RIGHTS

Push-based Reactive Layer Activation in Context-Oriented
Programming

Tetsuo Kamina
Ritsumeikan University
Japan
kamina@acm.org

Abstract

There are context-dependent behaviors that are active only when
a certain condition holds, and that require a certain transition
process before activation. We propose a layer-activation mecha-
nism of context-oriented programming languages for such context-
dependent behaviors. Our mechanism supports the implicit layer
activation (as opposed to the event-based layer activation) in a
sense that a condition of activation is written as a conditional ex-
pression over reactive values (e.g., values obtained from sensors).
In addition, it is push-based in a sense that it executes the tran-
sition process immediately after the condition becomes valid (as
opposed to the mechanisms that defer the transition process until
the first execution of a context-dependent behavior). In this paper,
we present how this mechanism works in an extension of ServalCJ
with push-based reactive values, and identify open issues raised by
this proposal.

Keywords Implicit layer activation; Transition processes; Reac-
tive values

ACM Reference format:

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2017. Push-
based Reactive Layer Activation in Context-Oriented Programming. In
Proceedings of COP’17, Barcelona, Spain, June 19-20, 2017, 5 pages.

DOI: 10.1145/3117802.3117805

1 Introduction

Context-Oriented Programming (COP) is an approach to improve
the modularity of behavioral variations that depend on contexts. A
number of COP languages provide linguistic constructs that mod-
ularize such variations using layers and dynamically activate/de-
activate them according to the executing contexts [5, 9]. A layer
defines partial methods, which run before, after, or around a call
of a method with the same signature defined in a class only when
the layer is activated. These constructs give advantages to COP
in modularity, because partial methods can change the original
behavior by activating layers without changing the base classes.
There are cases where such context-dependent behaviors are ac-
tive only when a certain condition holds, and that require a certain
transition process that should be executed immediately when the
layer is activated and deactivated. For example, we can consider a
smartphone application that changes its layout (context-dependent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

COP’17, Barcelona, Spain

© 2017 ACM. 978-1-4503-4971-0/17/06...$15.00

DOI: 10.1145/3117802.3117805

Ay

Tomoyuki Aotani
Tokyo Institute of Technology
Japan
aotani@is.titech.ac.jp

17

Hidehiko Masuhara
Tokyo Institute of Technology
Japan
masuhara@acm.org

behavior) according to the screen’s orientation. In this application,
this orientation (context) is represented as a condition over sensor
values, and the process that rotates the display and changes the
layout (transition process) should be performed immediately when
the sensors detect a new orientation.

There have been COP constructs to achieve such requirements.
Implicit layer activation has been proposed in the existing COP
languages [3, 13, 18] to represent such condition-based layer ac-
tivation. The transition processes are also supported by existing
COP languages [12, 13].

Unfortunately, existing implicit layer activation mechanisms
are incompatible with the immediate execution of the transition
processes. This is due to the evaluation strategy of the conditional
expression in the implicit layer activation. The existing languages
adopt the pull strategy where the conditional expression is eval-
uated only when one of the layered methods (i.e., methods that
have partial methods) is called. This strategy is based on the as-
sumption that the layer activation affects only method dispatch,
which contradicts with the immediate execution of the transition
processes. In this strategy, the layer activation is delayed until the
first execution of one of the layered methods, which also postpones
the execution of the transition processes. Thus, the display is not
rotated at the time the sensor detects a new orientation, which is
not the behavior that the programmer expects.

To address this problem, we propose a push-based reactive layer
activation mechanism where a specified layer is immediately ac-
tivated/deactivated when the condition changes. To realize the
reactive layer activation, we utilize reactive values in the conditions
for layer activation. The layer activation is considered as an effect
of the update of the reactive values. We discuss how this mech-
anism addresses the aforementioned problem in an extension of
ServalC]J [13], which supports both implicit layer activation and
transition processes, with reactive values introduced by Signal] [11].
We also provide some open issues that are raised by this proposal.

The remainder of this paper is structured as follows. Section 2
revisits the background of COP and identifies the problem. Section 3
introduces existing work on which this paper is based, and proposes
a push-based reactive layer activation mechanism. This section
also shows how the push-based reactive layer activation addresses
the aforementioned problem. Section 4 provides some open issues
raised by this proposal. Section 5 discusses the related work. Finally,
Section 6 concludes.

