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ABSTRACT
𝜆VL is a core calculus based on the concept of programming with

versions that supports multiple versions of program definitions and

values inherently in the semantics of a language. However, since

𝜆VL was not designed as a surface language, its complex syntax

and semantics only provide primitive constructs to manipulate

versioned values. In order to realize the programming with versions

concept in a real-world language, we propose a compilation method

for functional languages through 𝜆VL and discuss how real-world

programs can be written in a Haskell-like functional language with

versions.

CCS CONCEPTS
• Theory of computation → Type theory; Linear logic; • Soft-
ware and its engineering → Software configuration manage-
ment and version control systems; Software libraries and
repositories.

KEYWORDS
Program evolution, dependencies, software product lines, Graded

modal types, Coeffects
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1 INTRODUCTION
Updates are an essential part of the software life cycle. Through

updates, developers improve maintainability, fix bugs, optimize
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performance, and provide new features. Units of updates are called

packages, each of which is distinguished by version numbers.

Some updates are incompatible to their previous versions, which

can cause problems with the client software. The situation becomes

more complicated in software development with many packages

some of which depend some others. Sometimes, two incompatible

versions of a package are required from different packages in a

system, which is not possible to build, or link, or load in most

programming languages.

Many existing techniques seek to avoid using two versions of a

package with the same name. Semantic versioning, for example, en-

forces versioning conventions to indicate incompatible changes and

helps developers avoid updating to incompatible versions. Package

name mangling changes the package name so that two versions

can be used simultaneously. This technique is used in advanced

package managers such as cargo
1
and npm

2
, but it has the problem

of treating the two versions as completely different ones.

Despite the proliferation of such versioning rules and techniques,

updating remains a burden on package users. Even in ecosystems

that adopt semantic versioning, one-third of minor updates in-

troduce at least one breaking change [17]. Updating dependent

packages to incompatible versions is an extra burden on package

users, making them reluctant to update dependent packages [1].

As a result, adoption of new versions in the downstream is much

slower than the evolution of packages in the upstream [12].

Programming with versions [22, 23] is a proposal to embrace

incompatible updates by allowing to use multiple versions of pro-

gramming elements simultaneously. 𝜆VL is a core calculus based on

the proposal, where a versioned value represents multiple possibili-

ties of a value (including a function value) computed in different

versions. Application of a versioned value to a versioned (functional)

value performs computation with pairs of matching versions. The

type system guarantees the existence of a matching version in every

sub-components in the program.

𝜆VL is a mere calculus, not a fully-fledged language. Program-

ming directly in 𝜆VL is infeasible because (1) a unique syntax derived

from substructural languages, which is difficult to understand (2)

1
If two or more packages have a common dependency on an incompatible version,

cargo will build two separate copies of the dependency [8].

2
npm builds dependencies graph as dependency trees. If multiple versions of a package

with the same name are indirectly needed, npm allows each version as a nested

dependency. This strategy bloats code size, so newer versions have mechanisms to

reduce redundant dependencies. [13]
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App directly depends on Dir and Hash. Dir depends on Hash. After an
update, App requires the two distinct versions of Hash.

Figure 1: App dependencies before (top) and after (bottom)
the update.

exposed versions as a version label in the code, so developers need

to understand the type system to write safe programs.

This paper proposes a method of compiling real-world functional

language through 𝜆VL. This allows developers to write programs

in their favorite functional language while enjoying the benefits

of programming with versions; i.e., simultaneous use of multiple

versions and strict checking of version inconsistency.

The compilation consists of two steps: compilation of Haskell-

like functional language into GrMini and bundling top-level defi-

nitions as a versioned record. The first step compiles each version

of a program in a Haskell-subset to GrMini [14], a subset of 𝜆VL.

This compilation is based on the Girard’s translation [9] from the

simply-typed lambda calculus into the linear calculus, and elimi-

nates the complicated syntax from the surface language for 𝜆VL.

