
Interfaces for Modular Reasoning in
Context-Oriented Programming

Paul Leger
Universidad Católica del Norte

Chile
pleger@ucn.cl

Hidehiko Masuhara
Tokyo Institute of Technology

Japan
masuhara@acm.org

Ismael Figueroa
Universidad de Valparaíso

Chile
ismael.figueroa@uv.cl

ABSTRACT
Different activation mechanisms for Context-Oriented Program-
ming (COP) like implicit activations have been proposed, increasing
COP opportunities to be applied in real scenarios. However, activa-
tion mechanisms and base code definitions are insufficiently decou-
pled, as conditionals to activate layers require base code variable
references. This hinders reuse, evolution, and modular reasoning
of COP and base code, and therefore, uses of COP in real scenarios.
This paper proposes interfaces, which are shared abstractions to
communicate activation mechanisms and base code in a decoupled
manner. Using these interfaces, an object can exhibit its internal
state and behaviors, and conditionals use them to (de)activate layers.
As layers are planned to be (re)used in different applications, devel-
opers can use interfaces to overcome the incompatibility between
values exposed by a particular base code and values required by a
layer. In addition, as a layer is a plain object, it can use an interface
to exhibit the conditional evaluation of its activation to other lay-
ers to resolve conflicts among activations of layers. We apply this
proposal to implicit activations in which evaluations of condition-
als implicitly (de)activate layers. Finally, we illustrate the benefits
of this proposal through RI-JS, a practical JavaScript library that
currently supports interfaces, reactive activations (implementation
variant for implicit activations), global and dynamic deployment,
enter and exit transition processes, and partial methods.

KEYWORDS
Interfaces, Activation Mechanisms, Context-Oriented Program-
ming, Reactive Programming, JavaScript
ACM Reference Format:
Paul Leger, Hidehiko Masuhara, and Ismael Figueroa. 2020. Interfaces for
Modular Reasoning in Context-Oriented Programming. In 12th Interna-
tional Workshop on Context-Oriented Programming and Advanced Modular-
ity (COP’20), July 21, 2020, Virtual Event, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3422584.3423152

1 INTRODUCTION
Because of the proliferation of diverse technological devices, such as
notebooks, smartphones, and wearables [9], there is a clear trend in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
COP’20, July 21, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8144-4/20/07. . . $15.00
https://doi.org/10.1145/3422584.3423152

the software industry towards constructions of systems that adapt
their behaviors at runtime according to an identified context [2].
Context-Oriented Programming (COP) [20], through layers, allows
developers to implement the context identification and adaptations
in a modular manner. Since this programming approach was pre-
sented in 2005 [12]1 with partial methods [5, 20], COP researchers
have added to layers diverse mechanisms for scope [23, 29], transi-
tion [23, 24], and widely for activation [4, 16, 20, 22–25, 32, 47, 49].

A mechanism of activation is used to determine whether a con-
text is identified or not. When a context is identified, its associated
layer is activated. In COP, we can find different activation mech-
anisms which can be imperative [16, 20], event-based [23], or im-
plicit [22, 25, 32, 47, 49]. The last two mechanisms allow developers
to declare with a conditional when a layer must be activated.

One modularity issue, that is still present in COP, is coupling
between the conditional declaration in an activation and base code
(Figure 1a-b). This is so because developers implicitly depend on
variable references or method invocations in base code to declare a
conditional, making fragile programs, hindering the reuse, evolu-
tion, and modular reasoning of layers in real applications with COP.
Changes in base code or a conditional declaration may spuriously
(de)activate layers. A similar problem has been identified in other
areas like aspect-oriented programming [27], which is known as
fragile pointcuts [19, 40]. As Figure 1b shows and the example used
in [22], this kind of coupling is also present when the activation of
a layer depends on the activation status of another one.

This paper proposes interfaces to decouple base code from con-
ditionals to activate layers. In this proposal, developers can use in-
terfaces to exhibit part of the internal state (i.e., field values) and be-
havior (i.e., method executions) of an object, and conditional-based
activation mechanisms declare their predicates using explicitly iden-
tifiers available in this kind of interfaces (see Figure 1c). To ease
the reuse of the same layer in different base code (e.g., smartphones
and tablets), interfaces allow developers to define expressions that
reconcile conditional requirements with what objects, of a specific
base code, expose. As a layer is also an object, it can use an interface
to decouple a dependency with another layer (Figure 1d). Although
our proposal should work for any conditional-based activation
mechanisms, we apply interfaces to implicit activations.