2 Implicit Layer Activation, Transition
Processes, and Their Problems

In this section, we revisit COP mechanisms and describe our moti-
vation.

RIGHTS

COP’17, June 19-20, 2017, Barcelona, Spain

<<Layer>>Landscape

PlayerView PlayerView

\I layered method
rotate() T

Figure 1. Layers, partial methods, and layered methods. The layer
Landscape overrides the behavior of PlayerView if it is activated.
A layered method is a method that includes partial methods. In this
figure, onDraw is a layered method, while rotate is not.

‘contextgroup Orientation(Sensor sensor) {
‘ activate Landscape if(sensor.value > THRESHOLD);
activate Portrait when !Landscape;

E
Figure 2. Implicit layer activation in ServalCJ

2.1 Layers

Context-oriented programming (COP) provides a modularization
mechanism for implementing related context-dependent behav-
ior, which crosscuts several existing classes, into a single module,
which is called a layer. Furthermore, each layer can be dynamically
composed and decomposed with the application, which we call
layer activation and deactivation, respectively. Each layer consists
of a set of partial methods, which changes the behavior of the orig-
inal methods in classes when the specified layer is activated. In
this paper, we also use an additional terminology to call a method
whose behavior is changed by some partial methods as a layered
method (Figure 1).

For example, we consider a smartphone application that changes
its layout according to the screen’s orientation. There are two
contexts, namely, portrait and landscape, and in this application, we
have two corresponding layers, namely, Portrait and Landscape.
As an Android application consists of a set of Activitys, and each
of them may provide different ways of layout for each portrait
and landscape contexts, these context-dependent behaviors are
crosscutting concerns and layers modularize them. When the value
of the orientation sensor changes to exceed the threshold, the other
layer is activated to change the layout of the application.

2.2 Implicit Layer Activation

A number of layer activation mechanisms have been proposed to
date: including per-control-flow activation, which activates specified
layers using with-blocks [1, 5], imperative activation, which acti-
vates layers using imperative commands [7, 8], event-based activa-
tion, which activates specified layers using declarative events [2, 12],
implicit activation, which activates specified layers using condition-
als [3, 18], and the generalized layer activation mechanism [13].
Among them, the implicit layer activation mechanism provides
an intuitive way to specify when the layer is activated using a condi-
tional expression. While other activation mechanisms require that
the places where activation takes place in the base program are ex-
plicitly specified, the implicit layer activation provides an intuitive

Ay

18

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara

mapping from conditions that represent contexts to the activated
layers. For example, the activation of Landscape is specified as a
condition of the orientation sensor.

We show this activation using an example written in implicit
layer activation provided by ServalC]J [13] (Figure 2), whose syntax
is of the form:

activate LAYER if(exp);

where LAYER is the name of layer and exp is an expression of
type boolean. This code fragment specifies the activation of the
layer Landscape using the activate declaration. The construct
contextgroup declares a set of related activate declarations in
that they specify layer activation for some specified group of ob-
jects. The condition is specified as an expression followed by the
keyword if;ie., Landscape is activated whenever sensor.value
> THRESHOLD returns true, and is deactivated otherwise. The acti-
vation of Portrait is specified using the activation of Landscape;
ie, Portrait is activated when Landscape is not activated.

2.3 Transition Processes

Sometimes, layer activation requires some transition processes after
the activation. For example, when the activated layer is switched
from Portrait to Landscape, the current display should be rotated
and the layout should be changed immediately. To describe this
transition process, some COP languages such as EventC]J [12] and
ServalCJ [13] provide activate blocks!. For example, to rotate the
display when Landscape is activated, we can specify the following
activate block within that layer:

layer Landscape {
class PlayerView extends View {
activate {
rotate(); // Rotate the display and
invalidate(); // change the layout

}

When Landscape is activated, this activate block rotates the display
and changes the layout.

