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ABSTRACT
Two or more incompatible versions of a library are sometimes

needed in one software artifact, which is so-called dependency hell.

One likely faces the problem if he or she uses two or more libraries

that depend on the same library. In this paper, we propose versioned

values to solve the problem. They allow us to have multiple versions

of functions in a binary file. This gets rid of requiring two or more

incompatible binaries. We develop a calculus λVL to discuss type

safety in the case where definitions are available only in specific

versions, which is a common and important nature of versioned

programs.
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1 INTRODUCTION
Software applications and libraries are often versioned. Different

versions may be (1) structurally incompatible [4, 20], i.e., two ver-

sions provide different sets of definitions such as classes, structures

and functions, and/or (2) behaviorally incompatible [13], i.e., the

same definitions of which behavior is different. An example of struc-

tural incompatibility is the class AndroidHttpClient for HTTP

connections is available in Android API levels 8–22 but not in 23 and

higher.
1
Another example is the class Logger in versions 1.2 and

2.10 of Log4j
2
, a widely-used Java library for logging. It provides

the method getLogger to get an instance of Logger in version 1.2

but not in 2.10. An example of behavioral incompatibility is the

method set in the class AlarmManager in Android API level 19. It

takes a long value that specifies the time to trigger an alarm but

the scheduling strategy has been changed since Android API levels

1
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.

html#behavior-apache-http-client

2
https://logging.apache.org/log4j/
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19.
3
One has to use setExact in Android API levels 19 and later

instead of set to achieve the behavior of set in Android API levels

18 and before.

The incompatibility causes two problems. First, if a newer ver-

sion of a library than required is given to run an application, the

application may not start or work correctly depending on the dif-

ferences between the two versions. If some definitions are missing

in the newer version, the application cannot start. If the behavior

of necessary functions or methods is different, the behavior of the

application goes unexpectedly. Second, two libraries that depend

on the two different versions of the same library cannot co-exist in

an application, which is known as dependency hell.4 This is because
from the viewpoint of a programming language two versions of

definitions are not distinguishable if their names and signatures

are the same.

In this paper, we consider context-oriented programming (COP) [8]

as a solution to the problems. COP is a programming approach to

modularizing context-dependent behavioral variations. COP lan-

guages and systems provide constructs andmechanisms to compose

and abstract the variations, which can be activated and deactivated

according to the computational context at runtime.

Our idea is to consider versions as contexts and bundle multi-

ple versions of definitions in one library file such as a jar archive

and a shared object. COP languages allow us to compose and ab-

stract version-specific behavioral variations of definitions. This

contributes to solving the problems attributable to behavioral in-

compatibility. Moreover, some advanced COP languages allow us to

have baseless definitions [1, 10, 11] that are only available in some

contexts. If we consider versions as contexts, baseless definitions

allow us to add definitions in some versions that are not avail-

able in the initial version. This contributes to solving the problems

attributable to structural incompatibility.

Unfortunately, COP is mainly studied as an extension of object-

oriented programming (OOP). This means that we need classes

and/or objects to have multiple versions of definitions in one pro-

gram. It is desirable to avoid an OOP language as the base of our

solution because dependency hell is not specific to OOP languages.

We propose versioned values as constructs to compose and ab-

stract multiple versions of values and functions in languages that

support first-class functions. We do not assume that the languages

support classes and objects for OOP. Versioned values represent

values and functions that are different among versions. Versioned

values basically consist of pairs of a version number and a version-

specific value. In other words, versioned values generalize the

idea of objects with cursors in COP languages so that any val-

ues other than objects may depend on the version/context. For

3
https://developer.android.com/about/versions/android-4.4.html#Behaviors

4
https://en.wikipedia.org/wiki/Dependency_hell
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example, we represent a versioned function that is \x.x in the first

version and \x.x+1 in the second version as {1=\x.x, 2=\x.x+1}
basically. If versioned functions are applied to versioned values,

the results are versioned values that are intuitively created by ap-

plying version-specific functions to version-specific values in a

version-wise manner. For example, we get {1=1, 2=3} if we apply

{1=\x.x, 2=\x.x+1} to {1=1, 2=1}.
To study our approach from the viewpoint of type safety, we

develop a calculus λVL based on ℓRPCF [3] that is a coeffect sys-

tem [14] based on PCF [15]. A coeffect system can be considered as

a framework for analyzing usage of resources that is called coeffects.

