
Amalgamating Different JIT Compilations in a
Meta-tracing JIT Compiler Framework

Yusuke Izawa

izawa@prg.is.titech.ac.jp
Tokyo Institute of Technology

Tokyo, Japan

Hidehiko Masuhara

masuhara@acm.org
Tokyo Institute of Technology

Tokyo, Japan

Abstract
Most virtual machines employ just-in-time (JIT) compilers

to achieve high-performance. Trace-based compilation and

method-based compilation are two major compilation strate-

gies in JIT compilers. In general, the former excels in com-

piling programs with more in-depth method calls and more

dynamic branches, while the latter is suitable for a wide

range of programs. Some previous studies have suggested

that each strategy has its advantages and disadvantages, and

there is no clear winner.

In this paper, we present a new approach, namely, the

meta-hybrid JIT compilation strategy. It combines trace-

based and method-based compilations to utilize the advan-

tages of both strategies. Moreover, it is realized as a meta

JIT compiler framework; thus, we can generate a VM with a

hybrid JIT compiler that can apply different program parts

by merely writing an interpreter with our framework.

We chose to extend a meta-tracing JIT compiler and sup-

ported the two compilations on it. As a prototype, we im-

plemented a simple meta-tracing JIT compiler framework

called BacCaml based on the MinCaml compiler by following

RPython’s architecture.

We evaluated its performance by creating a small func-

tional programming language with BacCaml and running

microbenchmark programs. Furthermore, we performed a

synthetic experiment to confirm that there are programs that

run faster by hybrid compilation.

CCS Concepts: • Software and its engineering → Just-
in-time compilers.

Keywords: JIT compiler, language implementation frame-

work, meta-tracing JIT compiler, RPython

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

DLS ’20, November 17, 2020, Virtual, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8175-8/20/11. . . $15.00

https://doi.org/10.1145/3426422.3426977

ACM Reference Format:
Yusuke Izawa and Hidehiko Masuhara. 2020. Amalgamating Differ-

ent JIT Compilations in a Meta-tracing JIT Compiler Framework.

In Proceedings of the 16th ACM SIGPLAN International Symposium
on Dynamic Languages (DLS ’20), November 17, 2020, Virtual, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3426422.
3426977

1 Introduction
Just-in-Time (JIT) compilation is widely used in modern pro-

gramming language implementations that include Java [16,

30], JavaScript [15, 17, 26], and PHP [1, 29] to name a few.

There is a variety of JIT compilers that commonly identify

“hot spots” or frequently-executed parts of a program at run-

time, collect runtime information, and generate machine

code. By compiling only frequently-executed parts of a pro-

gram, the compilation is fast enough to be executed at run-

time. By exploiting runtime information, compilers can ex-

ecute aggressive optimization techniques such as inlining,

type specialization and produce as efficient—sometimesmore

efficient—code as the that code generated with traditional

static compilers.

JIT compilers can be classified by the strategy of selecting

compilation targets, namely method-based and trace-based

strategies. The method-based strategy involves using meth-

ods (or functions) as a unit of compilation, which has been

used in many JIT compilers [12, 30, 37]. It shares many opti-

mization techniques with traditional static compilers. The

trace-based strategy involves using a trace of a program

execution, which is a sequence of instructions during a par-

ticular run of a program, as a compilation unit [3, 6, 9, 15].

It effectively executes inlining, loop unrolling and type spe-

cialization.

Neither of the two strategies is better than the other; in-

stead, each works better for different types of programs.

While the method-based strategy works well on average, the

trace-based strategy exhibits polarized performance char-

acteristics. It works better for programs with many biased

conditional branches and deeply nested function calls [3, 9,

15, 23]. However, this strategy can cause severe overheads

when the path of an execution varies, which is known as the

path-divergence problem [20, 21].

It is seems straightforward to combine the two strategies,

i.e., when compiling a different part of a program, using a

1

https://doi.org/10.1145/3426422.3426977
https://doi.org/10.1145/3426422.3426977
https://doi.org/10.1145/3426422.3426977

DLS ’20, November 17, 2020, Virtual, USA Yusuke Izawa and Hidehiko Masuhara

strategy that works better for that part. However, the follow-

ing questions need to be answered: (1) how can we construct

such a compilation engine without actually creating two very

different compilers, (2) how do the code fragments that are

compiled by different strategies interact with each other, and

(3) how can we determine a compilation strategy to compile

a part of a program.