2.4 Problems in Implicit Layer Activation

One issue in realizing implicit layer activation is determining when
the condition is evaluated. Semantically, this condition is evalu-
ated at the every execution step, which imposes a huge amount of
overheads on the program execution. Thus, basically, the existing
COP languages follow the pull strategy: the layer activation is de-
termined when one of the layered methods is called. Thus, when
the sensor value changes to exceed a threshold, the layer activation
is delayed until one of the layered methods is called (Figure 3). This
strategy is based on the assumption that the layer activation affects
only method dispatch, and thus this delay does not change the
language semantics.

However, this strategy does not work if there is a transition
process that should be executed immediately when the activated
layer is switched. For example, when the sensor value changes to
exceed the threshold, the transition process to rotate the display and
change the layout has to be executed, and this transition process

1Similarly, transition process that is executed at the time of layer deactivation is written
in deactivate blocks

RIGHTS

Push-based Reactive Layer Activation in Context-Oriented Programming

Controller Layer Transition process

The sensor detects

new orientation tl
A layered method invoke transition i
is called 2] activate layer & process :

Figure 3. Pull-based implicit layer activation. Rotation of the
display and layout change do not occur until #2, even though the
sensor detects new orientation at ¢1.

is specified in the activate block of the related layer. If the layer
activation is delayed, the execution of this transition process is also
delayed, which is not the behavior that the programmer expects.

Another problem in implicit layer activation is that it makes it
difficult to perform a static analysis to determine when the specified
layer is activated. For example, determining the control-flow graph
nodes where some layers are activated and deactivated is useful for
checking required properties between layers, such as exclusions and
dependencies between layers [17]. Using implicit layer activation,
we need to conservatively analyze every execution points that can
change the value of the conditional, which might be imprecise and
requiring a whole program analysis.

3 Push-based Reactive Layer Activation

The abovementioned problems call for another evaluation strategy
for conditions in the implicit layer activation. We propose a push-
based reactive layer activation mechanism where the condition
is written using reactive values. We extend ServalC]J [13], a COP
language with generalized layer activation, to support reactive
values, and explain how this extension addresses the problem.

3.1 Reactive Values

We briefly explain reactive values introduced to ServalCJ. This
mechanism is based on Signal] [11]. In this extension, reactive
values are called signals, which are used to represent functional
dependencies between values that are updated during computation
in a declarative way. A signal is stored in a variable declared with
the signal modifier. For example, the following code fragment
declares two signals, a and b, where signal b depends on a:

‘signal int a
‘signal int b
‘a++;

5;
a+ 3;

‘System.out.println(b); // display 9

We refer to a signal that depends on other signals as a composite
signal, which represents a functional dependency between signals.
A signal depends on all signals that appear in the right-hand side
of the initialization (=) of the signal. For example, b in the above
code fragment is a composite signal that depends on a; i.e., when
the value of a is updated, this update is propagated to b, resulting

Ay

19

COP’17, June 19-20, 2017, Barcelona, Spain

in the update of the value of b. This dependency is fixed during
the execution. This means that reassignment of a value to b is not
allowed in Signal], and the value of b is updated only through the
update of a.

On the other hand, a in the above code fragment does not depend
on any other signals. This is considered a source of the signal
network, and its value can be imperatively updated at runtime. We
refer to this signal as a source signal. The change in the source signal
is implicitly propagated to other signals that depend on this source
signal. Thus, initially the value of b in the above code fragment is
8, but after that the value of a is updated by a++, the value of b
becomes 9. The update of all the dependent signals is performed at
the time of the update of the source signal. Thus, the update of b
simultaneously occurs when a is updated, and 9 is displayed when
println is called after a++.

An update of a signal is considered an event. For example, we
can implement an event handler that responds to an update in
the signal. An event handler is a lambda expression or a method
reference that is passed to the subscribe method called on the
signal. The following code fragment shows an example:

‘signal int a = 5;
‘a.subscribe(e -> System.out.println(e));
‘a++; // display 6

The handler is called whenever the signal is updated. Thus, the
lambda expression passed to the subscribe is called at the subse-
quent a++, and the value of a, which is now 6, is displayed. The
formal parameter represents the value of the signal when the han-
dler is called.

We note that, in this data-driven (push) [6] computation, the
data dependency that is necessary to propagate the updates is
determined statically by traversing the declarations of composite
signals; i.e., every update of every signal in the right-hand side of
the signal declaration is propagated to the declared (left-hand side)
signal?.