The second step bundles all versions of each top-level definition into

a single versioned record. This translation is performed for each

corresponding symbol and uses version information as a version

label. This method makes it possible to omit version information

from the surface program and allows programmers to construct

𝜆VL programs more easily.

As an extension of this translation technique, we discuss a

method for extracting a specific version of the Haskell-subset pro-

gram from a 𝜆VL program. This method uses type information to

translate a 𝜆VL program into a version-specified extraction. We

expect the extracted program preserves the original semantics of

the original Haskell-subset program. It is also possible to reuse an

existing runtime to run programs retrieved in this manner.

The rest of this paper is organized as follows. Section 2 revis-

its 𝜆VL with a motivating example. Section 3 demonstrates how

to compile a Haskell program through 𝜆VL by using concrete ex-

amples. Section 4 discusses further developments expected under

programming with versions. Section 5 shows related work. Finally,

section 6 concludes the paper.

2 PROGRAMMINGWITH VERSIONS
2.1 Motivating Example
Before explaining the main ideas behind programming with ver-

sions, we explain a small example to illustrate the essence of in-

compatibility problems. Here, we consider a scenario in which a

1 −− App version 1
2 import Dir (exists)
3 import Hash (makeHash)
4

5 main :: ()
6 main () = let str = getArg () in
7 let digest = makeHash str in
8 if exists digest then print "Found"

9 else error "Not found"

1 −− Dir version 1
2 import Hash (match)
3

4 exists :: String -> Boolean
5 exists hash =
6 let filelist = getFileList () in
7 foldLeft
8 (\(acc, fn) -> acc || match fn hash)
9 false

10 filelist

1 −− Hash version 1
2 makeHash :: String -> String
3 makeHash str = (* generate hash based on MD5 *)
4

5 match :: String -> String -> Boolean
6 match str hash = (makeHash str) == hash

Figure 2: App, Dir, and Hashmodules before the update.

1 −− Hash version 2
2 makeHash :: String -> String
3 makeHash str = (* generate hash based on SHA-3 *)
4

5 match :: String -> String -> Boolean
6 match str hash = (makeHash str) == hash

Figure 3: Hashmodule after the update.

breaking change is introduced to a dependent package during the

development of an application App.
The top of figure 1 shows the App dependencies. App is a file

explorer and provides hash-based file search. This feature is devel-

oped using the system library Dir and the cryptographic library

Hash. Note that Dir also depends on Hash.
App, Dir, and Hash in version 1 are shown in Figure 2. The

pseudo-code is written in a Haskell-like language. Hash defines a

function makeHash to generate a hash value from a given string

using the MD5 algorithm. The match function determines whether

the first argument string and the second argument hash are equal

under the relation of the function makeHash.
Dir defines a function exists that determines if there exists a

file with a file name equal to the given hash.
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App uses the makeHash defined in Hash to convert a string given

from standard input into a hash. Then, using exists defined in Dir,
it prints Found if such file exists; otherwise, it results in an error

Not Found. Assuming that there is a file with the required name

in the directory, thus, the executable of App with the dependency

shown in on top of Figure 1 will print Found on the standard output.

Now, the App developer updated Hash from version 1 to version

2 due to security concerns, as shown in Figure 3. Figure 3 shows

the updated version of Hash. Version 2 of Hash uses SHA-3 as the

new hashing algorithm.

After the update, App dependencies are changed as shown at the

bottom of Figure 1. In the updated dependency, it is important to

note that Dir continues to use version 1 of Hash, so that App and

Dir require different Hash versions. The situation in Dir can occur

for a variety of reasons. For example, Dir has already abandoned

its maintenance, or perhaps other functions in Dir must continue

to use the functionality provided by version 1 of Hash.
This update makes no changes to the App code but causes prob-

lems with App. When multiple versions of the same package are

required, build systems reject the program. Even if the programs

were successfully compiled with a technique that allows use of mul-

tiple versions, such as name mangling, the program would result

in an error with an output Not found.
This unexpected output is due to the difference between the two

versions required for Hash: the App uses version 2 of makeHash
in line 7 of App. In line 7 of App, makeHash from Hash version

2 generates a hash value with SHA-3, and the value is assigned

to digest. On the other hand, exists uses version 1 of match
(including makeHash) to determine hash equivalence, so exists
compares hashes generated by two completely different algorithms,

SHA-3 and MD-5. As a result, in line 8 of App, exists digest
evaluates to false against the expected behavior.