There are not many studies on these regards. To the best

of our knowledge, only region-based compilation by HipHop

Virtual Machine (HHVM) [29] and is the strategy that sup-

ports both strategies. HHVM is designed for PHP and Hack,

and implemented by making a method-based compiler more

flexible in selecting compilation targets. Lazy basic block ver-

sioning is provided by Higgs JavaScript VM. It is a JIT code

generation technique working at the level of basic blocks,

defining a basic block as a single-entry and single-exit se-

quence of instructions, and performs both strategies by com-

bining type-specialized basic blocks.

We propose ameta-hybrid JIT compiler framework to com-

bine trace- and method-based strategies, to study questions

(1) and (2), while leaving question (3) for future work. One

major difference from the existing hybrid compilers is that

we design a meta-JIT compiler framework, which can gen-

erate a JIT compiler for a new language by merely writing

an interpreter of the language. Moreover, we design it by ex-

tending a meta-tracing compilation framework by following

the RPython’s [9, 13] architecture.

We implemented BacCaml, a prototype implementation

of our framework. Though its architecture is based on the

RPython’s, it is a completely different and much simpler im-

plementation written in OCaml. We modified the MinCaml

compiler [34] as the compiler backend.

Contributions and Organization. This paper has the
following contributions.

• We propose a meta-hybrid JIT compiler framework

that can apply both trace- and method-based compi-

lation strategies, i.e., hybrid compilation strategy, to

different parts of a program under a meta-JIT compiler

framework.

• We present a technique to achieve method-based com-

pilation with a meta-tracing JIT compiler by control-

ling the trace-based compiler to cover all the paths in

a method.

• We identify the problem of interconnecting code frag-

ments compiled by the different strategies, and present

a solution that involves dynamically switching the us-

age of call stacks.

• We implemented a prototype of our framework called

BacCaml, and confirmed that there are programswhere

the hybrid compilation strategy for our framework per-

forms better.

The rest of this paper is organized as follows. In Section 2,

we give an overview of method JIT, tracing JIT, and meta-

tracing JIT compilation which serve as the underlying tech-

niques of our framework. In Section 3, we present our hybrid

compiler framework after discussing the advantages and dis-

advantages of tracing- and method-based strategies. In Sec-

tion 4, we introduce a technique that enables method-based

compilation with a meta-tracing JIT compiler. Afterwards,

we explain the problem and solution of combining code frag-

ments compiled by two compilation strategies. In Section 5,

we evaluate the basic performance of the current BacCaml

implementation. In Section 6, we report on a synthetic exper-

iment in order to confirm usefulness of the hybrid strategy.

In Section 7, we discusses related work. Finally, we conclude

the paper in Section 8.

2 Background
Before presenting the concept and implementation of our

meta-hybrid JIT compiler framework, we briefly review the

following compilation techniques which are essential of our

framework; method-based compilation, trace-based compila-

tion, and meta-tracing JIT compilation.

2.1 Method-Based JIT Compilation Technique
JIT compilation is a commonly used technique in VM-based

languages, including Smalltalk-80 [12], Self [37] and Java [2,

30]. It performs the same compilation processes as the-back-

end of the ahead-of-time compilers but does only to a small

set of methods during an execution of a program. The com-

piled methods are “hot spots” in the execution as they are

usually chosen from frequently-executed ones by taking an

execution profile. In addition to the standard optimization

techniques that are developed for the ahead-of-time compil-

ers, it performs more optimization techniques by exploiting

profiling information. One of those techniques is aggressive
inlining, which selectively chooses inline method bodies only

to the ones frequently executed. By not inlining methods

that are rarely executed, it can inline more nested method

calls.

2.2 Trace-Based JIT Compilation Technique
Tracing optimization was initially investigated by the Dy-

namo project [3] and was adopted for implementing com-

pilers for many languages such as Lua [31], JavaScript [15],

Java trace-JIT [16, 23] and the SPUR project [6].