The coeffects of λVL are sets of version numbers. In other words,

the type system of λVL analyzes the versions of definitions that are
necessary to have a “safe” program. Unfortunately, λVL does not

support either data structures, classes or objects. Extending λVL to
support them is left for the future work.

The rest of the paper is organized as follows. Section 1 shows

a motivating example and discusses why COP techniques are not

suitable. Section 3 Section 4 introduces versioned values and def-

initions and Section 4 gives the calculus λVL. Section 5 discusses

related studies and techniques and Section 6 concludes the paper.

2 EXAMPLE: AVOIDING DEPENDENCY HELL
Dependency hell is one of the common problems/frustrations in-

duced by incompatibility among versions of programs. In this sec-

tion, we consider as an example a program that gets the number of

connected physical monitors using GDK 3, a part of GTK+ 3 library.

2.1 Incompatibility in GDK 3
Table 1 shows availability of the two functions that gets the number

of connected physical monitors namely

• gdk_screen_get_n_monitors and

• gdk_display_get_n_monitors.

The symbol yes denotes that the function is available; no denotes

that the function is not available; and dep denotes that the function

is deprecated. The version 3.22 of GDK deprecates and changes

the function gdk_screen_get_n_monitors that gets the number of

connected physicalmonitors.We should instead use gdk_display_get_n_monitors
to get the number of connected physical monitors in the versions

higher than or equal to 3.22.

If we consider deprecated functions unavailable, the version

3.22 is structurally incompatible with the version 3.20 because the

former lacks gdk_screen_get_n_monitors that is available in the

latter.

In the following sections, we consider for simplicity

• gdk_screen_get_n_monitors available in only the versions
lower than 3.22 and

• gdk_display_get_n_monitors available in only the ver-

sions higher than or equal to 3.22.

2.2 COP approach
One solution to avoid dependency hell is to allow a library file

to contain all versions of the library and to allow programs that

depends on the library to use a version at a time at runtime. Con-

sidering versions as contexts, it can be achieved in a COP language

naturally by having a layer for each version and by activating and

deactivating layers so that at most one layer is active at a time.

For example, we can represent structural incompatibility of GDK

3 between the versions 3.9 and 3.22 in JCop [1] as follows.

class G{}

layer V3_20{

int G.gdk_screen_get_n_monitors(){

return /* the number of connected monitors */;

}}

layer V3_22{

int G.gdk_display_get_n_monitors(){

return /* the number of connected monitors */;

}}

The class G represents the set of functions that GDK 3 provides in

a version. It has no methods by default, which means that GDK 3

provides no function if we do not specify any version. The layer

V3_20 adds the functions that are available in the version 3.20 of

GDK 3 and here it adds gdk_screen_get_n_monitors. Similarly,

the layer V3_22 adds the functions that are available in the version

3.22 of GDK 3 and here it adds gdk_display_get_n_monitors.
Programs that use GDK 3 also use layers to import specific ver-

sions of the library. Using layer inheritance is one way to achieve

that. A better way is using the requires clause proposed in Safe

JCop [10] because we can represent importing specific versions of

several libraries naturally. For example, the function that takes a

screenshot for each monitor is implemented as follows.

layer ScreenshotV1 requires V3_20{

int G.take_screenshots(){

for( int i = 0;

i < gdk_screen_get_n_monitors(); ++i){

...

}}}

layer ScreenshotV2 requires V3_22{

int G.take_screenshots(){

for( int i = 0;

i < gdk_display_get_n_monitors(); ++i){

...

}}}

The layers ScreenshotV1 and ScreenshotV2 represent the pro-

grams that use the versions 3.20 and 3.22 of GDK 3, respectively.

They define basically the same functions namely take_screenshots
that take a screenshot in each monitor.

The applications that use the screenshot library select one ver-

sion by activating ScreenshotV1 or ScreenshotV2 as follows.

with(new V3_20(), new ScreenshotV1()){

new G().take_screenshots();

}

In this case, the application uses the version 3.20 of GDK 3.

