
Program State Visualizer
with User-Defined Representation Conversion (WIP)

Rifqi Adlan Apriyadi
apriyadi.r.aa@m.titech.ac.jp
Tokyo Institute of Technology

Tokyo, Japan

Hidehiko Masuhara
masuhara@acm.org

Tokyo Institute of Technology
Tokyo, Japan

Youyou Cong
cong@c.titech.ac.jp

Tokyo Institute of Technology
Tokyo, Japan

ABSTRACT
Conventional non-visual tree-based debuggers possess comprehen-
sibility issues, which include the obscurity of object references,
patterns, and overall program structure. Visual debuggers — specif-
ically, ones that display an object diagram to represent the program
state — alleviate these issues for imperative programming languages
whose very states are directly manipulated by the programmer’s
statements. However, these debuggers are also prone to clutter
when representing large program states from visualizing too much
information. Additionally, the visualized program state can often
differ from its conceptual abstraction on paper. We propose user-
defined representation conversion which allows users to convert
concrete representations of program states to their more focused
and abstracted conceptual versions. We design a DSL such that
users can specify conversions to manipulate displayed nodes and
edges based on object types, references, values, or debugger halt
locations. We implemented a prototype of this concept for Java.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Integrated and visual development environments; • Human-
centered computing → Information visualization.

KEYWORDS
visual debugger, representation conversion, domain-specific lan-
guage
ACM Reference Format:
Rifqi Adlan Apriyadi, Hidehiko Masuhara, and Youyou Cong. 2023. Program
State Visualizer with User-Defined Representation Conversion (WIP). In
Proceedings of the 1st ACM International Workshop on Future Debugging
Techniques (DEBT ’23), July 17, 2023, Seattle, WA, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3605155.3605863

1 INTRODUCTION
Displaying program states in graphs instead of the more conven-
tional tree format shows a more accurate representation due to all
trees being graphs, yet not necessarily vice versa. For example, in a
graph, where each node is an object and each edge is a reference
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBT ’23, July 17, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0245-7/23/07. . . $15.00
https://doi.org/10.1145/3605155.3605863

from one object to another, it is clear which objects have reference
to a particular object of interest derived by the source nodes of
incoming edges. Additionally, circular references can clearly be
shown in a graph in the form of a cycle.

Figure 1 shows a sample subgraph of Java Interactive Visualiza-
tion Environment’s (JIVE) [6] object diagram view of a Monopoly
program that demonstrates these advantages. It is clear that the
StreetProperty object has two objects that have reference to it
signified by the two incoming solid black edges to its node. It is
also clear that a circular reference also occurs between it and a
PropertySet. This information is not clear when using conven-
tional tree-based debuggers.

Figure 1: Subgraph of JIVE’s object diagram of a Monopoly
program.

Previous visual debuggers [2, 4, 6] utilize the effectiveness of
visualizations to help educators teach beginner programmers the
concepts of programming. But it could be useful for experienced
programmers in debugging their programs as well [10]. The explic-
itness of information obtained from such visualizations weathers
out any obscurity of the program state, allowing for faster behavior
comprehension, and therefore, faster bug localization.

However, experienced programmers would find that using these
tools to help them debug would be more trouble than it is worth
due to the following reasons:

Visual Clutter Programs that experienced programmerswrite
typically have a large number of objects and references, con-
sequently adding visual clutter to their representations [5].

Abstraction Gap Experienced programmers frequently im-
plement concepts into code differently from how they are
commonly imagined — often trading simplicity for efficiency
— creating an abstraction gap that lags the translation time
from reading the representation on a program level to creat-
ing an image of how it looks on a conceptual level [1]. For
example, visual debuggers display arrays as a sequence of
objects and a developer might need it to be represented as a
binary tree for better efficiency.

5

https://doi.org/10.1145/3605155.3605863
https://doi.org/10.1145/3605155.3605863
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605155.3605863&domain=pdf&date_stamp=2023-07-17

DEBT ’23, July 17, 2023, Seattle, WA, USA Rifqi Adlan Apriyadi, Hidehiko Masuhara, and Youyou Cong

(a) Unconverted Monopoly program state
representation.

1 omitAll;

2 show c:Player;

3 c:Property {

4 if (!(isNull f:owner)) {

5 Node this = nodeOf here;

6 show this;

7 show newEdge

8 (nodeOf f:owner) this;

9 this.setTitle(valueOf f:name);

10 } }

Listing (1) Player-Property conversion defini-
tion. (b) Converted Monopoly program state rep-

resentation.