We illustrate the benefits of interfaces through RI-JS, a practi-
cal JavaScript library that currently supports global and dynamic
deployment, enter and exit transition processes that are executed
around a layer activation, partial methodswith proceed support. RI-JS
uses reactive activations, an implementation variant for implicit

1In the Pervasive Computing area [38], context-oriented programming was used
previously without focusing on programming language aspects [15, 26]. Rather, articles
in this area referred to requirements and features of a system that depends on a context.

https://doi.org/10.1145/3422584.3423152
https://doi.org/10.1145/3422584.3423152

COP’20, July 21, 2020, Virtual Event, USA Paul Leger, Hidehiko Masuhara, and Ismael Figueroa

a) Coupling between the base program
 and COP abstractions.

Base

Application & COP

Layer 1

Layer 2

 Base

Application & COP

Layer 1

Layer 2

b) Coupling between layers. c) Interfaces for COP

Application

 Base Layer 1

Layer 2
COP Application

 Base Layer 1

Layer 2
COP

d) Interfaces for COP to resolve conflicts
between layers

dependencyImplicitAbstraction Explicit dependency Activation interface

Figure 1: Dependencies between a) layers and base code, and b) layers. Using interfaces for COP to c) decouple layers and base
code, and d) layers.

activations where a conditional is composed of signals, i.e., time-
varying values in Reactive Programming (RP) [11].

The rest of this paper is structured as follows. Section 2 moti-
vates the use of interfaces in COP. Section 3 presents our proposal
and Section 4 introduces a concrete implementation for JavaScript.
Section 5 discusses related work. Section 6 concludes this paper.

Availability. The current RI-JS implementation is on http://
github.com/pleger/rai-js. In addition, the example presented in
this paper is available at http://pleger.cl/sites/raijs [35] (revision
4f5d7034). Our proposal currently supports Nodejs (v13.6.0) [31],
Google Chrome (v83.0.4103.61) [17] and Mozilla Firefox (v77.0) [14]
browsers without the need for an extension.

2 ACTIVATION MECHANISMS IN
CONTEXT-ORIENTED PROGRAMMING

This section starts introducing Context-Oriented Programming
(COP) [20] and its mechanisms to activate layers. Finally, we exem-
plify a coupling issue that appears when conditional-based activa-
tion mechanisms are used.

2.1 Layers
In systems that adapt their behaviors at runtime according to an
identified context, the implementation of context identification and
behavior adaptations crosscut with several other concerns of the
system [20]. Although there are different visions how to achieve
COP [45], COP researchers mainly work on an abstraction named
layer [12]. This abstraction is used to modularly implement these
two concerns into a single module. In object-oriented languages
like JavaScript, a layer is composed of partial methods that vary the
behavior of their original methods when this layer is activated.

Following the example shown in [25], we illustrate the use of
layers. Consider a smartphone application that changes its layout
according to two screen orientations: landscape and portrait. The
application must adapt their behaviors to support these two pre-
vious orientations (e.g., icon distribution in the screen), implying
that there are crosscutting concerns that can be modularized with
layers. As figure 2 shows, landscape and portrait are layers that vary
the behavior of the method draw in playerView. Note these two layers
should not be activated at the same time due to an unexpected
application behavior; we discuss this issue in the next section.

Application & COP

playerView

draw()

landscape
<<layer>>

draw()

portrait
<<layer>>

draw()

rotate()

screen

angle = 0

Figure 2: Two layers where each one contains a partial
method of draw.

2.2 Activation Mechanisms
An activation mechanism establishes how and when a layer must
be activated. In the body of literature on COP, we can find different
kinds of mechanisms to activate layers: Imperative [16, 20] are
which activate layers with the execution of a statement like with,
implicit [7, 22, 25, 32, 47, 49] activate a layer when a developer-
defined conditional is satisfied, event-based [6, 23] are which use
the matching of events and a conditional to activate layers, and
combinations of them [4, 24]. Using the smartphone application
example, Figure 3 illustrates the three mechanisms to activate the
landscape layer when the rotation angle of the smartphone exceeds a
threshold. Unlike the imperative activation mechanism, activation
mechanisms use a conditional that must be satisfied to activate a
layer; in this example is screen.angle > THRESHOLD.