The backend of SignalJ is implemented using RxJava23. A source
signal is implemented using BehaviorProcessor, and a composite
signal is implemented using Flowable. The event handler (sub-
scriber) is also implemented using the subscription mechanism in
RxJava2. Furthermore, the propagation and event handlers can be
executed in the different threads using the scheduler mechanism
provided by RxJava2.

3.2 Reactive Layer Activation

We show the push-based reactive layer activation (as opposed to
the existing ServalCJ strategy) that lifts the conditional expression
in if to signal boolean when that contains at least one signal.
We add the following syntax:

activate LAYER if(sexp);

where sexp is an expression of type signal boolean that contains
at least one signal. We refer to the example of implicit layer acti-
vation in Figure 2. First, when signals are used in the conditional

2Signal] also supports the pull strategy, i.e., the value of the signal is evaluated at the
time the signal is accessed, and thus the signal networks are not limited to the static
ones. However, in Signal], every event handler needs to be called in the push-based
manner and is supported only by static networks.
Shttps://github.com/ReactiveX/RxJava/tree/2.x

RIGHTS

COP’17, June 19-20, 2017, Barcelona, Spain

Sensor Controller Layer Transition process
notify new t invoke transition
orientation

activate layer © process

Figure 4. Propagation of updates in the sensor value to the layer
activation.

expression in if, this conditional expression is considered a com-
posite signal. For example, assuming that the field value of sensor
is declared as a signal, i.e., if value is declared as follows,

‘class Sensor {
‘ signal int value = ..; ... }

the conditional expression sensor.value > THRESHOLD is a com-
posite signal whose value is updated every time the value of value
changes.

Second, the layer activation is considered an effect of the update
of the conditional expression. We explain this semantics using
a translation from the layer activation in ServalC]J to the event
handler of the reactive value. For example, the layer activation in
Figure 2 is translated to the following signal and its handler:

‘signal boolean _cond_Landscape =

‘ sensor.value > THRESHOLD;
‘_cond_Landscape.subscribe(e —>

‘ { if (e) activatelLayer(Landscape);

‘ else deactivatelLayer(Landscape); })

The signal representing the conditional expression, namely,
_cond_Landscape, has an event handler that controls the activa-
tion of Landscape. This handler is called every time the signal is
updated. This handler receives the value of the signal at the time
of the call as an argument; the handler activates Landscape if this
value is true, and deactivates that layer otherwise.

A subtle issue is when the layer activation is performed, as the
handler is executed every time a source signal is assigned a value.
The activatelLayer operation first checks whether the specified
layer is activated, and then activates that layer only when it is not
activated; otherwise, this operation does nothing. This semantics
suppresses unnecessary layer activation, which may change the
program behavior because layer activation changes the ordering of
activated layers.

We illustrate how this mechanism addresses the aforementioned
problem using Figure 4. First, the value of the sensor, which is now
declared as a signal, changes to exceed the predefined threshold.
This changes the value of the condition, which is also a signal, from
false to true. This update calls the event handler, which activates
Landscape. This activation further executes the transition process
described in the activate block. This cascade is performed at the

Ay

20

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara

time of the update of the sensor value. Thus, the layer activation is
not delayed but performed immediately when the sensor detects
the different orientation. In other words, the sensor is periodically
updated, and every update of the sensor triggers the execution of
the event handler, which checks the condition and activates the
layer if that condition holds.

We briefly note that where the object sensor comes from. A
context group can be instantiated using the standard constructor
invocation. If the context group declares formal parameters, the
constructor invocation has to take arguments for each parameter.
In Figure 2, the context group Orientation declares one formal
parameter, sensor. Thus, it is instantiated by providing an instance
of Sensor:

‘Orientation o = new Orientation(getSensor());

We can explicitly specify objects that subscribe this instance (o). The
layer activation controlled by o takes effect on all such subscribers.

We note that, this mechanism also makes it easy to trace the
place where the layer activation occurs in the source code, be-
cause the dependency between signals is determined statically; i.e.,
events that may trigger layer activation are determined as updates
of statically-known source signals. Thus, our proposal is also com-
patible with the existing method to detect invalid layer activation
using static program analysis [17]. This compensates for the im-
plicit layer activation where determining the layer activation points
in the source code is difficult in general.