Figure 2: Conversion to only show players and the properties they own.

In large or complex projects, these obstacles ought to be over-
come for graph representations of program states to be helpful in
accelerating behavior and bug comprehension.

This paper discusses how these problems could be alleviated
to preserve the effectiveness of visualizations. Sections 2 and 3
detail the proposed solution and implementation of its prototype,
respectively. Section 4 describes the work related to the topic and
Section 5 concludes this paper.

2 PROPOSAL
This paper proposes the inclusion of user-defined representation

conversion functionalities into program state visualizer tools. A
dedicated language is provided for users to control the detailed
behavior of their conversions. The targets of the conversions are
the diagram components of how the program state is represented:
nodes, edges, and the text within them. The components and their
applicable conversions are:

• Nodes: omission and addition
– Node Titles: replacement
– Node Rows: removal and addition

• Edges: omission and addition
– Edge Labels: replacement

Figure 2 demonstrates this proposal. Figure 2a shows the clut-
tered program state representation of a Monopoly program without
any conversion applied. Figure 2b shows this representation con-
verted to only display nodes of Player objects and the Property
objects that they own. This converted representation can be use-
ful when the current bug faced by the programmer concerns the
ownership of properties where all other information is irrelevant.
Listing 1 is how the programmer would express this conversion.
The conversions applied to the representation as defined in Listing
1 are as follows:

• Omit all nodes and edges except for nodes of Player objects
and owned Property objects.

• If a Property is owned by a Player:
– Add and show an edge from the Player owner to the
Property.

– Rename the title of the Property node to the value of its
name field for readability.

The inclusion of representation conversion features is hypothe-
sized to solve the problems mentioned in the introduction:

Visual Clutter Representations can be converted to omit in-
formation irrelevant to the current debug session.

Abstraction Gap Representations can be converted to closer
resemble the program’s conceptual abstraction (i.e. how the
concept looks on paper).

With these obstacles alleviated the advantages of visualization
are made available. These include pattern and inconsistency recog-
nition, and more explicit representations, which allow for faster
bug identification. For developers new to a codebase, using the visu-
alizer with converted representations should allow for a more com-
prehensive and intuitive process in understanding the program’s
behavior[9].

2.1 Usage

Figure 3: Program State Visualizer usage.

Figure 3 shows how to use the visualizer. The main difference
with regular debuggers is the Conversion Definition. When the de-
bugger starts, it will process the defined conversion and, combined
with the program state data it receives, visualize the converted
representation. Changes made to the conversion definition can be
reprocessed without restarting the debugger. Doing so would reren-
der the displayed representation to correspond with the updated
conversion definition.

6

Program State Visualizer with User-Defined Representation Conversion (WIP) DEBT ’23, July 17, 2023, Seattle, WA, USA

(a) The bug is localized by omitting unre-
lated representations. Rifqi still owns the
ought to have been transferred property.

(b) The user further adds conversions to
focus on the behavior of the bug and its
exact location(s).

(c) The user checks their solution by adding
an edge from a Player to a Property if a
circular reference that includes them exists
(like in Figure 4b).

Figure 4: Incremental representation conversions used in different debugging steps for a bug where property transfer from
Rifqi to Adil does not occur when it should.

In the debugging process, the visualizer and its representation
conversion features can be useful in its distinct steps. The conver-
sions would most likely be incremental between each step. The
related debugging steps are as follows:

Bug Localization: Omitting representations of parts of the
code that users are certain are unrelated to the bug can help
find the general vicinity of the bug (Example: Figure 4a).

Cause Identification: Given a known region of the bug, users
can manipulate representations to different levels of detail
to pinpoint the specific cause of the bug (Example 4b).

Solution Implementation: Users could either reuse their con-
versions from the previous step to check the correctness of
their solution or create a new one if significant changes were
made (Example: Figure 4c).

The overhead lies in writing the conversion definitions, which
might take time depending on the size and complexity of the pro-
gram and the nature of the bug. However, they can be shared and
reused by multiple users. This problem is elaborated further in
Section 2.3 which also describes its solutions.

2.2 DSL Design Choices
A design problem in this project is the method by which users spec-
ify their conversions. The most prominent factor in this problem
is the infinite possible ways users can structure and implement
their programs. Furthermore, bugs can appear in any part of their
code in any nature which may involve any part of their code. To
allow for detailed control, users need a medium with sufficient
expressiveness to capture their infinite possible specifications and
is focused enough to minimize the overhead in writing them. For
these purposes, a domain-specific language (DSL) should serve as a
fitting medium [7]. Currently, an external DSL — a language that is
parsed independently of the host general-purpose language — is
used for the current iteration of the prototype.