Tracing JIT compilers track the execution of a program

and generate a machine code with hot paths. They convert

a sequential code path called trace into native code while

interpreting others [10]. “Trace” is a straight-line program;

therefore, every possible branch is selected as the actually-

executed one. To ensure that the tracing and execution con-

dition is the same, a guard code is placed at every possible

point (e.g., if statements) that go in another direction. The

2

Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework DLS ’20, November 17, 2020, Virtual, USA

def interp(bytecode):
stack = []; sp = 0; pc = 0
while True:
jit_merge_point(reds=['stack','sp'],

greens=['bytecode','pc'])
inst = bytecode[pc]
if inst == ADD:
v2, sp = pop(stack, sp)
v1, sp = pop(stack, sp)
sp = push(stack, sp, v1 + v2)

elif inst == JUMP_IF:
pc += 1; addr = bytecode[pc]
if addr < pc: # backward jump
can_enter_jit(reds=['stack','sp'],

greens=['bytecode','pc'])
pc = addr

Figure 1. Example interpreter definition written in RPython.

guard code determines whether the original condition is still

valid. If the condition is false, the machine code’s execution

stops and falls back to the interpreter.

2.3 Meta-Tracing JIT Compilation Technique
Typically, tracing JIT compilers record a representation of

a program; however, a meta-tracing JIT compiler traces the

execution of an interpreter defined by a language builder.

Meta-tracing JIT compilation is just tracing compilation: in

the sense that it compiles a path of a base-program, even if

it has conditional branches. If it has, the compiled code will

contain guards, each of which is a conditional branch to the

interpreter execution from that point.

RPython [9, 10], a statically typed subset of Python pro-

gramming language, is a tool-chain for creating a high-

performance VM with a trace-based JIT compiler. It requires

a language builder for implementing a bytecode compiler and

interpreter definition for the bytecode. Our prototype Bac-

Caml is based on RPython’s architecture. Before describing

the details of BacCaml, let us give an overview of RPython’s

meta-tracing JIT compilation.

To leverage the RPython’s JIT compiler, an interpreter

developer should annotate to help identify the loops in the

base-program that is going to be interpreted. Figure 1 shows

an example of an interpreter defined by a language devel-

oper. The example uses two annotations, jit_merge_point
and can_enter_jit. jit_merge_point should be put at the top

of a dispatch loop to identify which part is the main loop,

and can_enter_jit should be placed at the point where a back-
edge instruction can occur (where meta-tracing compilation

might start).

Algorithms 1 and 2 illustrate the meta-tracing JIT compila-

tion algorithm in pseudocode. The procedure JitMetaTracing
takes the following arguments: rep – a representation for the

interpreter and states – the state of the interpreter just in

starting to trace. A meta-tracing JIT compiler records the ex-

ecution and checks the operands in the executed operations.

It uses red and green colors for recognizing runtime infor-

mation. The color red means “a variable in a base language”;

Algorithm 1: JitMetaTracing(rep, states)

input :Representations of a interpreter itself
input :States (e.g., virtual registers and memories) of an

interpreter itself

output :The resulting trace of the hot spot in a base-program

1 entry_states← states;
2 repeat
3 residue← [] ; // Data to store the result

4 op← rep.current_operation(states);
5 if op = conditional branch then
6 if op has red variables then
7 guard← op.mk_guard(states);
8 residue.append(guard);

9 eval(op, states, residue);
10 else if op = function call to f then
11 inline 𝑓 ;

12 else
13 eval(op, states, residue);

14 until op!= jit_merge_point ∧ entry_states!= states;
15 return residue;

Algorithm 2: Eval(op, states, residue)
1 if op has red variable then
2 op.const_fold(states);
3 residue.append(op);
4 else
5 op.execute(states);

hence, red variables are used for calculating the result of a

base-program. The color green indicates “a variable in an

interpreter”, then the compiler will optimize this variable

by constant-folding or inlining. If all the operands in one

operation are green, the operation is only used for calcula-

tion in an interpreter, and therefore the compiler executes

it. If at least one variable is red, the compiler recognizes the

operation is in a base-program and writes to the residue.
One significant advantage of a meta-tracing JIT compi-

lation strategy depicted by RPython is that it is more com-

fortable to write interpreters in comparison to the abstract-

syntax-tree (AST) rewriting specialization in Truffle. In [24],

Marr and Ducasse stated that a significant difference be-

tween RPython and Truffle is the number of optimizations a

language implementer needs to apply in order to reach the

same level of performance. In their experiments, SOM [19]

built with RPython achieves excellent performance without

adding many optimizations. On the other hand, SOM built

with Truffle without any additional optimizations performs

one order of magnitude worse than the meta-tracing. By

adding some optimizations, SOM with Truffle reaches the

same level as that of SOM with RPython. According to the

result, they concluded that the meta-tracing strategy has

significant benefits from an engineering perspective [24].