If we include the portrait layer as well, we need to deactivate
one layer when another is activated. To resolve activation conflicts
between layers, activation mechanisms provide ad-hoc constructs.
In the ServalCJ extension [25], for example, developers have to use
the construct when with the name of the layer:

activate landscape i f (screen . angle > THRESHOLD) ;
activate portrait when ! landscape ;

Activation and Scope. In this paper, we make a subtle difference
between when a layer is active and when a layer has to be applied
(scope). In other words, a layer may keep active although its scope
does not apply in a certain portion of a program execution. This
difference is useful in two examples. First, whenwe need a persistent

http://github.com/pleger/rai-js
http://github.com/pleger/rai-js
http://pleger.cl/sites/raijs

Interfaces for COP COP’20, July 21, 2020, Virtual Event, USA

if (screen.angle > THRESHOLD) {

 with(landscape) {
 playerView.draw();
 }
}

on(* playerView.draw()) &&
when (screen.angle > THRESHOLD) {
 with(landscape);
}

activate landscape if (screen.angle > THRESHOLD);

//imperative (contextJ) //event-based (JCop)

//implicit (ServalCJ extension for COP)

//applying layer on base code

Figure 3: Activating the landscape layer using different acti-
vation mechanisms.

Application & COP

playerView

draw()

rotate()

screen

angle = 0

landscape
<<layer>>

draw()

screen.angle > THRESHOLD

portrait
<<layer>>

draw()

! landscape

Figure 4: Dependencies between a) landscape and screen,
and b) landscape and portrait.

layer, that is keeping information in an active layer (e.g., the rotation
angle that activated the landscape layer). Second, when we need not
apply an active layer in some particular place without an execution
of the enter and exit transition process (e.g., a video game that
does not support the landscape mode). Taking into account this
observation, we consider per-object (i.e., lexical region) and per-
control-flow (i.e., dynamic extent) as the scope of an already activated
layer, and not as a different activation mechanism. Researchers
have already discussed different scope strategies (combinations of
lexical and dynamic scope) in programming languages [42], and
particularly in areas related to context-oriented programming [41,
43, 44].

2.3 Coupling in Activation Mechanisms
Unlike imperative activation mechanisms, remaining two mecha-
nisms use a developer-defined conditional that must be satisfied to
activate layers. This conditional is composed of base code variable
references or method executions, coupling layers and base code.
Figure 4 illustrates the dependency that appears between the base
code and layers in the smartphone example through the angle field
of screen. This dependency can also appear between layers, for ex-
ample, potrait depends on a specific name of another layer. This kind
of coupling, which is studied in other areas like aspect-oriented
programming [8, 19, 40], makes fragile programs, hindering the
reuse, evolution, and modular reasoning. Next, we illustrate these
three issues:
Reuse. Consider we now need to reuse the landscape and portrait

layers in a tablet application, whose base code may differ from

the smartphone application. Even if the tablet application contains
the screen object with similar behavior, any small change in this
object can make difficult the reuse of both layers. For example,
the screen.angle rotation is expressed in radians in the tablet base
code and degrees in the landscape layer, implying both layers have
unexpected behaviors. Therefore, if developers need to use these
layers, landscape must have a particular modification.

Evolution. A smartphone application is frequently being updated.
For example, if the smartphone now supports a 3d rotation, screen
may add the angleZ field and rename angle to angleXY, implying landscape

cannot be activated or, even worse, this application does not work
anymore. Hence, developers should evolve the smartphone applica-
tion with the layers together due to this coupling.

Modular reasoning. Developers of base code and layers are com-
monly different for two reasons at least. First, as mentioned in [8],
development in advanced paradigms like COP requires a high level
of expertise, being done by specialized developers, leading to dif-
ferent roles. Second, these developers should implement layers for
diverse devices like smartphones and tablets. As a consequence, for
example, a base code developer can get unexpected behavior if the
value of screen.angle is varied to animate a window (e.g., a crash in a
racing video game) because of the temporary activation of a layer.
As the previous example shows, an implicit dependency between
base code and layers obscure the software development reasoning.

3 INTERFACES FOR COP
This section presents our proposal to decouple base code and
conditional-based activation mechanisms.

Using the core idea behind the Open Modules [1] and related
proposals [8, 18, 39], we propose a shared interface abstraction that
communicates base code variable references or method executions
with conditionals used in most activation mechanisms (Section 2.2).
Our proposed interfaces allow developers to exhibit field values
and method executions (with returns) from any object, which are
used in the conditional declaration to (de)activate a layer. In addi-
tion, these interfaces also accept expressions as values to exhibit to
address the reuse issue (Section 2.3). For example, consider the ex-
ample of the angle rotation that is exhibited in radians but the layer
requires in degrees, the expression rotation: angle*180/PI can be used
in the interface to reconcile both implementations. Likewise, as a
layer is also an object, its conditional evaluation can be exhibited to
other layers to resolve activation conflicts. With this kind of inter-
face, developers can replace the implicit dependency between base
code and layers with an explicit dependency between this interface
and base code/layers. We apply interfaces to implicit activation
mechanisms, but they may be applied to another conditional-based
activation mechanism.

