CertSkel: a Verified Compiler for
a Cog-embedded GPGPU DSL

Izumi Asakura

Hidehiko Masuhara

Tomoyuki Aotani

Tokyo Institute of Technology, Tokyo, Japan

asakura.i.aa@m.titech.ac.jp

1. Introduction

GPUDSLSs (domain specific languages for GPGPU) such as Accel-
erate [6], Ikra [7] and Copperhead [4] offer high-level data-parallel
skeletons such as map and reduce, which are executed in parallel
on GPUs. Those languages enable easier development of highly-
optimized GPGPU programs by hiding complicated parallel mem-
ory access code behind compilers.

We propose a formally verified compiler for a GPUDSL, called
CertSkel, that guarantees the correctness of GPGPU programs in
the presence of advanced optimizations. Although there have been
successful verified compilers (e.g., CompCert [5]), it is still chal-
lenging to develop a verified compiler for GPUDSL due to its par-
allel execution model and template-based code generation.

This paper gives an overview of CertSkel. We show the Cog-
based compiler implementation (Section 2), our definition of the
correctness of a template-based compiler (Section 3), and our ap-
proach to correctness proof with development of a tactic library
(Section 4). We also discuss technical challenges left for the future
work (Section 5).

2. Cog-Based Compiler Implementation

CertSkel is implemented in Coq, and generates a GPGPU program
from a GPUDSL function. We use the theorem proving features in
Coq for code generation, so that the generated code is correct with
respect to the source function.

Figure 1 shows a source function and a compilation process
in CertSkel. The Coq function argmax is CertSkel source code,
which computes an index of the largest element in xs and the
element itself. The expression (seqn m) at line 3 generates a list
[n,mn+1,...,n+m—1]. A source function may use skeletons
(including map, reduce, zip, and seq). We call the functions applied
to skeletons sequential functions.

From a source function, CertSkel generates a GPGPU program
by proving the following lemma (argmaxGPGPU): there exists a
GPGPU program that is equivalent to the source function (line 4).
The relation f ~¢¢ p means that a Coq function f and a GPGPU
program p are equivalent, which we will explain in Section 3.

For manipulating the syntax tree of the source function, CertSkel
reifies the source function to a typed syntax tree (called TypedIR)
by using the reifyFunc tactic (line 6). A TypedIR function consists
of a sequence of let-bindings, each of which has an application of
a skeleton whose arguments are either sequential functions, scalar
expressions, or variables holding lists. The last expression of the se-
quence is a variable. For example, argmax is reified to the following
TypedIR function namely argmaxR:

fun xs = let a0 :=seq 0 (length xs) in
let al:= zipaOxs in
let a2 := reduce (fun (i,x) (j,y)= ...)alina2
where ... is the syntax tree equivalent to the argmax’s one. The
proof obligation after the line 6 is {p : GPGPU.prog | argmaxR ~; p}

—_

masuhara@acm.org

OO0 WN —

aotani@is.titech.ac.jp

Definition argmax xs :=
reduce (fun (i,x) (j,y) = if y < x then (i,x) else (j,y))
(zip (seq O (length xs)) xs)
Definition argmaxGPGPU: {p : GPGPU.prog | argmax ~¢cG p}-
Proof.
reifyFunc.
eexists; apply compileOK.
Defined.

Definition res := generateGPGPUFile "./argmax.cu" argmaxGPGPU.

Separate Extract res.

Figure 1. Definition of argmax and GPGPU code generation

where = is the relation of equivalence between TypedIR func-
tions and GPGPU programs.
We apply the compileOK lemma to obtain the GPGPU code (line

7). The statement of the lemma is forall £ : TypedIR, f ~jg compilelR £.

The function compileIR compiles each skeleton application to a
GPGPU kernel (a function executed by each GPU thread) and
generates host code that allocates GPU memories and launches
the kernels. By applying compileOK to the goal, argmaxGPGPU is
proved.

Lines 9-10 just output the compiled code into a text file by using
the Coq extraction mechanism.

3. Correctness

Our definition of correctness is based on GPUCSL, a concurrent
separation logic for GPGPU kernels [1]. A judgement - { P}c{Q}
in the system intuitively means that if the program c starts with a
state satisfying the precondition P, then ¢ does not cause any error
during the execution and any final state satisfies the postcondition
Q. Tts soundness is formally proved in Coq.

The relation of equivalence f ~c¢ p (and similarly fir ~ic p)
is defined as follows.

safe(f,1)
{array(inp, 1)}
- p(inp)
{array(inp, 1) x array(ret, f(1))}

It means that for any input list I, if the application f(l) is safe
to be evaluated, then after execution of p with an input array
inp containing ! the output array ret has the elements of f(1).
array(z, [) means that the variable x points to an array that has the
same elements as the ones in /.

4. Compiler Verification

Since our compiler (compileIR) uses code templates for skeletons'
(Figure 2), the verification process is divided into independent
verifications of the templates and the code generator for sequential
functions. Below, we first explain the code generation for sequential
functions and filling of code templates by showing the compilation
process of the skeleton application map (funx = x+ 1) arr. We
then present the verification conditions of the code generator and
the templates.