3

DLS ’20, November 17, 2020, Virtual, USA Yusuke Izawa and Hidehiko Masuhara

3 Approach
This section explains the trade-offs between trace- and

method-based compilation and introduces our approach to

solve the problem.

3.1 Trade-Offs Between Trace-Based Compilation
and Method-Based Compilation Strategies

The advantages of the method-based compilation strategy

are the following: First, the same optimization techniques

used in AOT can be applied for method-based compilation.

Thus, it can leverage existing AOT compiler engines such as

GCC [35] and LLVM [14]. Second, a compilation unit has the

complete control flow of a target method. Therefore, method-

based compilation can be applied not only for various types

of programs and also for programs that are not suitable for

trace-based compilation [23, 24].

However, when a method-based compiler compiles a

method with many biased branches, the compiled code in-

cludes colds spots of the method. This makes compilation

time longer than when applying trace-based compilation

strategy. Furthermore, it requires well-planned inlining to a

method for reducing the overhead of a function call. When it

applies aggressive inlining to a method with deeply-nested

function calls, the compiled code’s size increases, leading to

longer compilation time.

The trace-based compilation strategy, however, can ap-

ply many optimization techniques [8], including constant-

subexpression elimination, dead-code elimination, constant-

folding, and register allocation removal [7], since compila-

tion code represents only one execution path. Thus, this strat-

egy gets better results with specific programs with branching

possibilities or loops [4, 21]. Moreover, it can execute aggres-

sive function inlining at low cost, since a trace-based JIT

compiler tracks and records the execution of a program so

that a resulting trace will include an inlined function call [16].

This leads to reducing overheads of a function call and creat-

ing chances for further optimization. However, this strategy

performs worse at programs with complex control flow be-

cause of the mismatch between tracing and execution [21].

In contrast, method-based compilation performs better in

such programs.

3.2 Meta-Hybrid JIT Compiler Framework
We propose a meta-hybrid JIT compiler framework to over-

come the trade-offs explained above, and the prototype im-

plementation namely BacCaml. The framework is ameta-JIT
compiler framework; therefore, a language developer can

generate a VM with a hybrid JIT compiler by writing inter-

preter definition. A generated JIT compiler is a hybrid of

the trace- and method-based compilations as it can select

an execution path or a function as a compilation unit. The

compiled code from the two types of strategies can work

together in a single execution.

Interpreter
built with the
BacCaml framework

Hybrid JIT
Compiler

interpreter...

virtual machine

BacCamlOur framework

generate

...

...

...

...

...

language
developer

Tracing
+

Method

(a)A virtual machine generation with our meta-hybrid JIT compiler

framework.

method-JITtrace-JIT

Hybrid
JIT Compiler

Interpreter Interpreter

JIT Compilation

Machine
Code

Stack Hybridizationbase-program

Execution
Hybrid

JIT

(b) A runtime overview of a generated hybrid JIT compiler.

Figure 2. The overviews of our meta-hybrid JIT compiler

framework.

The basic idea of achieving hybrid compilation is realizing

method-based compilation by extending a (meta-) tracing

compiler and mixing them. Since a trace has no control flow

and inlines a function, we create our method-based compi-

lation by customizing the tracing JIT compilers’ features to

cover all the paths in a method. Therefore, our meta-hybrid

JIT compiler framework shares its implementations between

the two trace- and method-based compilers. Details are ex-

plained in Section 4.1.

In addition to the leverage strength of the two JIT com-

pilation strategies, we aim to resolve the path-divergence

problem by selectively applying method-based compilation

to the functions that cause the problem trace compilation to

the other parts of a program. Since this proposal focuses on

combining the different two strategies, dynamically selecting

a suitable strategy depending on target programs’ structure

is left as future work.

Figure 2 gives an overview of our meta-hybrid JIT com-

piler framework. As shown in Figure 2a, when a language

developer writes interpreter definition with the framework,

the framework can generate a VM with a hybrid JIT com-

piler. Figure 2b overviews our hybrid compilation and run-

time by our framework. At runtime, the generated hybrid

4

Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework DLS ’20, November 17, 2020, Virtual, USA

JIT compiler applies different strategies to different parts

of a base-program. Further, machine codes generated from

different strategies can move back and forth with each other

by Stack Hybridization, which is illustrated in Section 4.4.