2.3 Problem
A problem of the above COP approach is that we need a dummy

class like G even though the programs and libraries do not need any

class. A desirable solution in the above example must be indepen-

dent of classes and objects.

9
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GDK versions gdk_screen_get_n_monitors gdk_display_get_n_monitors

lower than 3.22 yes no

higher than or equal to 3.22 dep yes

Table 1: Availability and results of functions in GDK 3

Realizing the desirable solution is, however, not easy because,

even if a function has several bodies depending on contexts, it is not

clear how to select one body. In COP languages with classes and

objects, selecting one method body for the context is easy because

the receiver objects know the context. If we consider COP languages

without classes and objects, there is no such value explicitly. In

other words, we need a COP language that supports static partial

methods that belongs to classes as static methods.

3 OUR APPROACH
We propose versioned values as a construct for COP without classes

and objects. Versioned values are basically pairs of a version number

and the value that is specific to the version.

In this section, we briefly explain versioned values in a hypothet-

ical statically typed language VL where functions and versioned

values are first-class values.

3.1 Versioned values
A versioned value consists of pairs of a version name/number and

the value specific to the version and the default version. We say that

a versioned value is available in the version v if the versioned value
contains the version name/number v. For example, the following

code creates a versioned value that is available in the versions V3_20
and V3_22, which are the version names that denote the versions

3.20 and 3.33 of GDK 3, and the version-specific values are 20 and

22, respectively. The default version is V3_22.

{ V3_20 = 20, V3_22 = 22 | V3_22 }

Types of versioned values show the versions where the version-

specific values are available along with the types of the version-

specific values. For example, the type of the value in the exam-

ple above is Int!{V3_20,V3_22}, which means that the versioned

value is available in the versions V3_20 and V3_22 and that a value

of type Int is available in each version.

Functions that have different bodies among versions are repre-

sented as versioned values. For example, the function gdk_screen_get_n_monitors
is defined as follows.

{ V3_20 = \x:unit./*the number of connected monitors*/

| V3_20}

The type of the versioned value is unit→int!{V3_20}, which
means that the versioned value is available in the version V3_20
and that a function that takes the unit value and returns an integer

value is available in the version.

3.2 Versioned function application
Applying versioned functions to versioned values corresponds to

invoking partial methods on objects in COP languages with classes

and objects. What we want to do is, given a version name, to extract

the function and the value that are associated with the version name

from the versioned functions and values.

We consider the default versions in versioned values specifying

the current version. To extract values from versioned values follow-

ing to the default versions, we introduce a variation of let-bindings

called contextual let-bindings. Let gdk_screen_get_n_monitors
be a versioned function of type unit→int!{V3_20} defined as in

the previous section and u be a versioned value of type unit!{V3_20,V3_22}
defined as follows.

{ V3_20 = (), V3_22 = () | V3_22 }

To apply gdk_screen_get_n_monitors to u, we use contextual

let-bindings as follows.

let !f = gdk_screen_get_n_monitors in

let !x = u in f x

The program first extracts the function in the version V3_20 from
gdk_screen_get_n_monitors and binds f to the function. It then

extracts the value in the version V3_22 from u and binds x to the

value and appliques f to x.

3.3 Version-independent programs
If versioned functions and versioned values are available in sev-

eral versions, it is desirable to have one program that applies the

versioned functions to the versioned values in several versions.

Suppose that gdk_screen_get_n_monitors is available in V3_20
and V3_22 for example. It is then desirable to have one program

that computes the number of connected physical monitors in V3_20
and V3_22.

We achieve this by using the suspension operator ! and explicit

extraction expression e.v where e is an expression that returns a

versioned value and v is a version name. The suspension operator !
takes one expression and suspends the evaluation of the expression

until the value is required. For example, the following program

returns a suspended computation that returns an integer value in

V3_20 and V3_22.

let !f = gdk_screen_get_n_monitors in

let !x = u in !(f x)

The explicit extraction expression e.v extracts the value in the

version v from the versioned value returned by e. Here the default
versions in e are overridden by the specified version v. For example,

the following program computes the number of connected physical

monitors in the version V3_20.

let !f = gdk_screen_get_n_monitors in

let !x = u in !(f x).V3_20

The default version of u is overridden by V3_22.