This example suggests that we should take care of consistency

of versions in the use of values produced by packages. As long as

the results of Hash in two versions were used independently, there

would be no problem. However, it would be semantically incorrect

if those results were compared each other.

Therefore, the developers use build tools with dependency analy-

sis functionalities to avoid the simultaneous use of multiple versions

in actual development. Such a tool will collect and analyze the de-

pendencies for each package and reject the combination of packages

where incompatible versions are needed simultaneously, as in the

bottom of figure 1.

As a side issue, there is also a problem called version-locking [16].

In the situation shown in Figure 2, the only way to update Hash
is to wait for Dir to support version 2 of Hash or to abandon

Dir and rewrite the same functionality from scratch yourself. For

more complex software with many dependencies, a huge amount

of work is required to update a single package. The fact that all

interoperator must use compatible versions of a package is a threat

to software reuse. Indeed, many developers are unwilling to update

dependencies unless there is a significant update [1].

2.2 Lambda VL
2.2.1 Versioned Values. Programming with versions in 𝜆VL pro-

poses to use multiple versions simultaneously. To achieve this,

𝜆VL provides versioned values, constructs made of version record

{𝑙𝑖 = 𝑡𝑖 }3 representing a program that holds the values of multiple

versions.

𝑙𝑖 is a version label identifying a particular version combina-

tion. For simplicity, we assume that there are only two version

variations of Dir, namely 𝑙1 for version 1 and 𝑙2 for version 2.

However, in the actual development, each module has a version

space, so it is necessary to consider the mapping from the la-

bel to the combinations of versions for each module, such as

𝑙1 ↦→ {version 1 of Module A, version 2 of Module B}.
For example, in 𝜆VL, the makeHash in Hash can be rewritten as

follows.

makeHash =

{𝑙1 = 𝜆 str . (* generate hash based on MD5 *),

𝑙2 = 𝜆 str . (* generate hash based on SHA-3 *)}

ThismakeHash is a versioned value, and both versions of makeHash
definitions are bundled into a version record. In this way, a client

program that uses Hash can refer to both program versions by the

variable makeHash.
Another way to construct a versioned value is by promotion [𝑡],

which lifts a normal term to a versioned value. For example, [1]
is a versioned value with the Int value 1 available for all versions.
Terms lifted by promotion do not have version labels, but the type

system infers which versions are available.

In 𝜆VL, programs are constructed by function application. To

apply a function of a versioned value, such as makeHash, the ver-
sioned value must be passed as an argument. For function applica-

tion between versioned values, 𝜆VL provides contextual let-binding
let [𝑥] = 𝑡 in 𝑡 . For example, a part of line 8 of the main function
can be rewritten as follows.

let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str] in [exists digest] (1)

The program initially binds the variable digest to the versioned

value constructed by makeHash str . Here, the result of the evalua-
tion of makeHash str is the versioned value, which is evaluated in

the context of multiple versions. That is, makeHash str constructs
a program with the possibility of computing both the hash value

in MD5 corresponding to version 1 (𝑙1) and the hash value in SHA-

3 corresponding to version 2 (𝑙2). Programs constructed in this

way will be evaluated in the context of a particular version by the

extraction described later.

𝜆VL preserves all possible versions until a particular version is

extracted. The match function that exists calls (and makeHash
used inside it) in App is a versioned value available in both versions

1 and 2 and does not depend on a specific version. As a result, exists
is also a function of a versioned value that can be evaluated in both

versions 1 and 2. Finally, the program constructs a computation

that can interpret the filename digest as a value generated by the

hash with MD5 for version 1 and SHA-3 for version 2.

