.

References
[1] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and

Anne-Marie Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131, June 2003.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[3] Jan Hannemann and Gregor Kiczales. Design pattern imple-
mentation in Java and AspectJ. OOPSLA ’02, pages 161–173.
ACM, 2002.

[4] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz.
Context-oriented programming. Journal of Object Technology,
7(3), 2008.

[5] Robert Hirschfeld and Ralf Lämmel. Reflective designs. IEE
Journal on Software, Special Issue on Reusable Software Li-
braries, 152(1):38–51, Feb 2005.

[6] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer
composition in ContextJS. Sci. Comput. Program., 76(12):1194–
1209, December 2011.

[7] Matthias Springer, Hidehiko Masuhara, and Robert Hirschfeld.
Hierarchical layer-based class extensions in Squeak/Smalltalk.
MODULARITY Companion 2016, pages 107–112. ACM.

	Introduction
	Mechanism and Notation
	Design Patterns
	Decorator
	Visitor
	Observer

	Related Work
	Summary and Future Work