4 Open Issues

The above discussion shows that the push-based reactive layer
activation addresses the problem of implicit layer activation that
is used with transition processes. As this work is still in its early
stage of the research, there are also a number of open issues, which
are described as follows.

4.1 Interoperability with Existing Framework

One issue arises when the proposed language is used with the exist-
ing framework that does not utilize the reactive values. For example,
the sensor values obtained by Android SDK are not provided as
reactive values. Ideally, it is desirable that such time-varying values
are provided as reactive values. However, we may also take another
approach. Most reactive languages provide lifting that converts
non-reactive values to reactive ones. Using this mechanism, we
can easily implement a wrapper that lifts existing sensor values to
reactive values. For example, by periodically updating the reactive
values by lifting legacy sensor values in a different thread, we can
provide a sensor-monitoring thread with reactive values.

4.2 Interferences between Layer Activation and Reactive
Values

Executing a transition process as an effect of an update of a reactive
value raises another issue when another update of the reactive
value occurs within the transition process. This update within the
transition process may trigger another layer activation or deac-
tivation. This can be problematic. For example, if the transition
process of an activate block triggers deactivation of a layer, and
if another transition process of a deactivate block of that layer
triggers activation of the same layer, this cascade of activation/deac-
tivation results in an infinite loop. As this loop looks unintentional,
it should be avoided.

RIGHTS LI

Push-based Reactive Layer Activation in Context-Oriented Programming

One drastic solution to this problem is to prohibit updates of
reactive values within the transition processes. However, updates of
reactive values (and cascading layer activation) within the transition
processes might be useful in some cases. Thus, simply prohibiting
any updates of reactive values within the transition process might
be undesirable.

To understand the essence of this issue, we first need to distin-
guish the intentional updates within the transition process from
the unintentional ones. It would be better if we can formally define
such unintentional updates. Then, static analyses would be defined
on the basis of this formalization.

4.3 Interruptible Execution

Transition processes are related with interruptible execution [3]
in that the interruption process may be specified in the transition
process in our setting. In the interruptible execution, the context-
dependent behavior can be interrupted when the context changes,
and can be resumed after that context becomes active again. One
issue arises when this resuming process consists of the execution
of multiple layered methods, as the existing interruptible execution
can resume only the interrupted layered method. The transition
process in response to an update of a reactive value can specify
such multiple layered methods and thus might help, though the
interruption and resuming mechanisms in our setting remain as
future work.

4.4 Performance

The final issue is regarding performance. In some cases where up-
dates of reactive values frequently occur, the push-based approach
is not advantageous against the pull-based approach with respect to
the execution performance. To study this issue, we first need to eval-
uate the performance overhead imposed by the push-based reactive
activation using couples of applications. This evaluation includes
microbenchmarking and profiling. If there is some overhead that
should not be overlooked, then we may equip some optimization
techniques such as pushing updates only when they are necessary.
This direction of research also remains as future work.

5 Related Work

Inoue and Igarashi proposed a layer activation mechanism that
utilizes reactive values [10]. As in our approach, in this mechanism,
the reactive value is used as a condition that determines the layer
activation. However, this reactive value is evaluated when one
of the layered methods is called. Thus, this mechanism actually
takes the pull-strategy, as in the other implicit layer activation, and
does not solve the problems identified in this paper. Nevertheless,
the same mechanism can also be implemented in the setting of
their approach, as their reactive values are taken from signals in
REScala [15], which provides the push-based signals and conver-
sions between signals and events. We can define an event that is
converted from the signal used in the layer activation specification.
Then, we can register an event handler that executes the behavior
in the activate block to that event.

Our proposal bridges a gap between event-based activation and
implicit one in that, while the layer activation is specified as a con-
ditional expression, it is performed in an event-driven manner by
considering an update of the conditional expression as an event.
A number of effectful reactive values have been proposed in lan-
guages that are not Java-based [4, 14, 16]. We believe that those

Ay

21

COP’17, June 19-20, 2017, Barcelona, Spain

proposals can be adopted to implement our proposal in other host
languages, as those provide a mechanism to represent an effect of
an update of a reactive value, and our proposal shows that layer
activation is realized as an effect of such an update.