Figure 5 illustrates the use of our proposal in the smartphone
application example. The screen object exhibits angle as rotation and
the landscape layer uses this alias to declare its conditional. Likewise,
this layer exhibits its conditional evaluation as noPriorityLayer which
is used by portrait. Using interfaces, base code and layers can be
reused, reasoned, and evolved in an independent manner. To evi-
dence theses benefits that bring interfaces, Figure 6 shows how the
landscape layer is used in a tablet application (Section 2.3):

COP’20, July 21, 2020, Virtual Event, USA Paul Leger, Hidehiko Masuhara, and Ismael Figueroa

Application

playerView

draw()

rotate()

screen

angle = 0

landscape
<<layer>>

draw()

rotation > THRESHOLD

portrait
<<layer>>

draw()

! noPriorityLayout

angle: rotation

landscape:
noPriorityLayout

COP

Figure 5: Interfaces to decouple layers and base code, and
layers themselves.

Smartphone

rotate()

screen

angle = 0

landscape
<<layer>>

draw()

rotation > THRESHOLDangle: rotation

COP Tablet

rotate()

screen

angle = 0 (version 1.0)
 angleXY = 0 (version 2.0)
 angleZ = 0 (version 2.0)

rotation:
angleXY*180/PI

Figure 6: Using interfaces, the same layer is used in two dif-
ferent scenarios.

Reuse.We can observe that the landscape layer is used in a second
scenario without modification.
Evolution. The tablet application is updated from version 1 to 2,
and a base code developer has only to update what variable needs to
be exhibited now (angleXY). In addition, this variable also changes its
kind of value (degrees to radians), and interfaces allow the developer
to adapt it to satisfy the layer requirements.
Modular reasoning. As we see in the previous point, a base code
developer onlyworries about updates that occur in base code, easing
modular reasoning.

4 RI-JS
We provide a concrete and practical implementation of this proposal
through RI-JS [35], a JavaScript library that currently supports
interfaces, global and dynamic deployment, enter and exit activation
transition processes, and partial methods with proceed support. RI-JS
uses reactive activations, an implementation of implicit activations
where conditionals are composed of signals, i.e., time-varying values
in Reactive Programming (RP) [11, 13]. If a signal changes its value,
the entire conditional is evaluated to determine whether a layer is
activated or not. We introduce RI-JS through an implementation of
the smartphone application example.
Base code and layers. Similar to SignalJ [21], RI-JS allows develop-
ers in JavaScript to create and assign signal values, e.g., angle. The
layers landscape and portrait are created with an activation conditional
and an enter transition. Conditionals are signal expressions, also
known as composite signals [25]. The enter transition is executed
when its layer is activated; in this implementation, both layers ro-
tate the screen when are activated. In addition, developers can add

an exit transition, which is executed when the layer is deactivated.
Both enter and exit transitions are optional for the creation of a
layer.
/ / Base code
let screen = {
angle : new Signal (0) ,
rotate : function () { . . . }

} ;

let playerView = {
draw : function () { . . . }

} ;

/ / layers
let landscape = {
conditional : new CompSignal(" rotation > THRESHOLD") ,
enter : function () { screen . rotate () ; }

} ;

let portrait = {
conditional : new CompSignal(" ! noPriorityLayout ") ,
enter : function () { screen . rotate () ; }

} ;

Partial methods. To create a layer, COP developers do not require
to include partial method implementations. This is so because base
code developers do know how the application must change when a
layer is activated. For this reason, partial methods are added after
creating a layer. In this implementation of the smartphone example,
landscape and portrait layers vary the draw method in playerView.
RI . addPartialMethod (landscape , playerView , "draw" ,function () { . . . }) ;
RI . addPartialMethod (portrait , playerView , "draw" ,function () { . . . }) ;

Interfaces. Any object can exhibit its reactive field values or reac-
tivemethod executions (i.e., composite signals) and give an alias that
should be used by layers. The piece of code below shows that screen
and landscape exhibit a reactive field value and a reactive method
execution respectively.
RI . exhibit (screen , { rotation : " angle " }) ;
RI . exhibit (landscape , { noPriorityLayout : " conditional " }) ;

Dynamic and global deployment. The current implementation
of RI-JS supports global and dynamic (un)deployments of layers. In
the smartphone example, we deploy two layers: landscape and portrait.
The layer activations order follows the order of changes in exposed
reactive values. For example, when landscape varies the result of its
conditional, RI-JS triggers the portrait conditional evaluation.
RI . deploy (landscape) ;
RI . deploy (portrait) ;

As the previous implementation shows, RI-JS does not extend the
syntax of JavaScript because it is provided as a library, increasing
its potential use in existing JavaScript applications. For the same
reason, RI-JS does not require to transform a piece of code to work.