This subsection will use Listing 2, which targets a Monopoly
program written in Java, as an example conversion definition. For
each StreetProperty object, it is omitted from the representation
if it is unowned. Otherwise, a new edge is made from the owner
player node to the property node. Nodes of arrays containing each
property’s rent prices are also omitted.

1 c:StreetProperty {

2 Node thisNode = nodeOf here;

3 if (isNull f:owner) omit thisNode;

4 else {

5 Node ownerNode = nodeOf f:owner;

6 omit edgesOf thisNode ownerNode;

7 show newEdge ownerNode thisNode;

8 }

9
10 f:houseRents {omit nodeOf here;}

11 }

Listing 2: Representation conversion to demonstrate design
choices.

2.2.1 Imperativeness. The language is imperative in that the user
writes statements that will sequentially be performed, much like
writing a new sequential program. This program will be executed
each time the debugger halts. Statement types include those that are
commonly found in general-purpose imperative languages, such as
variable assignments, if-else statements, and while/for loops, and
also representation conversion commands, of which show and omit
described in Section 2.2.3 are part.

Listing 2 exhibits this property. Lines 2-10 are all done in se-
quential order. It also resembles something of a program itself. This
design decision is the major part of what provides control to the
user. The sequential property of the language allows users to control
all logic that happens in their specified conversion.

2.2.2 Subjects. The DSL has a metaprogramming feature called
Subjects which is a type whose objects refer to an object of the
target language’s running program. A subject can be used to extract
the runtime value of an object, its references and referrers, and
check whether it is null. It can also be used to get and edit its
representation.

In Line 2 of Listing 2, here is a subject expression that refers to
the StreetProperty object of the current iteration of the encom-
passing class location and is used to retrieve its node. In Line 3, the
f:owner subject expression is used to check whether the referred
to target is null.

7

DEBT ’23, July 17, 2023, Seattle, WA, USA Rifqi Adlan Apriyadi, Hidehiko Masuhara, and Youyou Cong

Table 1: Location types, their semantics, and their declaration restrictions

Location
Type

Block Semantic Expression Semantic Declaration Restrictions

Class c Encompassed statements are applied for all
objects of class c.

An array of all runtime objects that are in-
stances of class c.

Blocks: Top-most only
Expressions: Unrestricted

Field f Encompassed statements are applied for all f
references of objects of the enclosing class or
field block.

The runtime object that is the f reference of
the runtime object of the enclosing location
block.

In class or field location
blocks.

Method m Encompassed statements are executed when
the runtime is currently halted inside method
m of some class.

Undefined Blocks: directly enclosed
by a class location block.

Local Vari-
able l

Encompassed statements are applied for the
local variable l.

The runtime object with the same variable
name in the current scope.

Blocks: Top-most or in
method blocks
Expressions: Unrestricted

2.2.3 Nodes, Edges, show, and omit . The two main components of
the diagram subject to conversion are nodes and edges.Without any
conversion, the diagram displays all nodes and edges, reflecting the
program state. New nodes and edges can bemade using the newNode
and newEdge parameterized expressions, respectively. When these
expressions are evaluated, a new node or edge is created but is not
yet shown.

The two main commands for nodes and edges are show and
omit. When a node or edge is omitted, it is removed from the
representation. When a node or edge is shown, it appears in the
representation. Newly created nodes and edges need to be explicitly
shown to appear in the representation.

These elements appear in Listing 2 a few times. Lines 3, 6, and
10 omit the node or edges given to them from the representation
when they are executed. Line 7 first creates a new edge from the
owner player’s node to the StreetProperty node, then shows it
in the representation.

2.2.4 Locations. The DSL has a component called locations whose
role is to represent different components of the target language
where conversions can be applied and from which context can
be extracted. A location can be written as a block, indicating that
encompassed expressions and statements, including other locations,
are in its namespace which corresponds to the same namespace
in the debuggee program. It can also be written as an expression
to refer to the object(s) of the target language that the location
represents. In the proof-of-concept made in this research, the types
of locations are as seen in Table 1.