6 Concluding Remarks

This paper has proposed a push-based reactive layer activation
mechanism, and demonstrated how this mechanism works in the
extension of ServalCJ with reactive values. The problem of the
implicit layer activation, i.e., the transition process is not executed
at the time of an update of the reactive value, is addressed by
propagating that update and realizing layer activation as an effect
of that propagation. This proposal is considered as a bridge that
relates implicit layer activation with the event-based one, which
compensate for the disadvantage of the implicit layer activation.
This paper also identifies open issues that will develop further
research.

References

[1] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara.
Context]: Context-oriented programming with Java. ~Computer Software,
28(1):272-292, 2011.

[2] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. Event-specific software composition in context-oriented
programming. In Proceedings of the International Conference on Software Compo-
sition 2010 (SC’10), volume 6144 of LNCS, pages 50-65, 2010.

[3] Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, Andoni Lombide Car-
reton, and Wolfgang De Meuter. Interruptible context-dependent executions: A
fresh look at programming context-aware applications. In Onward! 2012, pages
67-84, 2012.

[4] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and
handlers. Journal of Logical and Algebraic Methods in Programming, 84:108-123,
2015.

[5] Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented
programming — an overview of ContextL. In Dynamic Language Symposium
(DLS) 05, pages 1-10, 2005.

[6] Conal Elliott. Push-pull functional reactive programming. In Haskell 09, pages
25-36, 2009.

[7] Sebastian Gonzalez, Nicolas Cardozo, Kim Mens, Alfredo Cadiz, Jean-Christophe
Libbrecht, and Julien Goffaux. Subjective-C: Bringing context to mobile platform
programming. In SLE’10, volume 6563 of LNCS, pages 246-265, 2011.

[8] Sebastian Gonzalez, Kim Mens, and Alfredo Cadiz. Context-oriented program-
ming with the ambient object systems. Journal of Universal Computer Science,
14(20):3307-3332, 2008.

[9] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented

programming. Journal of Object Technology, 7(3):125-151, 2008.

Hiroaki Inoue and Atsushi Igarashi. A library-based approach to context-

dependent computation with reactive values. In MODULARITY Companion’16,

pages 50-54, 2016.

Tetsuo Kamina. Introducing lightweight reactive values to java. In SPLASH

Companion’16, pages 27-28, 2016.

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ: a context-

oriented programming language with declarative event-based context transition.

In AOSD 11, pages 253-264, 2011.

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. Generalized layer

activation mechanism for context-oriented programming. LNCS Transactions on

Modularity and Composition I, 9800:123-166, 2016.

Gergely Patai. Efficient and compositional higher-order streams. In WFLP

2010: Functional and Constraint Logic Programming, volume 6559 of LNCS, pages

137-154, 2010.

Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: Bridging between

object-oriented and functional style in reactive applications. In MODULARITY’14,

pages 25-36, 2014.

Christopher Schuster and Cormac Flanagan. Reactive programming with reactive

variables. In MODULARITY Companion’16, pages 29-33, 2016.

Noriyuki Suzuki, Tetsuo Kamina, and Katsuhisa Maruyama. Detecting invalid

layer combinations using control-flow analysis for android. In COP’16, pages

27-32, 2016.

Martin von Lowis, Marcus Denker, and Oscar Nierstrasz. Context-oriented

programming: beyond layers. In ICDL "07: Proceedings of the 2007 International

Conference on Dynamic languages, pages 143-156, 2007.

(1]

[12]

(13]

[14]

	Contents
	Peace COrP: Learning to Solve Conflicts Between Contexts (NicolÃ¡s Cardozo, Ivana Dusparic, Jorge H. Castro)
	NicolÃ¡s Cardozo, Ivana Dusparic, Jorge H. Castro

	The Declarative Nature of Implicit Layer Activation (Stefan Ramson, Jens Lincke, Robert Hirschfeld)
	Stefan Ramson, Jens Lincke, Robert Hirschfeld

	Push-based Reactive Layer Activation in Context-oriented Programming (Tetsuo Kamina, Tomoyuki Aotani, Hidehiko Masuhara)
	Tetsuo Kamina, Tomoyuki Aotani, Hidehiko Masuhara