3
Precisely speaking, the original notation of versioned record {𝑙𝑖 = 𝑡𝑖 | 𝑙𝑘 } has an

additional element called a default version 𝑙𝑘 , a label that indicates in which version

context the term will be evaluated. However, this is not an essential issue in this paper

and will therefore be omitted.
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2.2.2 Extraction. To extract a specific version of a constructed

program, 𝜆VL provides an extraction by specifying a label for the

versioned value. All evaluation of versioned value can proceed only

after an extraction. For example, extracting the program (1) with 𝑙1
and 𝑙2 from the previous program is as follows.

let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str] in [exists digest] .𝑙1
let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str] in [exists digest] .𝑙2

Both programs evaluate to true.

let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str] in [exists digest] .𝑙1
→∗ [exists (makeHash str)] .𝑙1
→∗ exists (* MD5 hash (ver 1) *)

→ true

Note that version 1 ofmatch andmakeHash in exists are extracted
in the evaluation of the second to third lines.

Even if we use multiple versions of a program within a single

program, there will be no confusion between different hash gener-

ation algorithms because extraction allows programs with multiple

possible versions to be evaluated in the context of one consistent

version.

2.3 The Lambda VL Type System
2.3.1 Type of a Versioned Value. The 𝜆VL type system computes

the available versions for a program constructed by a function

application.

For example, the type system assigns the following type to

makeHash.

makeHash : □{𝑙1,𝑙2 } (String → String)
makeHash =

{𝑙1 = 𝜆 str . (* generate hash based on MD5 *),

𝑙2 = 𝜆 str . (* generate hash based on SHA-3 *)}

The type of a versioned value is given by a set of version labels

for which the value is available, in addition to the usual type. We

call such a set of version labels version resources. Here, makeHash
has the type String → String and is available in versions 1 (𝑙1) and

2 (𝑙2).

Similarly, the type system assigns the following type to exists.

exists : □{𝑙1,𝑙2 } (String → Boolean)
exists = {𝑙1 = 𝜆 str . · · · , 𝑙2 = 𝜆 str . · · · }

For the function application, The type system computes an in-

tersection of version resources of all subterms. In this way, the

type system knows which labels are consistent with its programs.

For example, the type system assigns the following types to the

program (1).

let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str]
in [exists digest] : □{𝑙1,𝑙2 }Bool (2)

Since makeHash and exists are available in both 𝑙1 and 𝑙2, all

subterms in this program are also available in versions 1 (𝑙1) and
2 (𝑙2). Thus, the type system indicates that this program is also

available in versions 1 (𝑙1) and 2 (𝑙2).

𝑡 ::= 𝑥 | 𝑡1 𝑡2 | 𝜆𝑥.𝑡︸           ︷︷           ︸
𝜆-terms

| 𝑛︸︷︷︸
constructors

|

[𝑡] | let [𝑥] = 𝑡1 in 𝑡2︸                      ︷︷                      ︸
coeffect terms

|

{𝑙𝑖 = 𝑡𝑖 } | 𝑡 .𝑙 | ⟨𝑙 = 𝑡 | 𝑙𝑖 ⟩︸                          ︷︷                          ︸
versioned terms

(terms)

𝐴, 𝐵 ::= Int︸︷︷︸
Integer

| 𝐴 → 𝐵︸ ︷︷ ︸
function types

| □𝑟𝐴︸︷︷︸
versioned types

(types)

Figure 4: The 𝜆VL syntax.

2.3.2 Type of an Extraction. For extraction, the type system deter-

mines if the specified label is available. For example, the following

program is well-typed because 𝑙1 and 𝑙2 are both available for the

program (1) (see typing (2)).

let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str] in [exists digest] .𝑙1 : Bool
let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str] in [exists digest] .𝑙2 : Bool

Once evaluated for a particular version by extraction, a program

loses its version resource. This is because extraction is defined as a

destructor of versioned values.