10
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(Terms) t, u ::= x | () | \x.t | t t | {l=t|l} |

t.l | let !x = t in t | !t |

⟨l=t|l⟩

(Values) v ::= () | \x.t | {l=t|l} | !t
(Types) S, T, U ::= () | T → T | !rT

(Typing Env.) Γ,∆ ::= ∅ | Γ, x : T | Γ, x : [T]r
(Eval. Context) E ::= [] | E t | E.l | let !x=E in t

Figure 1: Syntax of λVL

3.4 Abstracting version-dependent behavior
It is desirable if we can abstract version-dependent behavior be-

cause this allows us to develop version-independent programs.

For example, take_screenshots abstracts version-dependent be-
havior that invokes gdk_screen_get_n_monitors in the version

V3_20 and gdk_display_get_n_monitors in the version V3_22.
Programs that use take_screenshots are independent of any spe-

cific version.

In our language, we can abstract version-dependent behavior

easily by using contextual let-bindings and versioned values. For

example, the following program creates a versioned function that ab-

stracts the version-dependent behavior that calls gdk_screen_get_n_monitors
in V3_20 and gdk_display_get_n_monitors in V3_22.

let !f = gdk_screen_get_n_monitors in

let !g = gdk_display_get_n_monitors in

{V3_20 = f (), V3_22 = g ()}

4 λVL: A CALCULUS FOR VERSIONED VALUES
In this section, we develop a core calculus of VL based on ℓRPCF [3],

which is an extension of the simply typed lambda calculus with

contextual let-bindings and contextual types.

4.1 Context
The contexts in λVL denoted by the metavariable R and ranged

over by the metavariable r are the sets of version numbers with

the bottom denoted by ⊥. We define a preordered semiring [7]

(R, ≤, ⊕, ⊗, 0, 1) over the contexts as follows.

0 = ⊥ 1 = {} ⊥ ≤ r
r1 ⊆ r2

r1 ≤ r2

r1 ⊕ r2 =


r1 if r1 is ⊥
r2 if r2 is ⊥
r1 ∪ r2 otherwise

r1 ⊗ r2 =

{
⊥ if at least either r1 or r2 is ⊥
r1 ∪ r2 otherwise

r1 ⊆ r2 is the standard subset relation over sets and none of r1
and r2 is the bottom.

4.2 Syntax
Figure 1 shows the syntax of λVL. The metavariables x and y range

over variables; l, m and n range over version numbers; r ranges

over contexts that are sets of version numbers with the bottom. We

sometimes denote a sequence of version numbers, i.e., l1, · · · , ln ,

by l. If the length of a sequence is not important or is clear from

the context, we do not give it explicitly.

Reduction rules: t⇝ t′

(\x.u) t⇝ [x 7→ t]u (E-Abs)

let !x=!t in u⇝ [x 7→ t]u (E-LetB)

let !x={l=t|m} in u⇝ [x 7→ ⟨l=t|m⟩]u (E-LetP)

⟨l=t|li ⟩⇝ ti@li (E-Ver)

(!t).l⇝ t@l (E-ProjB) {l=t|m}.li ⇝ ti@li
(E-ProjV)

Evaluation rules: t −→ t′

t⇝ u

E[t] −→ E[u]

Figure 2: Evaluation rules

A term in λVL is either a variable x, unit value (), lambda abstrac-

tion \x.t, application t t, versioned values {l=t|li} where li is

the default version and satisfies li ∈ {l}, explicit extraction t.l,
contextual let-binding let !x = t in t, lifting !t, and versioned

computation ⟨l=t|li ⟩ where li is the default version and satisfies

li ∈ {l}. The versioned computations represent terms of which

evaluation in the default contexts is postponed. intuitively. We as-

sume that versioned computations appear in only the intermediate

terms in evaluation and do not appear in the users’ code. A value is

either the unit, a lambda abstraction, a versioned value or a lifting.