Code generator for sequential functions: Given a sequential
function, our code generator generates a Coq function (called a
code fragment) of type Var — (Cmd * Var), where Var and Cmd
are the types for variables and statements of the language for
GPGPU, respectively. The general form of the generated frag-
ments is fun z = (c,7), which means a pseudo GPGPU func-
tion that returns r as the result after executing ¢ assuming z has
the argument value. For example, the code generator generates
fun x = (10:=x; 11:=1; 12:=10+11, 12) from the sequential function
funx = x+ 1.

Filling holes in templates: Second, the compiler fills a hole in
the respective code template with the generated fragment. Code
templates are functions taking a code fragment as an argument
and generating a GPGPU kernel. We show the mkMap template for
the map skeleton in Figure 3. The notation ¢.1 and ¢.2 are the first
and second element of a tuple ¢, respectively. The Coq expression
mkMap(func) returns a GPGPU kernel that computes map £ xs if the
array inp has an array with elements xs and func is the generated
fragment from £. To avoid name conflicts among variables used
in generated fragments and code templates, we employ a simple
prefix-based convention: all generated variables in fragments are in
GVars, an infinite set of variables. Currently, GVars is the set of
variables whose names have the prefix “1”.

Verification conditions: We manually prove the correctness of
each code template in the form of a parameterized Hoare triple with
certain assumptions on the parameters (i.e., code fragments). We
also prove the correctness of the compiler that generates code frag-
ments from source sequential functions so that the generated code
fragments satisfy the abovementioned assumptions. By combining
these two proofs, we prove that the whole generated GPGPU ker-
nel satisfies the Hoare triple. Our verification strategy is similar to
the one used in the cross-language linking compiler [8], in which
generated programs by the compiler (in this work, generated frag-
ments from sequential functions) may be linked with hand-written
assembly programs (in this work, code templates).

For a sequential function f and its generated fragment func, we
specify the sequential function compiler correctness: f =~ func
as Definition 1. Then, we specify the correctness of the mkMap
template as Definition 2.

Definition 1 (The Relation =;). f = func holds if and only if the
Sfollowing conditions hold.

e Vx : Var. writes(func(z).1) C GVars

e Vx : Var. func(z).2 € GVars

o Vx : Var. x ¢ GVars =

F{x = v} func(z).1 {func(x).2 = f(v)}

o Yz : Var. func(z).1 executes no synchronization

where writes(c) is the set of written variables in the command c.

Definition 2 (The specification of mkMap template). For any f, zs
and ys, if safe(map f,xs) and f =~ func hold, then the following

L'Our compiler is based on Accelerate [6] with some modification for
simplicity. In this paper, we present a more simplified compiler due to
limitations of space. Actually, our compiler supports optimizations such
as conversion of array of tuples to tuples of arrays and simple fusion
transformation.

Source Program
[map (fun x => x + 1) arr]l

‘ Code Template Code Fragment

fun x =
(10:=x;11:=1;12:=10+11,

Genarated Program

Figure 2. Template-based code generation for skeleton application

1 mkMap(func) =
2 ix := (the thread ID of this thread);
3 while (ix < _len) {
4 x := inpl[ix];
5 Sfunc(x).1;
6 out[ix] := func(x).2;
7 ix := ix + (the number of threads); }
Figure 3. The mkMap code template
triple holds.

{-1len = length(zs) A length(zs) = length(ys)A
array(inp, zs) x array(out, ys)}
FmkMap(func)
{array(inp, zs) * array(out,map f zs)}

We also develop a tactic library, namely GPU VeLib, for helping
the proof of these correctness. GPUVeLib is based on ones for the
semi-automated verification of low-level imperative programs [3].

5. Current Status and Future Work

Currently, we have already implemented the CertSkel compiler
generating GPGPU programs. We have also proved implementa-
tions of basic code templates (map, reduce, etc.) and the code
generator for sequential functions. We will verify the entire com-
piler that also generates host code managing GPU memories and
launching GPGPU kernels. We also plan to support more features
in other GPUDSLs, such as advanced skeletons (e.g., scan and
segmented operations) and optimizations (e.g., fusion transforma-
tion). Another important feature is nested parallelism, which al-
lows skeleton calls inside sequential functions. It is challenging to
ensure the correctness of the compilation techniques for nested par-
allelism (e.g., [2, 4]).

References

[1] 1. Asakura, H. Masuhara, and T. Aotani. Proof of Soundness of Con-
current Separation Logic for GPGPU in Coq. Journal of Information
Processing, 24(1):132-140, 2016.

[2] L. Bergstrom and J. H. Reppy. Nested Data-Parallelism on the GPU. In
ICFP’12,2012.

[3] J. Cao, M. Fu, and X. Feng. Practical Tactics for Verifying C Programs
in Coq. In CPP’15, 2015.

[4] B. C. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling
an Embedded Data Parallel Language. In PPOPP’11,2011.

[5] X. Leroy. Formal Certification of a Compiler Back-end, or: Program-
ming a Compiler with a Proof Assistant. In POPL’06, 2006.

[6] T. L. McDonell, M. M. T. Chakravarty, G. Keller, and B. Lippmeier.
Optimising Purely Functional GPU Programs. In ICFP’13, 2013.

[7] M. Springer and H. Masuhara. Object Support in an Array-Based
GPGPU Extension for Ruby. In ARRAY@PLDI’16, 2016.

[8] P. Wang, S. Cuellar, and A. Chlipala. Compiler Verification Meets
Cross-Language Linking via Data Abstraction. In OOPSLA’14, 2014.