4 Mixing The Two Compilation Strategies
in Meta-Level

In this section, we first describe how to construct method-

based compilation based on (meta-) trace-based compilation.

We then explain how to cooperate with them in a meta JIT

compiler framework. In this work, we merely aim at achiev-

ing simple method compilation; i.e., advanced optimization

techniques used in existing method JIT compilers are left for

future work.

4.1 Method-Based Compilation by Tracing
To construct method-based compilation by utilizing a trace-

based compilation, we have to cover all paths of a function. In

other words, we need to determine the true path and decrease
the number of guard failures that occur to solve the path-

divergence problem when applying trace-based compilation.

We propose method JIT by tracing by customizing the

following features of trace-based compilation: (1) trace en-

try/exit points, (2) conditional branches (3) loops, (4) function

calls. In the following paragraphs, we explain in detail how

to “trace” a method by modifying these features. Note that

method JIT by tracing is more naive than other state-of-the-

art method-based JIT compilers, since this method-based

compilation is designed for applying for programs with com-

plex control flow, which causes performance degradation

problem in a trace-based compilation, and we apply a trace-

based compilation for other programs. Thus, the trace-based

compiler is the primary compiler, and the method-based

compiler is the secondary compiler in our system.

Trace entry/exit points. Trace-based JIT compilers [15,

16] generally compile loops in the base-program; therefore,

they start to trace at the top of a loop and end when the

execution returns to the entry point. To assemble the entire

body of a function, we modify this behavior to trace from the

top of a method body until a return instruction is reached

(see Algorithm 3).

Conditional branches. When handling a conditional

branch, trace-based JIT compilers convert a conditional

branch into a guard instruction and collects instructions

that are executed. When execution method-based compila-

tion, however, we must compile both sides of conditional

branches. To achieve this, a tracer that records executed in-

structions must return to the branch point and restart tracing

the other side as well. As shown in Algorithm 4, the tracer in

our constructed method-based JIT compiler has to trace both

then and else sides so that it backtracks to the beginning of a
conditional branch when it reaches the end of one side and

Algorithm 3: JitMetaMethod(rep, states, residue)

input :Representations of an interpreter itself.

input :States (e.g., virtual registers and memories) of an

interpreter itself.

input :An array data structure that records an executed

instruction.

output :The trace of a target method in a base-program

1 if op = method_entry then
2 residue← [];

3 do
4 if op = conditional branch then
5 TraceCond (rep, states, residue);
6 else if op = loop entry then
7 TraceLoop (rep, states, residue);
8 else if op = function call to f then
9 TraceFunction (rep, states, residue);

10 else
11 eval(op, states, residue);
12 op← rep.get_next(op);
13 while op != return;
14 return residue;
15 else
16 return;

Algorithm 4: TraceCond(rep, states, residue)
1 regs, mems← [], [];

2 do
3 regs.store(states.get_reg());
4 mems.store(states.get_mem());

5 trace_then← JitMetaMethod(states);
6 states.restore(regs, mems);
7 trace_else← JitMetaMethod(states);
8 // construct if exp including trace_then and

trace_else

9 trace_ifexp← begin
10 if op.const_fold(states) then
11 trace_then;
12 else
13 trace_else

14 residue.append(trace_ifexp);
15 op← rep.next_of(op);
16 while op != return;

continues to trace the other side. Before starting to trace one

side, the tracer stores its states (e.g., the data stored in the

tracer’s virtual registers and memories) in already prepared

arrays. For just backtracking, the tracer restores those states
and continues to the other side.

Figure 3a shows an example describing how the tracer

for method-based compilation works. On the left side, node

A is the method entry, nodes B – C – D form a conditional

branch, and node E is the end of this method. The tracer

starts to trace at A. On reaching a conditional branch (B),

the tracer then stores its state and follows one side (B – C

– E – G – H). On reaching return instruction (H), the tracer

5

DLS ’20, November 17, 2020, Virtual, USA Yusuke Izawa and Hidehiko Masuhara

A

entry

B

C D

E F

G

H

return

tr.1

A

entry

B

C D

E F

G G’

H

return

H’

return

(a) Handling of a conditional branch.

In this program, A represents a

method entry, and B – C – D repre-

sents a conditional branch.