4.1 Performance
The main goal of this paper focuses on expressiveness to decouple
base code and layers. For this reason, we have not sacrificed any
potentially valuable feature in RI-JS on the basis of its expected
cost. Nevertheless, we are interested in making RI-JS in a practical
implementation for JavaScript developers in context-oriented pro-
gramming. Therefore, we carried out a preliminary performance

Interfaces for COP COP’20, July 21, 2020, Virtual Event, USA

let obj = {
 field: new Signal(0),
 method: function () {
 return this.field.value = 1;
 }
};

obj.method();

a) Objects

let obj = {
 field: new Signal(0),
 method: function () {
 return this.field.value = 1;
 }
};

RI.exhibit(obj, {field: “field”});

c) Objects and interfaces

let obj = {
 field: new Signal(0),
 method: function () {
 return this.field.value = 1;
 }
};

b) Objects and layers

RI.deploy({condition: “field > 0”});

RI.exhibit(obj, {field: “field”});

obj.method(); obj.method();

RI.deploy({condition: “field > 0”});

n

1

Number of executions
per n creations

Figure 7: Three pieces of code used for the RI-JS performance evaluation: a) Only creates objects, b) creates objects and deploys
layers, and c) creates objects and interfaces.

0
10
20
30
40
50
60
70
80

0 100 200 300 400 500

M
ill

ise
co

nd
s

Number of creations of objects/Layers/Activation interfaces

Preliminary Performance
(ms / number of creations)

Objects Objects and layers Objects and activation interfacesObjects and interfaces

Figure 8: A preliminary performance evaluation about the
current implementation of RI-JS.

evaluation. For this evaluation, we used Nodejs (v13.6.0) [31] on
Macbook Pro (2017), 3.1 GHz Dual-Core Intel Core i5 with 8GB of
RAM running macOS Catalina, and the RI-JS GitHub revision was
4f5d703 (June 3, 2020).

Figure 7 shows the three JavaScript programs executed to eval-
uate RI-JS performance. The first program only creates until 500
objects (Figure 7a), the second one creates/deploys until 500 object-
s/layers with one interface (Figure 7b), and the last one creates until
500 objects/interfaces with one layer (Figure 7c). Using these three
programs, Figure 8 shows a chart line that represents a prelimi-
nary performance evaluation of the current RI-JS implementation:
average time of 100,000 executions for each number of creations
(x-axis). Although RI-JS does not observe every statement trying to
activate a layer or execute a partial method, the current implemen-
tation is clearly slower than a program without RI-JS. In addition,
an incremental use of interfaces affects performance. This could
be due to the propagation of data stream in an unoptimized and
naive reactive programming implementation [3]. In JavaScript, we
can find proposals like Flapjax [30] and RxJS [36] that have also
faced performance issues to extend this language with reactive
programming.

5 RELATEDWORK
This section briefly reviews three kinds of proposals: conditional-
based activation mechanisms, group-based adaptation mechanisms,

and interfaces in aspect-oriented programming (AOP) [27]. The
last two kinds of proposals are important because group-based
adaptations modify object behaviors when certain conditionals are
satisfied, and interfaces for COP intend to address coupling issues
that appear in activation mechanisms using AOP ideas.
Conditional-based activation mechanisms. As mentioned in
Section 2, implicit and event-based activation mechanisms use ex-
pressions that evaluate if certain requirements are satisfied to acti-
vate a layer. However, these twomechanisms use different strategies
to evaluate these expressions. For instance, a) implicit activation
in ContextPy [48] verifies if a conditional is satisfied every time
a partial method may be called, and b) event-based activation in
EventCJ [23] uses pointcuts from aspect-oriented programming to
activate a layer when certain join points are matched. However,
these kinds of activations make an implicit dependency through
variable references and method calls/executions in base code with
layers. In our proposal, conditionals only use variables that are
available in an interface, where these variables do not require a
bijective relation to base code. For example, a variable in our in-
terfaces can correspond to the return of a method execution or a
developer-defined expression.
Group-based behavior adaptation mechanisms. In this kind of
mechanisms such as Predicated Generic Functions [46] and Inter-
face Mediations [33], an object adapts its current behavior while
belongs to a group, and the membership depends on the object inter-
nal state [34]. Whereas group-based behavior adaptations (de)active
the group membership of one object based on its internal state, in-
terfaces work as the activator of a group based on internal states of
one or more objects. Hence, interfaces and group-based behavior
adaptations can be considered as complementary because the for-
mer (de)actives groups and the latter (de)activates the membership
of objects to these groups.
Interfaces in aspect-oriented programming. In 2005, Aldrich [1]
discusses issues that arise from the implicit dependency between
base code and pointcuts. As an example, the fragile pointcut is-
sue [19, 40] refers to any change in base code that (silently) gen-
erates spurious advice executions or unexpectedly disables them.
To address these issues, the author proposes open modules to al-
low developers to explicitly specify what join points of a program
execution can be advised by an aspect. Later, a number of related
proposals have been published [8, 18, 39]. For example in Join Point
Interfaces [8], base code developers must explicitly establish what