Line 1 in Listing 2means that everythingwithin its curly brackets
is executed for every instance of the StreetProperty class and its
representation. In other words, it is a for-loop that iterates through
every StreetProperty instance. In each iteration, context regard-
ing the runtime object and its representation is provided. For ex-
ample, the here expression of line 2 refers to the StreetProperty
object of the current iteration.

The field location block on line 10 is executed in the namespace
of the houseRents reference of the current StreetProperty object
of each iteration. Therefore, the here on line 10 does not refer to
the StreetProperty object of the current iteration of the class
location block, but rather to its houseRents field.

2.3 DSL Design Problem and Solutions
Although the design of the language allows users to control conver-
sions with great detail, it also brings with it the problem of being
cumbersome to write in. Not only would users need to first learn
the language, but they also need to spend the effort to write in it.
As seen in the example of Listing 2, 11 lines of code are already
required to convey az trivial conversion. It is evident that even
more effort would be required to further specify conversions for
other parts of the program.

The rest of this subsection discusses current solution concepts
to this problem, which have been implemented in the current pro-
totype discussed in Section 3.

2.3.1 Shortcuts. An intuitive solution to the cost overhead in defin-
ing conversions is to provide "shortcuts" to reduce it. Here, shortcuts
in the DSL refer to function-like constructs that perform a sequence
of conversions. The idea is that commonly written conversions or
those that will be written multiple times in different parts of the
specification should be trivialized.

For example, the DSL has a predefined shortcut called inline
that takes a location expression as its argument which does the
following:

• Omits the node(s) of the given location.
• For each object that has a reference to a structured object
j corresponding to the location, add a row in its node that
displays the toString() of j.

Figure 5 shows this in action. Assume that the toString() value
of a PropertySet is its color value. With Figure 5a showing the
unconverted representation, including inline c:PropertySet;
would convert it to look like the representation in Figure 5b. Note
that the location expression was c:PropertySet, meaning that
this conversion applies to representations of all other PropertySet
instances as well.

Intuitively, this may relieve the costs of writing in the language
somewhat. To further the theme of being a function-like construct,
shortcuts ought to also be user-defined on top of the predefined
ones. However, doing so would significantly steepen the learning

8

Program State Visualizer with User-Defined Representation Conversion (WIP) DEBT ’23, July 17, 2023, Seattle, WA, USA

(a) Without inline on PropertySet.
(b) With inline on
PropertySet.

Figure 5: Plain and inlined PropertySet.

curve, making it more expensive to learn the language. Fortunately,
there might be a solution for this still.

2.3.2 Internal DSL. Switching to an internal DSL in a general-
purpose programming language ought to reduce the learning costs
of the language given the familiarity of the host language, especially
if the host language is the same as the debugger’s target language.
Furthermore, it would also reduce the costs of writing definitions as
it would open users to the existing capabilities of the host language
and IDEs that support that language.

The original reason to provide an external DSL was that the
language was intended to be focused, providing only a small range
of necessary features. However, further iterations of the language’s
development showed that the language continued to closer resemble
a general-purpose language, especially with the addition of custom
shortcuts. Furthermore, one of the main purposes of an external
DSL is as an intermediate language between experts of the problem
domain and developers; which in this case are the same people.

2.3.3 Implicit Statements. The current design of the DSL explicitly
separates the metaprogramming features from the representation
conversion parts of the language. This is most evident in how
subjects are separated from their representation properties. This
separation causes users to write separate statements for context
and conversion.

Blurring this separation and making implicit connections be-
tween the target program with its representation should stream-
line defining conversions and make the process more intuitive. A
draft example: given a PropertyCard object pc with a reference to
a Property object p, writing pc.p.title = pc.p.name; would
change p’s node title to be the value of the name string of p.

3 IMPLEMENTATION
Our prototype called JIGSAW 1 has been implemented for Java for
its object orientation and because it is the language of choice for
most related works. JIGSAW is implemented as a Visual Studio
Code (VSCode) extension due to VSCode’s extensive debugging
tooling support.
1https://github.com/adilrifqi/jigsaw

JIGSAW has a backend and a frontend. The backend is respon-
sible for parsing debugging data and conversion definitions and
generating a collection of nodes and edges to be sent to the frontend.
The frontend is responsible for creating the node and edge objects,
their layout, and their visualization.

Upon startup, the backend’s parser parses and type-checks the
conversion definition the user wrote to create an internalConversion
Model. The current external DSL was designed and written using
ANTLR2, which provides the parser.

On the other hand, in every debugger halt, messages fired be-
tween VSCode and Java’s language support extension via the Debug
Adapter Protocol (DAP)3 are tracked by the backend to create an
internal Debug State Model.