We say a value is proper if it is the unit or a lambda abstraction.

A type is either the unit type (), a function T → T or a versioned
type !rT.

We denote by Γ and ∆ a typing environment. It is a set of typed

variables which are either of the form x : T called plain variables

or x : [T]r called versioned variables. Versioned variables are a

technical artifact useful to implicitly manage variables bound to

versioned values. If we denote by [Γ] a versioned environment (a

typing environment that only contains versioned variables) we can

extend the operation ⊕ of the semiring to typing environments as

follows.

∅ ⊕ Γ = Γ
(x : [A]r) ⊕ (x : [T]r′ , Γ) = x : [T]r⊕r′ , Γ

(x : [T]r) ⊕ Γ = x : [T]r, Γ if x < Γ
(x : T, Γ) ⊕ ∆ = x : T, (Γ ⊕ ∆) if x < ∆

We denote r1 ⊕ · · · ⊕ rn and Γ1 ⊕ · · · ⊕ Γn by Σni r and Σni Γi ,
respectively. We omit n for readability if it is clear from the context

or is not important.

We denote by E an evaluation context. Each evaluation context

is a term with a hole written as [] somewhere inside it. We write

E[t] for the ordinary term obtained by replacing the hole in E with

t.

11
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()@l ≡ () (\x.t)@l ≡ \x.(t@l) (!t)@l ≡ !t

(t u)@l ≡ (t@l) (u@l)

(let !x=t in u)@l ≡ let !x=(t@l) in (u@l)

{l=t|li}@l’ ≡ {l=t|li} (t.m)@l ≡ (t@l).m

n ∈ {l}

(⟨l=t|m⟩)@n ≡ ⟨l=t|n⟩

n < {l}

(⟨l=t|m⟩)@n ≡ ⟨l=t|m⟩

Figure 3: Context substitution

4.3 Dynamic semantics
We give the rules for the small-step operational semantics of λVL in
Figure 2. It basically follows the lazy-evaluation strategy, i.e., only

functions t are evaluated to values to evaluate applications t u.
We have six reduction rules. E-Abs is the β-reduction rule. E-

LetB and E-LetP reduce the contextual let-bindings let !x=v in
t by replacing x in u with the value v. E-LetB replaces x with t
if the value is a lifting !t. E-LetP translates v to a versioned com-

putation and replaces x with it if the value is a versioned value.

E-Ver reduces a versioned computation ⟨l = t|li ⟩ to ti and sub-
stitutes the default versions within the subterms to li . The context
substitution t@l is defined in Figure 3. It basically substitutes the

default version in the every subterm of t except for the cases where
t is either a lifting, versioned value, or versioned computation. The

most interesting cases are versioned computations. ⟨l = t|m⟩@n

becomes ⟨l = t|n⟩ if n ∈ {l} and ⟨l = t|m⟩ otherwise. The context
substitution therefore ensures that E-Ver is always successful. E-

ProjB and E-ProjV reduces v.l by extracting a term in the value

v for the context l. If the value is a lifting !t, E-ProjB reduces the

term to t where the default version is substituted to l. If the value
is a versioned value, E-ProjV takes a term for the context l and

substitute the default version with l.

Example 4.1. The following program simplifies the last program

in the Section 3 and reduced as follows.

let !gdk_screen_get_n_monitors = {V3_20 = \x.x | V3_20} in

let !gdk_display_get_n_monitors = {V3_22 = \x.x | V3_22} in

{V3_20 = gdk_screen_get_n_monitors (),

V3_22 = gdk_display_get_n_monitors () | V3_22}

−→ (E-LetB)

let !gdk_display_get_n_monitors = {V3_22 = \x.x | V3_22} in

{V3_20 = [V3_20 = \x.x | V3_20] (),

V3_22 = gdk_display_get_n_monitors () | V3_22}

−→ (E-LetB)

{V3_20 = [V3_20 = \x.x | V3_20] (),

V3_22 = [V3_22 = \x.x | V3_22] () | V3_22}

Let p be the versioned value. p.V3_22 is further evaluated as

follows.