COP’20, July 21, 2020, Virtual Event, USA Paul Leger, Hidehiko Masuhara, and Ismael Figueroa

join points are exhibited by objects of a class; allowing the modular
reasoning of the application of an aspect. Our proposal follows
the same line of these proposals for conditional-based activation
mechanisms in COP. In addition, interfaces allows developers to
exhibit expressions composed of variables or method executions
that come from different objects.

6 CONCLUSIONS AND FUTUREWORK
There is a strong demand for systems that can adapt their behaviors
according to an identified context nowadays. COP aims to develop
these systems in a modular manner. However, conditional-based
activation mechanisms are not so modular because coupling of
base code and conditionals declarations. This paper has proposed
interfaces that help developers decouple these conditional declara-
tions from base code through a shared interface. We applied our
proposal to implicit activation mechanisms and provided a concrete
implementation for JavaScript, named RI-JS. While our proposal
could be applied to other activation mechanisms, we think its major
challenges are related to:

Robustness.We help to decouple base code and layers. However,
this kind of decoupling is not completely robust2 because condi-
tionals require a set of variables from (potentially different) objects
that may not exhibit them. In the current version of our model, if
one of the variables used in a conditional is not exhibited by any
object, the conditional is evaluated to false and its associated layer
is not activated at that moment. The previous point means that
base code developers have to be concerned to satisfy conditional
requirements, breaking the explicit dependency between base code
and layers. This is because of the dynamic nature of our proposal,
meaning that an object can make the decision of what exhibit at
runtime. If we move on to a static approach, a conditional checker
for these interfaces may help to address this issue.

Case study. Researchers in systems that depend on the context
havementioned the need for specialized programming paradigms [2,
37]. To evaluate the benefits of our proposal in a real scenario, we
plan to use RI-JS to develop this kind of system. A potential case
study where we can apply these interfaces is presented in [28], in
which authors present a Web application that adapts its behavior
to the particular learning rhythm of a primary school student in
math.

REFERENCES
[1] Jonathan Aldrich. 2005. Open Modules: Modular Reasoning about Advice. In

Proceedings of the 19th European Conference on Object-Oriented Programming
(ECOOP 2005) (Lecture Notes in Computer Science), Andrew P. Black (Ed.). Springer-
Verlag, Glasgow, UK, 144–168.

[2] Unai Alegre, Juan Carlos Augusto, and Tony Clark. 2016. Engineering context-
aware systems and applications: A survey. Journal of Systems and Software 117
(July 2016), 55–83.

[3] Edward Amsden. 2011. A Survey of Functional Reactive Programming Concepts,
Implementations, Optimizations, and Applications. Technical Report. Rochester
Institute of Technology.

[4] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko Masuhara. 2014. Unifying
multiple layer activation mechanisms using one event sequence. In Proceedings of
6th International Workshop on Context-Oriented Programming, COP 2014. Uppsala,
Sweden, 1–6.

2“A system or component that can function correctly in the presence of invalid inputs
[uses] or stressful environmental conditions.”(IEEE Standards Committee [10]).

[5] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara.
2011. ContextJ: Context-oriented Programming with Java. Computer Software
28, 1 (Feb. 2011), 272–292.

[6] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and
Kazunori Kawauchi. 2010. Event-Specific Software Composition in Context-
Oriented Programming. In Software Composition, Benoît Baudry and Eric
Wohlstadter (Eds.). Malaga, Spain, 50–65.

[7] Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, Andoni Lombide Car-
reton, and Wolfgang De Meuter. 2012. Interruptible Context-dependent Execu-
tions: A Fresh Look at Programming Context-aware Applications. In Proceedings
of the ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. Tucson, Arizona, USA, 67–84.

[8] Eric Bodden, Éric Tanter, andMilton Inostroza. 2014. Join Point Interfaces for Safe
and Flexible Decoupling of Aspects. ACM Transactions on Software Engineering
and Methodology 23, 1 (Feb. 2014), 1–41.

[9] Marie Chan, Daniel Estèvel, Jean Fourniols, Christophe Escriba, and Eric Campo.
2012. Smart wearable systems: Current status and future challenges. Artificial
Intelligence in Medicine 56, 3 (Nov. 2012), 137–156.