These two internal models are used to first generate a collec-
tion of nodes and edges that mirrors the program state without
conversions. This is then updated using the conversion model, es-
sentially running the code written in the conversion definition. The
resulting nodes and edges are sent to the frontend. Reprocessing a
conversion definition while the debugger is still running follows
the same process.

The frontend, essentially the Webview part of JIGSAW, simply
receives the data of the nodes and edges that need to be shown,
builds them, lays them out, and displays them. The user interface
uses React Flow4 to draw graphs. elkjs5 is used to lay out the nodes
and edges of the graph.

The graph view currently has limited capabilities. Users can
zoom in and out of the view and move nodes around. However,
features that would further improve the debugging experience,
such as text finding, node location retention between steps, and
interactive representation conversion are not yet present.

Although the target language of the implemented prototype is
Java, the concept discussed in this work is applicable to all impera-
tive languages, with slight differences corresponding to language-
unique features.

4 RELATEDWORK
Torchiano [9] conducted an experiment to verify whether using
UML diagrams improves program system comprehension. The ex-
periment involved two groups given the same set of tests with
opposing permissions to use object diagrams for each test. Using
the standardized effect size, three out of four tests showed small or
medium-sized effects, implying the correctness of the hypothesis.
His later work [10] involves a family of four controlled experiments
to assess whether the use of UML object diagrams improves the
comprehension of program design when added to UML class dia-
grams. The results showed that this is only mostly true for more
experienced programmers. It implied that programming experience
and UML familiarity should be considered in using object diagrams
for software modeling in program design comprehension.

Java Interactive Visualization Environment (JIVE) [6] offers in-
teractive features to display how a Java program runs at various
levels of detail. Among its features is a program state visualizer in
the form of an object diagram. JIVE’s solution to managing large
2https://www.antlr.org/
3https://microsoft.github.io/debug-adapter-protocol/
4https://reactflow.dev/
5https://github.com/kieler/elkjs

9

DEBT ’23, July 17, 2023, Seattle, WA, USA Rifqi Adlan Apriyadi, Hidehiko Masuhara, and Youyou Cong

executions is class exclusion filters, debugging an interval of code,
and focusing on a specific object. Though they may somewhat re-
solve visual clutter, it does not have the granularity and control our
solution provides. With the proposed language, these solutions can
also be defined along with other conversions the user might need.

BlueJ [2] is a tool that is specifically designed for instructing
individuals on the principles of object-oriented programming using
the Java language. A "class view" feature enables the visualization
of the interconnections between classes, while the "object dock" dis-
plays all initialized objects. JAVAVIS [4] is a tool that aids students
in comprehending Java programs through the use of dynamic object
and sequence diagrams that depict program executions. Though
both of these tools provide different types of views to understand
different aspects of the program, they do not have features for visual
scalability as their intended use is for small and simple programs
frequently made for educational purposes.

Velázquez-Iturbide [11] proposed the integration of visualiza-
tions customization into WinHIPE [8], which is the Windows ver-
sion of a programming environment for the functional program-
ming language Hope [3]. This feature allows the programmer to
customize the visualization of intermediate expressions resulting
during any evaluation. Customizations allow users to choose text vs.
graphics and typographic styles and simplify visualizations using
"fisheye views". This was a step closer to faster program compre-
hension and better visualization readability. Our work has a similar
goal for imperative languages where visualizations are of the pro-
gram state. The proposed representation conversion is essentially
customizing what and how information is displayed, only on a more
detailed and larger scale.

5 CONCLUSION AND FUTUREWORK
Visualization of program states is beneficial for programmers new
and experienced alike. However, visual clutter and abstraction gaps
diminish its effectiveness the larger or more complex a program
grows. These obstacles can be overcome with the ability to convert
representations in the visualization and can be useful in most parts
of the debugging process. For this to be effective, users ought to be
able to granularly control the behavior of their conversions.

Users can define their conversions using a DSL. The DSL uses
an imperative design and can retrieve values of the target language.
However, this design creates a large overhead in writing conver-
sion definitions. Furthermore, continued iterations of the language
increased the concepts new users would need to learn to write in
the language. To solve these problems, shortcuts and an internal
version of the DSL ought to minimize both the learning costs and
definitions costs.