{V3_20 = [V3_20 = \x.x | V3_20] (),

V3_22 = [V3_22 = \x.x | V3_22] () | V3_22}.V3_22

−→ (E-ProjV)

[V3_22 = \x.x | V3_22] ()

x : T ⊢ x : T (T-Var) ∅ ⊢ () : () (T-Unit)

Γ, x : T1 ⊢ t : T2

Γ ⊢ \x.t : T1 → T2
(T-Abs)

Γ ⊢ t : T′ → T ∆ ⊢ t′ : T′

Γ ⊕ ∆ ⊢ t t′ : T
(T-App)

Γ′ ⊢ t : T′ Γ <: Γ′ T′ <: T

Γ, [∆]0 ⊢ t : T
(T-Sub)

Γ ⊢ t1 : !rT
′ ∆, x : [T′]r ⊢ t2 : T

Γ ⊕ ∆ ⊢ let !x = t1 in t2 : T
(T-Let)

Γ, x : T′ ⊢ t : T

Γ, x : [T′]1 ⊢ t : T
(T-Der)

[Γ] ⊢ t : T

r ⊗ [Γ] ⊢ !t : !rT
(T-Pr)

∀i .[Γi] ⊢ ti : T

Σi{li} ⊗ [Γi] ⊢ {l=t|li} : !{l}T
(T-Ver)

∀i .[Γi] ⊢ ti : T

Σi[Γi] ⊢ ⟨l=t|li ⟩ : T
(T-VerI)

Γ ⊢ t : !r T l ∈ r

Γ ⊢ t.l : T
(T-Extr)

Figure 4: Typing rules

T <: T (S-Refl)

T′ <: T S <: S′

T → S <: T′ → S′
(S-Arr)

T <: T′ r′ ≤ r

!rT <: !r′T
′

(S-Cdc)

T <: T′ r′ ≤ r

[T]r <: [T
′]r′

(S-Cdp)

Figure 5: Subsumption

−→ (E-Ver) \x.x () −→ (E-App) ()

4.4 Static semantics
The type system of λVL ensures that extractions never fail by main-

taining the context of each subterm and bound variable. We say

that the term t is well-typed if there exists some Γ and T such that

Γ ⊢ t : T defined in Figure 4. The readers should consider each

typing rule as “the term t requires the resources Γ and generates

the resource T”.
We explain the interesting last seven rules, though the first seven

rules come from ℓRPCF. T-Sub “weaken” not only the types of the

terms but also the typing environments. The subsumption relation

T <: S is given in Figure 5. From the view point of the contexts, a

subtype is associated with larger contexts. For example, [T]r is a
subtype of [T]r′ if r

′ ≤ r. Therefore, T-Sub intuitively allows terms

to require resources available in more contexts and generate re-

sources available in fewer contexts than they actually do. T-Let adds

versioned variables to the typing environments. T-Der converts a

non-contextual type to a contextual type. It follows the intuition

that resources are available in any contexts if they are free from

any contexts. T-Pr and T-Ver intuitively repeat over contexts the

requirements/generations of the resources for/of the given terms.

12
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∅ ⊢ \x.x : () → ()

∅ ⊢ {V3_20 = ...|V3_20} : !{V3_20}() → () A

∅ ⊢ p : !{V3_20,V3_22}()

Subtree A

∅ ⊢ \x.x : () → ()

∅ ⊢ {V3_22 = ...|V3_22} : !{V3_22}() → () B

f : [() → ()]{V3_20} ⊢ let !g = ... in ... : !{V3_20,V3_22}()

Subtree B

f : () → () ⊢ f : () → ()

f : [() → ()]{} ⊢ f : () → () ∅ ⊢ () : ()

f : [() → ()]{} ⊢ f () : () · · ·

f : [() → ()]{V3_20}, g : [() → ()]{V3_22} ⊢ {...} : !{V3_20,V3_22}()

Figure 6: Type derivation of Example 4.1

T-VerI is similar to T-Ver but it does not repeat the requirements

and generations. This is because each versioned computation rep-

resents a computation in only the default version. T-Extr ensures

that values in the specified contexts are available and extracts the

types from the versioned types.