[10] IEEE Standards Committee et al. 1990. IEEE standard glossary of software
engineering terminology. IEEE Std 610.12-1990 (Dec. 1990), 1–84.

[11] Gregory Harold Cooper. 2008. Integrating Dataflow Evaluation into a Practical
Higher-order Call-by-value Language. Ph.D. Dissertation. Providence, RI, USA.

[12] Pascal Costanza and Robert Hirschfeld. 2005. Language Constructs for Context-
oriented Programming: An Overview of ContextL. In Proceedings of the 2005
Symposium on Dynamic Languages. San Diego, USA, 1–10.

[13] Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In Proceedings
of the Second ACM SIGPLAN International Conference on Functional Programming
(IFCP). Amsterdam, The Netherlands, 263–273.

[14] Firefox. 2020. A free and open-source Web browser. (2020). https://www.mozilla.
org (v77.0).

[15] M. L. Gassanenko. 1998. Context-Oriented Programming. In euroFORTH. Schloss
Dagstuhl, Germany.

[16] Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-Christophe
Libbrecht, and Julien Goffaux. 2011. Subjective-C: Bringing Context to Mobile
Platform Programming. In Proceedings of the Third International Conference on
Software Language Engineering. Eindhoven, The Netherlands, 246–265.

[17] Google Chrome. 2020. A free and open-source Web browser. (2020). https:
//www.google.com/chrome (v83.0.4103.61).

[18] William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit
Tewari, Yuanfang Cai, and Hridesh Rajan. 2006. Modular Software Design with
Crosscutting Interfaces. IEEE Software 23, 1 (2006), 51–60.

[19] Kris Gybels and Johan Brichau. 2003. Arranging Language Features for More
Robust Pattern-based Crosscuts. In International Conference on Aspect-Oriented
Software Development (AOSD). Boston, USA, 60–69.

[20] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-oriented
Programming. Journal of Object Technology 7, 3 (March-April 2008), 125–151.

[21] Tetsuo Kamina and Tomoyuki Aotani. 2018. Harmonizing Signals and Events with
a Lightweight Extension to Java. The Art, Science, and Engineering of Programming
2, 3 (March 2018), 1–29.

[22] Tetsuo Kamina and Tomoyuki Aotani. 2019. TinyCORP: A Calculus for Context-
Oriented Reactive Programming. In Proceedings of the Workshop on Context-
Oriented Programming (COP). London, UK, 1–8.

[23] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2011. EventCJ: A
Context-oriented Programming Language with Declarative Event-based Context
Transition. In Proceedings of the Tenth International Conference on Aspect-oriented
Software Development. Porto de Galinhas, Brazil, 253–264.

[24] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2016. Generalized
Layer Activation Mechanism for Context-Oriented Programming. LNCS Trans-
actions on Modularity and Composition 9800 (2016), 123–166.

[25] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2017. Push-based
reactive layer activation in context-oriented programming. In Proceedings of the
9th International Workshop on Context-Oriented Programming (COP). Barcelona,
Spain, 17–22.

[26] Roger Keays and Andry Rakotonirainy. 2003. Context-oriented programming.
In Proceedings of the 3rd ACM international workshop on Data engineering for
wireless and mobile. San Diego, USA, 9–16.

[27] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C.V. Lopes, C. Maeda, and A. Mend-
hekar. 1996. Aspect Oriented Programming. In Special Issues in Object-Oriented
Programming. Max Muehlhaeuser (general editor) et al.

[28] Paul Leger, Grecia Gálvez, Lino Cubillos, Diego Cosmelli, Milton Inostroza, Éric
Tanter, Gina Luci, and Jorge Soto Andrade. 2014. ECOCAM, un sistema com-
putacional adaptable al contexto para promover estrategias de cálculo mental:
características de su diseño y resultados preliminares. Revista Latinoamericana
de Investigación en Matemática Educativa 17, 1 (March 2014), 33–58.

[29] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. 2011. An
Open Implementation for Context-oriented Layer Composition in ContextJS.
Science of Computer Programming 76, 12 (Dec. 2011), 1194–1209.

https://www.mozilla.org
https://www.mozilla.org
https://www.google.com/chrome
https://www.google.com/chrome

Interfaces for COP COP’20, July 21, 2020, Virtual Event, USA

[30] Leo Meyerovich, Arjun Guha, Jacob Baskin, Gregory Cooper, Michael Greenberg,
Aleks Bromfield, and Shriram Krishnamurthi. 2009. Flapjax: A Programming Lan-
guage for Ajax Applications. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications. Orlando,
Florida, USA, 1–20.