A

entry

B

C

D

E

F

return

tr.1

tr.2

tr.3

A

entry

B

C

D

E

F

return

(b) Handling of a loop. In

this program, B – C – D

represent a loop, and E –

F is a successor of the loop

B – C – D.

other fun.

A

entry

B

C

D

return

E

F

c
a
ll

r
e
tu
r
n

tr.1

other fun.

A

entry

B

C

D

return

E

F

c
a
ll

r
e
tu
r
n

(c)Handling of a function call. A – B – C – D and E – F are functions.

In this program, (A – B – C – D) calls (E – F) at C. Note that only

target function (A – B – C –D) is compiled.

Figure 3. Examples how our method-based compilation

works. Each left-hand side is the control-flow of a target

base-program that represents one method, and each right-

hand side is a result. “entry” and “return” means the entry

point and exit poitn of a target method, respectively.

finally backtracks to B and resumes to trace the other side

(B – D – F – G – H) by restoring the already saved data.

There is a risk of an exponential blow-up of compiled code

when tracing a program that has many nested conditionals.

To avoid generating too big native code, when the compiler

detects too many branches in a target program part, our

system stops the method-based compiler to trace. Instead,

our system switches to apply trace-based compilation for

such a program.

Loops. Our method-based compiler does not handle loops

specially. While a trace-based compiler compiles loops as a

straight-line path, our method-based compiler compiles not

only the body a target loop, but also the successors of it.

Algorithm 5 illustrates how the tracer for method-based

compilation traces a loop. When the tracer finds the entry

point, it starts to analyze the body of a function to find a

Algorithm 5: TraceLoop(rep, states, residue)
1 op← rep.get_op();
2 do
3 if op = back-edge to the entry then
4 residue.append(jump to entry);

5 else if op = loop-exit then
6 loop_after_state← rep.next_of(op).get_states();
7 loop_after_trace← JitMetaMethod(rep,

loop_after_state);

8 residue.append(jump to loop_after_trace);

9 residue_loop_after.append(loop_after_trace);
10 else
11 eval(op, states, residue);
12 op← rep.next_of(op);
13 while op!= return;
14 residue.append(residue_loop_after)

Algorithm 6: TraceFunction(rep, states, residue)
1 do
2 if op = function call to f then
3 residue.append(call to f) ; // not following but

leaving the instruction “call f”

4 // continue to trace successors

5 while op != return;

back-edge and loop-exit instruction. When the tracer traces

a back-edge, as with a trace-based compilation, leaves an

instruction to jump to the entry. When the tracer leaves a

loop-exit instruction, it also traces the destination of a loop-

exit instruction and leaves a jump instruction to go to the

outside of this loop.

Figure 3b shows an example of how to handle a loop. In

this example, our method-based compiler compiles a single

loop into three trace parts. The first one (tr.1) is up to the

loop entry, the second one is the loop itself (tr.2) of the loop,

and the third one is the successor of the loop (tr.3).

Function calls. Whereas a trace-based JIT compiler will

inline function calls, our method-based JIT compiler will

not inline, but emit a call instruction code and continue

tracing. We don’t inline function because our method-based

compilation is designed to apply only for programs with the

path-divergence problem. If a target program needs inlining,

wewill apply trace-based compilation for it, since trace-based

compilation can automatically perform function inlining.

Thus, our method-based compilation is so naive that it is not

equivalent to other method-based JIT compilers.

To remain a function call in a resulting trace, we have to

inform which part is represented to a base-program func-

tion call in an interpreter definition. Therefore, we need to

implement the specific interpreter style shown in the left-

hand side of Figure 4 (we call this style host-stack style here).
By writing in host-stack style, the tracer can detect which

part is a base-program’s method invocation and leave a call

6

Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework DLS ’20, November 17, 2020, Virtual, USA

if opcode == CALL:
addr = self.bytecode[pc]
call the `interp'
recursively
res = self.interp(addr)
user_stack.push(res)
pc += 1

elif opcode == RETURN:
return a top of
`user-stack'
return user_stack.pop()

(a) Example interpreter written

in host-stack style.

if opcode == CALL:
addr = self.bytecode[pc]
pc += 1
push a return addr to
`user-stack'
ret_addr = W_IntObject(pc)
user_stack.push(ret_addr)
if addr < pc:
can_enter_jit(..)

jump to a callee function
pc = t

elif opcode == RETURN:
v = user_stack.pop()
restore already pushed
return addr
addr = user_stack.pop()
user_stack.push(v)
if addr < pc:
can_enter_jit(..)

jump back to the caller
function
pc = addr

(b) Example interpreter written

in user-stack style.