In contrast, the following program is rejected by the type system.

let [𝑑𝑖𝑔𝑒𝑠𝑡] = [makeHash str] in [exists digest] .𝑙3 : (rejected)
This is becausemakehash and exists do not have 𝑙3 definitions. Since
the 𝜆VL type system keeps track of which versions are available for

each variable in the type environment, it is possible to inform the

developer why this program cannot be evaluated in the context of

𝑙3.

2.4 Desirable Properties of Surface Language
2.4.1 Problems in Lambda VL Programming. As you can see from

the previous examples, programming directly in 𝜆VL is not easy.

Difficulties in 𝜆VL programming arise from the following points:

• Complex syntax derived from substructural language. 𝜆VL is
a language defined as an extension of the coeffect calculus

ℓRPCF [3] and GrMini [14], and has a difficult syntax derived

from substructural language, as shown in Figure 4. Terms

related to version resources, such as promotion [𝑡] and con-

textual let-bindings let [𝑥] = 𝑡1 in 𝑡2, require programmers

to understand the 𝜆VL type system and prevent them from

implementing the logic on which the developer wants to

focus.

• Versions exposed to surface language. As shown in Figure 4,

the 𝜆VL program includes versions as part of label-dependent

terms such as versioned record {𝑙𝑖 = 𝑡𝑖 } and extraction 𝑡 .𝑙 .

Version labels are a cross-cutting concern in 𝜆VL for all mod-

ules and correspond with each module’s version. However,

since hundreds of modules are used in actual development,

it is difficult for a programmer to know which label corre-

sponds to which definition in each module.
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𝑡 ::= 𝑥 | 𝑡1 𝑡2 | 𝜆𝑥.𝑡︸           ︷︷           ︸
𝜆-terms

| 𝑛︸︷︷︸
constructors

|

[𝑡] | let [𝑥] = 𝑡1 in 𝑡2︸                      ︷︷                      ︸
coeffect terms

(terms)

𝐴, 𝐵 ::= Int︸︷︷︸
Integer

| 𝐴 → 𝐵︸ ︷︷ ︸
function types

| □𝑟𝐴︸︷︷︸
versioned types

(types)

Figure 5: The GrMini (a subset of 𝜆VL) syntax.

2.4.2 Usual functional language as a surface language for Lambda
VL. To mitigate the two difficulties listed above, we propose using

an ordinary functional language as a surface language and a method

of mechanically translating 𝜆VL-specific terms using externally

defined version information.

This proposal is based on the following intuitions. First, since

new versions are usually released for each package in an existing

programming language, it is feasible to determine which version of

the symbol is available. For example, before and after the update,

the Hash modules in Figures 2 and 3 provide functions makeHash
and match. These programs are distinct, and there is no program

belongs to both versions. Therefore, we expect it is possible to

assign each version of the definition to a label mechanically .

Furthermore, since the 𝜆VL type system knows the available

versions of all programs by semantic analysis, it is also feasible to

assign the required labels to extraction. For example, program (2)

is indicated to be available with labels 𝑙1 and 𝑙2 by the type system.

Although we need to prioritize those two labels, we should be able

to specify the appropriate label among these options.

3 COMPILATION
In this section, we provide examples of the compilation from a

Haskell-like functional language to 𝜆VL. The compilation consists

of two steps:

(1) Compilation into GrMini, a subset of 𝜆VL
(2) Bundling with version labels

Furthermore, we examine a method of compiling them back to

Haskell-like functional language based on 𝜆VL semantics.

3.1 Compilation into GrMini
This compilation is based on Girard’s translation [9] of simply-

typed lambda calculus to intuitionistic linear calculus. Orchard [14]

note that any term and type derivation of a simply typed lambda

calculus can be compiled to GrMini, as shown in Figure 5.

Girard’s translation is the following syntax-directed translations.

Definition 3.1 (Girard’s translation). Let 𝐴 and 𝐵 be
metavariables over types of simply-typed lambda calculus. The trans-
lation from the simply-typed lambda calculus to GrMini is described

as follows.