[31] NodeJS. 2020. A JavaScript runtime built for the server side. (2020). https:
//nodejs.org (v13.6.0).

[32] Stefan Ramson, Jens Lincke, and Robert Hirschfeld. 2017. The declarative na-
ture of implicit layer activation. In Proceedings of the International Workshop on
Context-Oriented Programming (COP). London, UK, 7–16.

[33] Patrick Rein, Robert Hirschfeld, Stefan Lehmann, and Jens Lincke. 2016. Com-
patibility Layers for Interface Mediation at Run-Time. In Companion Proceedings
of the 15th International Conference on Modularity. Málaga, Spain, 113–118.

[34] Patrick Rein, Stefan Ramson, Jens Lincke, Tim Felgentreff, and Robert Hirschfeld.
2017. Group-Based Behavior AdaptationMechanisms in Object-Oriented Systems.
IEEE Software 34, 6 (Nov. 2017), 78–82.

[35] RI-JS Website. 2019. A COP practical library that uses Interfaces for COP in
JavaScript. (April 2019). http://pleger.cl/sites/raijs

[36] RxJS. 2018. Reactive Extensions for JavaScript. (2018). https://rxjs.dev
[37] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2012. Context-oriented

programming: A software engineering perspective. Journal of Systems and
Software 85, 8 (Aug. 2012), 1801–1817.

[38] M. Satyanarayanan. 2001. Pervasive computing: Vision and challenges. IEEE
Personal Communications 8, 4 (Aug. 2001), 10–17.

[39] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, and Christian Kästner. 2010.
Types and Modularity for Implicit Invocation with Implicit Announcement. ACM
Transactions on Software Engineering and Methodology 20, 1 (June 2010), Article
1.

[40] Maximilian Stoerzer and Juergen Graf. 2005. Using pointcut delta analysis to
support evolution of aspect-oriented software. In IEEE International Conference
on Software Maintenance (ICSM). Budapest, Hungary, 653–656.

[41] Éric Tanter. 2008. Expressive Scoping of Dynamically-Deployed Aspects. In
Proceedings of the 7th ACM International Conference on Aspect-Oriented Software
Development (AOSD). Brussels, Belgium, 168–179.

[42] Éric Tanter. 2009. Beyond Static and Dynamic Scope. In Proceedings of the 5th
ACM Dynamic Languages Symposium (DLS 2009). Orlando, FL, USA, 3–14.

[43] Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, and Mario Südholt. 2009.
Expressive Scoping of Distributed Aspects. In Proceedings of the 8th ACM In-
ternational Conference on Aspect-Oriented Software Development (AOSD 2009).
Charlottesville, USA, 27–38.

[44] Rodolfo Toledo, Paul Leger, and Éric Tanter. 2010. AspectScript: Expressive
Aspects for the Web. In Proceedings of the 9th ACM International Conference on
Aspect-Oriented Software Development (AOSD). Rennes and Saint Malo, France,
13–24.

[45] David Ungar, Harold Ossher, and Doug Kimelman. 2014. Korz: Simple, symmetric,
subjective, context-oriented programming. In Onward! 2014 - Proceedings of the
2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Part of SPLASH 2014. Portland, USA, 113–131.

[46] Jorge Vallejos, Sebastián González, Pascal Costanza, Wolfgang De Meuter, Theo
D’Hondt, and Kim Mens. 2010. Predicated Generic Functions: Enabling Context-
Dependent Method Dispatch. In SC’10: Proceedings of the 9th international confer-
ence on Software Composition. Malaga, Spain, 66–81.

[47] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. 2007. Context-oriented
Programming: Beyond Layers. In Proceedings of International Conference on Dy-
namic Languages. Lugano, Switzerland, 143–156.

[48] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. 2007. Context-Oriented
Programming: Beyond Layers. In Proceedings of the International Conference on
Dynamic Languages (ICDL 2007). 143–156.

[49] Takuo Watanabe. 2018. A Simple Context-Oriented Programming Extension to
an FRP Language for Small-Scale Embedded Systems. In Proceedings of the 10th
International Workshop on Context-Oriented Programming: Advanced Modularity
for Run-time Composition. Amsterdam, Netherlands, 23–30.

https://nodejs.org
https://nodejs.org
http://pleger.cl/sites/raijs
https://rxjs.dev

	Abstract
	1 Introduction
	2 Activation Mechanisms inContext-Oriented Programming
	2.1 Layers
	2.2 Activation Mechanisms
	2.3 Coupling in Activation Mechanisms

	3 Interfaces for COP
	4 RI-JS
	4.1 Performance

	5 Related Work
	6 Conclusions and Future Work
	References