A prototype of this concept called JIGSAWhas been implemented
with Java as the target language of the debugger as an extension
to VSCode. It uses information tracked via the DAP to extract a
Debug State Model and from the user’s conversion definition to
build Debug State and Conversion Models that are together used
to build the visualized representation. Although JIGSAW has been
built for Java, the concept is language-agnostic.

Currently, the migration to using an internal DSL from an exter-
nal one remains only an idea. Future work consists of implementing
it while also changing its design to provide more streamlined im-
plicit connections between the debuggee with its representation. It
also consists of implementing the missing features mentioned in
Section 3. Additionally, we also plan on designing and conducting
evaluations on the effectiveness of the system proposed in this
research, which would probably be in the form of user tests.

REFERENCES
[1] Fahad Alhumaidan and Nazir Ahmad Zafar. 2014. Possible improvements in UML

behavior diagrams. In 2014 International Conference on Computational Science
and Computational Intelligence, Vol. 2. IEEE, 173–178. https://doi.org/10.1109/
CSCI.2014.113

[2] Jens Bennedsen and Carsten Schulte. 2010. BlueJ visual debugger for learning
the execution of object-oriented programs? ACM Transactions on Computing
Education (TOCE) 10, 2 (2010), 1–22. https://doi.org/10.1145/1789934.1789938

[3] Rod M Burstall, David B MacQueen, and Donald T Sannella. 1980. HOPE: An
experimental applicative language. In Proceedings of the 1980 ACM conference on
LISP and functional programming. 136–143. https://doi.org/10.1145/800087.802799

[4] Miguel Cazorla and Diego Viejo. 2015. JavaVis: An integrated computer vision
library for teaching computer vision. Computer Applications in Engineering
Education 23, 2 (2015), 258–267. https://doi.org/10.1002/cae.21594

[5] Lukas Holy, Kamil Jezek, Jaroslav Snajberk, and Premek Brada. 2012. Lowering
visual clutter in large component diagrams. In 2012 16th International Conference
on Information Visualisation. IEEE, 36–41. https://doi.org/10.1109/IV.2012.17

[6] Demian Lessa, Jeffrey K Czyz, and Bharat Jayaraman. 2010. JIVE: A pedagogic
tool for visualizing the execution of Java programs. Bericht, Univ. of New York,
Buffalo (2010).

[7] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and how to
develop domain-specific languages. ACM computing surveys (CSUR) 37, 4 (2005),
316–344. https://doi.org/10.1145/1118890.1118892

[8] Cristóbal Pareja-Flores, Jamie Urquiza-Fuentes, and J Angel Velázquez-Iturbide.
2007. WinHIPE: An IDE for functional programming based on rewriting and
visualization. ACM SIGPLAN Notices 42, 3 (2007), 14–23. https://doi.org/10.1145/
1273039.1273042

[9] Marco Torchiano. 2004. Empirical assessment of UML static object diagrams. In
Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004.
IEEE, 226–230. https://doi.org/10.1109/WPC.2004.1311064

[10] Marco Torchiano, Giuseppe Scanniello, Filippo Ricca, Gianna Reggio, and Mau-
rizio Leotta. 2017. Do UML object diagrams affect design comprehensibility?
Results from a family of four controlled experiments. Journal of Visual Languages
& Computing 41 (2017), 10–21. https://doi.org/10.1016/j.jvlc.2017.06.002

[11] JÁ Velázquez-Iturbide and Antonio Presa-Vázquez. 1999. Customization of visu-
alizations in a functional programming environment. In FIE’99 Frontiers in Educa-
tion. 29th Annual Frontiers in Education Conference. Designing the Future of Science
and Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011,
Vol. 2. IEEE, 12B3–22. https://doi.org/10.1109/FIE.1999.841580

Received 2023-05-22; accepted 2023-06-20

10

https://doi.org/10.1109/CSCI.2014.113
https://doi.org/10.1109/CSCI.2014.113
https://doi.org/10.1145/1789934.1789938
https://doi.org/10.1145/800087.802799
https://doi.org/10.1002/cae.21594
https://doi.org/10.1109/IV.2012.17
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1273039.1273042
https://doi.org/10.1145/1273039.1273042
https://doi.org/10.1109/WPC.2004.1311064
https://doi.org/10.1016/j.jvlc.2017.06.002
https://doi.org/10.1109/FIE.1999.841580

	Abstract
	1 Introduction
	2 Proposal
	2.1 Usage
	2.2 DSL Design Choices
	2.3 DSL Design Problem and Solutions

	3 Implementation
	4 Related Work
	5 Conclusion and Future Work
	References