⟦𝐴⟧ ≡ 𝐴

⟦𝐴 → 𝐵⟧ ≡ □𝑟⟦𝐴⟧ → ⟦𝐵⟧

⟦𝑥⟧ ≡ 𝑥

⟦𝜆𝑥.𝑡⟧ ≡ 𝜆𝑥 ′ .let [𝑥] = 𝑥 ′ in ⟦𝑡⟧
⟦𝑡 𝑠⟧ ≡ ⟦𝑡⟧ [⟦𝑠⟧]

All occurrences of 𝐴 → 𝐵 will be replaced with □𝑟𝐴 → 𝐵 using

the suitable version resource 𝑟 ∈ R, and replaced all lambda ab-

stractions and function applications by using contextual let-binding

and promotion. For each version resource 𝑟 ∈ R, the appropriate
version resource will be inferred later by the type inference.

To give the readers a better understanding, we will illustrate

the translation process using a simple multi-versioned functional

program, as shown in Figure 7. Suppose there are two modules

called Main and M. The main function defined in the Main module

is translated to the following GrMini program.

main : Int

main = 𝑖𝑑 [𝑛]

Here, the argument 𝑛 of the function application is promoted.

Similarly, the id in M version 1 is translated into the GrMini

program as follows:

id : □𝑟 Int → Int

id = 𝜆𝑛′ .let [𝑛] = 𝑛′ in 𝑛

𝑛 : Int

𝑛 = 1

where 𝑟 is a resource variable that will later be instantiated into

a set of appropriate version labels by type inference. The same

translation can be applied to M version 2.

3.2 Bundling with Version Labels
Next, the top-level elements of each module are bundled using a ver-

sioned record. At this time, externally defined version information

is used as version information.

Here, the versions to be considered are M versions 1 and 2, so the
following labels are generated for them.

M version 1 { 𝑙1, M version 2 { 𝑙2

Next, we use these version labels to bundle the top-level elements.

For example, the top-level symbols id, 𝑛 of module M are translated

into the following 𝜆VL program.

id : □{𝑙1,𝑙2 } (□𝑟 Int → Int)
id = {𝑙1 = 𝜆𝑛′ .let [𝑛] = 𝑛′ in 𝑛, 𝑙2 = 𝜆𝑛′ .let [𝑛] = 𝑛′ in 𝑛}
𝑛 : □{𝑙1,𝑙2 } Int

𝑛 = {𝑙1 = 1, 𝑙2 = 2}

The labels are tagged with corresponding version definitions for id
and 𝑛. A version 1 definition of id and 𝑛 is stored as an element of

the versioned record tagged with 𝑙1; likewise, version 2 is tagged

with 𝑙2.
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Reduction rules

[𝑡] .𝑙 { 𝑡@𝑙
(E-ex1)

{𝑙 = 𝑡 |𝑚}.𝑙𝑖 { 𝑡𝑖@𝑙𝑖
(E-ex2)

⟨𝑙 = 𝑡 | 𝑙𝑖 ⟩ { 𝑡𝑖@𝑙𝑖
(E-veri)

Default version overwriting rules
𝑛@𝑙 ≡ 𝑛 (𝜆𝑥 .𝑡)@𝑙 ≡ 𝜆𝑥 .(𝑡@𝑙) (𝑡 𝑢)@𝑙 ≡ (𝑡@𝑙) (𝑢@𝑙)

let [𝑥] = 𝑡1 in 𝑡2@𝑙 ≡ let [𝑥] = (𝑡1@𝑙) in (𝑡2@𝑙)

[𝑡]@𝑙 ≡ [𝑡@𝑙] {𝑙 = 𝑡 | 𝑙𝑖 }@𝑙 ′ ≡ {𝑙 = 𝑡 | 𝑙𝑖 } (𝑡 .𝑙)@𝑙 ′ ≡ (𝑡@𝑙 ′).𝑙

𝑙 ′ ∈ {𝑙}
⟨𝑙 = 𝑡 | 𝑙𝑖 ⟩@𝑙 ′ ≡ ⟨𝑙 = 𝑡 | 𝑙 ′⟩

𝑙 ′ ∉ {𝑙}
⟨𝑙 = 𝑡 | 𝑙𝑖 ⟩@𝑙 ′ ≡ ⟨𝑙 = 𝑡 | 𝑙𝑖 ⟩

Figure 6: 𝜆VLdynamic semantics (excerpt)