Example 4.2. The type of the program given in Example 4.1 is

!{V3_20,V3_22}(). The derivation is as follows, where p, f, and g are
the program, gdk_screen_get_n_monitors, and gdk_display_get_n_monitors,
respectively. Note that the type system successfully allows f and g
to appear in the body of the versioned value. The type system suc-

cessfully understands that for example gdk_screen_get_n_monitors
is available and used in only V3_20.

Example 4.3. If we swap the use of gdk_screen_get_n_monitors
and gdk_display_get_n_monitors in Example 4.1 as follows, the

program is never well-typed.

let !gdk_screen_get_n_monitors = {V3_20 = \x.x | V3_20} in

let !gdk_display_get_n_monitors = {V3_22 = \x.x | V3_22} in

{V3_20 = gdk_display_get_n_monitors (),

V3_22 = gdk_screen_get_n_monitors () | V3_22}

This is because it is not possible to have a subtree that corresponds

to B in Figure 6.

4.5 Properties
This section proves that our type system is sound.

Lemma 4.4. If Γ, x : S ⊢ t : T and ∆ ⊢ u : S then Γ ⊕ ∆ ⊢ [x 7→

u]t : T.

Proof. By induction on the derivation of Γ, x : S ⊢ t : T. □

The following lemma generalizes the Lemma 2 in [7] but the

proof depends on the fact that ⊕ and ⊗ are idempotent, i.e., r⊕r = r
and r ⊗ r = r.

Lemma 4.5. If Γ, x : [S]s ⊢ t : T and [∆] ⊢ u : S then Γ ⊕ Σi (si ⊗
[∆i]) ⊢ [x 7→ u]t : T where Σisi = s and Σi[∆i] = [∆].

Proof. By induction on the derivation of Γ, x : S ⊢ t : T. □

Lemma 4.6. If Γ ⊢ t : T and t⇝ u then Γ ⊢ u : T

Proof. By induction on the derivation of Γ ⊢ t : T with the

lemmas 4.4 and 4.5. □

Theorem 4.7. If Γ ⊢ t : T and t −→ u then Γ ⊢ u : T.

Proof. By induction on the structure of the context E with the

lemma 4.6. □

Theorem 4.8. If ∅ ⊢ t : T then (1) t is a value or (2) there is some
s such that t −→ u.

Proof. By induction on the derivation of Γ ⊢ t : T. □

5 RELATEDWORK
Because a coeffect system is basically a technique to analyze re-

source usage [14], any work on the resource usage analysis [9] is

relevant to the work generally. Such work, however, lacks versioned

values. Only the availability of each function depends on the states

of the resources and its behavior never changes.

Programming techniques for software product lines [2, 16, 17]

are closely related to the work because we can consider program

evolution as program extension. For example, delta-oriented pro-

gramming [17] modularizes modifications to programs such as

adding classes and methods by using so-called delta modules. Al-

though composing delta modules with the base program is usually

static, i.e., fixed at runtime, there are also some studies that allow

changing the compositions at runtime [5, 6]. They allow objects to

live in multiple compositions of delta modules as COP languages,

but they treat states of such objects seriously.

Studies onmulti-stage programming languages such asMetaML [19]

also relate to thework. For example, we can consider liftings, contex-

tual let-bindings, and extractions as brackets, escapes and the run,
respectively. In the type systems, environment classifiers [12, 18]

in λα annotate variables with the stages where they are available,

which is similar to the context-dependent variables in λVL and

ℓRPCF. We are not yet sure whether it is possible to develop a

calculus for VL based on λα and its descendants or not. Studying

the relevance is left for our future work.

6 CONCLUSIONS AND FUTUREWORK
We proposed a programming language VL to allow libraries to

have multiple versions of functions and users to select one specific

version. We developed a core calculus λVL of VL and proved its

soundness.

Our future work includes integration with data types, experi-

ments and efficient implementation. In particular, efficient imple-

mentation seems challenging because our semantics employs the

lazy-evaluation strategy.

We are not sure whether in the evaluation of t.l every context-

dependent computation in t runs in the context l or not, although

this is very important in λVL. If it holds, we can omit the last context

substitution rule in Figure 3. Addressing this is another direction

of our future work.
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