Figure 4. Interpreter definition styles. For managing a return

address/value, left-hand side style uses a host-language’s

(system provided) stack, but right-hand side uses a developer-

prepared stack data structurpe.

instruction in a resulting trace. Figure 3c shows how the

tracer compiles a function call. In this example, the tracer

eventually generates one trace, including a call instruction

(tr.1).

In trace-based compilation, however, a meta-tracing JIT

compiler can work efficiently in a specific way as shown in

the right-hand side of Figure 4 (we call this user-stack style
here).

In the next section, we organize why we need the two

different two stack styles.

4.2 The Two Stack Styles
A compiler implemented by a meta-tracing JIT compiler

framework has two options to represent a call-stack, namely

the host-stack and the user-stack. Those two options are

chosen based on the way of implementing function call/re-

turn operation in the interpreter. The host-stack style in-

terpreter, which can be found in PyPy [33] and Topaz [36],

uses the host-language’s function call/return for the base-

language’s call/return. The user-stack style interpreter, as

in Pycket [5] and Pyrlang [22], manages return addresses

of the base-language’s function calls in a user-defined data

structure in the interpreter.

Each of the two compilation strategies requires one of

those two stack styles. Concretely, the method-based compi-

lation requires the host-stack style, whereas the trace-based

compilation prefers the user-stack style. While this causes

the combination problem explained in the next section, we

describe the relationship between the compilation strategies

Example sum function
def sum(n):
if n <= 1: return 1
else: return n + sum(n-1)

sum(10000)

Resulting trace from `sum'
dbg_mrg_point(0,0,#0 LOAD_FAST')
dbg_mrg_point(0,0,#3 LOAD_CONST')
dbg_mrg_point(0,0,#6 COMPARE_OP')
dbg_mrg_point(0,0,#9 POP_JMP_IF_FLS')
dbg_mrg_point(0,0,#16 LOAD_FAST')
dbg_mrg_point(0,0,#19 LOAD_GLOBAL')

dbg_mrg_point(0,0,#22 LOAD_FAST')
dbg_mrg_point(0,0,#25 LOAD_CONST')
...
dbg_mrg_point(5,5,#33 RETURN_VALUE')
dbg_mrg_point(4,4,#32 BINARY_ADD')
dbg_mrg_point(4,4,#33 RETURN_VALUE')
dbg_mrg_point(3,3,#32 BINARY_ADD')
dbg_mrg_point(3,3,#33 RETURN_VALUE')
dbg_mrg_point(2,2,#32 BINARY_ADD')
dbg_mrg_point(2,2,#33 RETURN_VALUE')
dbg_mrg_point(1,1,#32 BINARY_ADD')
dbg_mrg_point(1,1,#33 RETURN_VALUE')
dbg_mrg_point(0,0,#32 BINARY_ADD')
dbg_mrg_point(0,0,#33 RETURN_VALUE')

Figure 5. Example non-tail recursive function and its com-

piled trace in PyPy.

and the stack styles after explaining the differences between

them.

Method-based compilation requires the host-stack
style. The method-based compilation requires to confine

the compilation target to one function/method
1
in a base-

program, whichmeans the compiler needs to leave a function

call operation in the base program as a function call instruc-

tion in the compiled code and continue compilation of the

subsequent operations in the caller function.

With a host-stack style interpreter, since the function call

operation is implemented as a call to the interpreter function

(i.e., res = self.interp(addr)) in Figure 4a), it is easy to leave the

function call as it is and to continue compiling the subsequent

operations.

With a user-stack style interpreter, however, the function

call operation is implemented by manipulating the inter-

preter’s program counter (i.e., user_stack.push(ret_addr); pc =
t in Figure 4b). To compile this into a function call machine

instruction and continue compilation of the subsequent op-

erations on the caller’s side, the compiler needs to trace the

interpreter with the state after returning from the callee

function without running the callee function. It is not easy,

if not impossible.

Trace-based compilation prefers the user-stack style.
The trace-based compilation prefers a user-stack style in-

terpreter to successfully compile programs that heavily use

recursive calls and to support languages that provide opera-

tors to manipulate call stacks (e.g., first-class continuations).