1 −− Main
2 main :: Int
3 main = id n

1 −− M version 1
2 id :: Int -> Int
3 id n = n
4 n :: Int
5 n = 1

1 −− M version 2
2 id :: Int -> Int
3 id n = n
4 n :: Int
5 n = 2

Figure 7: Simple example program written in Haskell subset.

Instead of translating into a versioned record, the main function

abstracts the return value with a promotion. The resulting main
function is as follows.

main : □𝑠 Int

main = [𝑖𝑑 [𝑛]]
Here we use the version resource variable 𝑠 will be inferred later

by type inference.

This main function results in a series of concatenated by contex-

tual let-binding, just as a normal program is a series of let-binding

with values provided by an external module.

main : □{𝑙1,𝑙2 } Int

main = let [𝑖𝑑′] = 𝑖𝑑 in let [𝑛′] = 𝑛 in [𝑖𝑑 [𝑛]]
≡ let [𝑖𝑑′] = {𝑙1 = 𝜆𝑛′ .let [𝑛] = 𝑛′ in 𝑛,

𝑙2 = 𝜆𝑛′ .let [𝑛] = 𝑛′ in 𝑛} in
let [𝑛′] = {𝑙1 = 1, 𝑙2 = 2} in [𝑖𝑑′ [𝑛′]]

The type system infers the version resources of themain function
by using those of id and 𝑛. The type of the main function indicates

that it is available for labels 𝑙1 and 𝑙2.

The extraction of the main function with each label evaluates to

1 and 2, respectively.

main.𝑙1 →∗
1

main.𝑙1 →∗
2

These results are equivalent to those obtained by selecting ver-

sions 1 and 2 of module M in Figure 7 and evaluating main.
Although the developer will need to assign some priority be-

tween 𝑙1 and 𝑙2, now it is possible to evaluate a program by choosing

from multiple versions, using only normal functional programs as

input.

3.3 Dispatch a Specific Version of Programs
Before performing reductions, 𝜆VL removes all versioned records

and translates them into intermediate terms called version-specified
records ⟨𝑙𝑖 = 𝑡𝑖 | 𝑙𝑘 ⟩. An additional element 𝑙𝑘 indicates in which

version the version-specified record is evaluated. This 𝑙𝑘 is overwrit-

ten by the propagation from an extraction according to the default

version overwriting rule shown in Figure 6. Here we assume that

the initial label is the latest version (𝑙2).

For example, the evaluation of main.𝑙1 is as follows.

main.𝑙1
≡ let [𝑖𝑑′] = {𝑙1 = · · · , 𝑙2 = · · · | 𝑙2} in
let [𝑛′] = {𝑙1 = 1, 𝑙2 = 2 | 𝑙2} in [𝑖𝑑′ [𝑛′]] .𝑙1

→∗ ⟨𝑙1 = · · · , 𝑙2 = · · · | 𝑙2⟩@𝑙1 [⟨𝑙1 = 1, 𝑙2 = 2 | 𝑙2⟩]@𝑙1

→∗ ⟨𝑙1 = · · · , 𝑙2 = · · · | 𝑙1⟩ [⟨𝑙1 = 1, 𝑙2 = 2 | 𝑙1⟩]
The two versioned records are both evaluated in the context of

𝑙1, so each internal 𝑙1 definition is extracted.

⟨𝑙1 = · · · , 𝑙2 = · · · | 𝑙1⟩ [⟨𝑙1 = 1, 𝑙2 = 2 | 𝑙1⟩]
→∗ (𝜆𝑛′ .let [𝑛] = 𝑛′ in 𝑛) [1]

Recall that we applied the translation into a versioned record only

to the top-level definition. The extraction converts the outermost

versioned record to a version-specified record for all subterms. In

other words, this program does not have a single 𝜆VL-specific term

and is written in the GrMini, which is shown in Figure 5.

We can obtain a normal functional language program by perform-

ing a reverse compilation from GrMini to a simply-typed lambda
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calculus on this GrMini program. The reverse compilation is simi-

larly based on Girard’s translation, but this one is simpler than the

forward translation.

⟦(𝜆𝑛′ .let [𝑛] = 𝑛′ in 𝑛) [1]⟧−1 ≡ (𝜆𝑛.𝑛) 1

The resulting program is a normal functional program so that

we can run it on a runtime of an existing functional language.

4 FURTHERWORK
4.1 Adapting Old Version into New Version
The current 𝜆VL considers all values with different versions incom-

patible, but we hope it can be improved to allow for a compatible

update. In many cases, even if there is a breaking change in a part

of the package, most other parts will remain unchanged and com-

patible. Therefore, it is too conservative to assume that all values

from different versions are incompatible.

One possible solution is an automatic insertion of adapter func-

tions. 𝜆VL knows the version of every expression, it knows what

should be updated by a package change. Suppose there is a mech-

anism for the developer to specify an adapter to use the value

evaluated in the older version in the newer version. In that case,

the adapter can automatically convert the value when a version

mismatch is detected. This solution applies to a wider range of pro-

grams than existing adaptation techniques such as text substitution.

Another solution is to consider compatibility in the type system.

For example, when version 1 and version 2 of function 𝑓 are the

same, a version 2 of 𝑓 should accept a version 1 value as an argument.

This improvement would be supported by extending the typing

algorithm to use compatibility information pre-registered by the

package developer.

4.2 Reformalization Based on Macros-Dispatch
Mechanisms

The translation described in section 3 translates a usual functional

program to a record format of 𝜆VL and then again back to the origi-

nal functional language based on the results of type inference. This

transformation is similar to the macro-dispatching mechanisms

such as multi-stage programming [20, 21]. The semantics of 𝜆VL
can be separated into two stages, generating a program and evalu-

ating the program. It can be improved based on the formalization of

multi-stage programming. Similarities with multi-stage program-

ming have also been noted from the perspective of the coeffect

calculus [14].

5 RELATEDWORK
5.1 Software Product Lines
Several studies for software product lines [2, 15, 18] regard the

evolution of a program as an extension of the program. For exam-

ple, delta-oriented programming provides a mechanism, called a

delta module, to modularize programmodifications. Developers can

combine core modules with delta modules to build software with

specific configurations. Since a packaging system with expression-

level dependency information is essential to our research, we may

be able to refer to such an implementation technique.

5.2 Adaptation Techniques
Adaptation techniques help client code to be connected to a version

of a library that is incompatible with the older one. The simplest

approach is to compare between the old and new version of a

source code and find patterns of substitution. Other approaches

generate replacement rules based on structural similarities [5, 24]

and extract API replacement patterns from a code base that has

been migrated [19].

Another approach lets the library maintainer generate replace-

ment rules. Some techniques [7, 10] require library maintainer to

record refactorings made to the source code and generates refactor-

ing scripts for providing it to library users. Another technique [4]

requires the library maintainer provides annotations that describes

how to update client code. These techniques are reported to provide

correct code recommendations on average in only less than 20% of

cases [6].

6 CONCLUSION
Lam et al. [11] pointed out that the lack of tool support for breaking
changes forces developers to pay a great attention to compatibility.

Programming with versions brings versions, traditionally package

identifiers, into a programming language and allows expressions to

be tagged with versions. Versions are still a compatibility agreement

from the package provider to the package user. Programming with

versions allows better management and analysis of compatibility

information in a more granular context.

Our long-term goal is to bring the benefits of programming

with versions into developer’s familiar programming languages.

The proposed compilation technique from an existing functional

program to 𝜆VL terms makes one step towards the goal.
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