When a base-program with a (non-tail) recursive call (e.g.,

sum(n) in Figure 5) runs, it roughly performs a repetition of

function calls followed by a repetition of function returns. A

tracing compiler can compile the traces into two loops with

a user-stack style interpreter, respectively correspond to the

call/return repetitions. This is because the user-stack style

interpreter realizes the base function call/return as jumps.

1
Even with function inlining, and the compiler must stop inlining at some

point.

7

DLS ’20, November 17, 2020, Virtual, USA Yusuke Izawa and Hidehiko Masuhara

However, with a host-stack style interpreter, a tracing com-

piler can either terminates compilation upon the function

call operation in the interpreter or inline the call operation.

The former will yield very short compiled code fragments,

which entails a significant amount of overheads. The lat-

ter can work well when nested levels of calls are not deep.

When the nested levels get more in-depth, it can lead to code

bloat. Figure 5 shows the compilation of a non-tail recursive

function in PyPy, which uses the host-stack style interpreter.

The sequence below the horizontal bar is the intermediate

compiled code, where we can see that the compiler performs

function inlining. For functions with a larger body, this ap-

proach will cause code bloating or limited levels of inlining.

4.3 Combination Problem
The reason why we cannot naively combine them is the fol-

lowing: the two compilations require different interpreter

implementation styles in function calls. Trace-based com-

pilation requires the user-stack style, while method-based

compilation requires the host-stack style. In other words, dif-

ferent types of compilations use different stack frames for

optimizing function calls. Because of this gap, the runtime

cannot call back and forth between native codes generated

from the two compilations. Trace-based compilation inlines

a function call; therefore, there is no function call instruction

in the resulting trace. Whereas method-based compilation

“leaves” a function call instruction in the resulting trace. We

explain this problem by using Figure 6. Figure 6a shows

an example that a method-compiled function calls a trace-

compiled function, and Figure 6b shows an example that a

method-compiled function calls a trace-compiled function.

In the case that fib_s (compiled by method-based com-

pilation) calls sum (compiled by trace-based compilation) as

shown in Figure 6, the runtime puts a return address in the

host-stack. In sum, the return value and return address are

stored in the user-stack. On returning from sum, since the
semantics of return is defined as shown in Figure 4, the run-

time attempts to find a return address from a user-stack.

However, the return address is stored in a host-stack, and

the runtime cannot return to the correct place.

In the case shown in Figure 6b, sum_f (compiled by trace-

based compilation) calls fib (compiled by method-based

compilation), however the runtime puts its return address

in the user-stack. When runtime returns from fib, it then
attempts to find the return address from the host-stack, but it

fails to find the address and results in runtime-error because

the return address is pushed to the user-stack.

4.4 Stack Hybridization
To overcome this problem, we also present Stack Hybridiza-
tion, a mechanism to bridge the native codes generated from

different strategies. Stack Hybridization manages different

kinds of stack frames, and generates machine code that can

be mutually executed in trace-JIT and method-JIT contexts.

def sum(n) {

}

def fib_s(n) {

}

...
call sum
...

call

return (jump)

return_addr

return_val

compiled by method-JIT compiled by trace-JIT

Runtime cannot find
the return address
at returning

user-stack

host-stack

(a) Calling a trace-compiled code from a method-

compiled function.

def sum_f(n) {

}

def fib(n) {

}

...
call fib(n-1)
...
call fib(n-2)
...
return

return

return_val

return_addr

compiled by method-JITcompiled by trace-JIT

user-stack

host-stack

call (jump)

return_addr

user-stack

Runtime cannot find
the return address
at returning

(b) Calling a method-compiled function from a trace-

compiled code.

Figure 6. Example of Combination Problem. Gray back-

ground code is compiled by method JIT, and blue lined code

is compiled by tracing JIT.

To use Stack Hybridization, a language developer needs to

write an interpreter in the specific way: (1) For executing a

call instruction in the base language, developers put a special

flag to indicate which stack frame is used in a self-prepared

stack data structure. (2) For executing a return, they have

to branch to the return instruction of the base language

corresponding to the call by checking the already pushed

flag.

Roughly speaking, the interpreter handles the call and

return operations in the following ways:

• When it calls a function under the trace-based compi-

lation, it uses the user-stack; i.e., it saves the context

information in the stack data structure, and iterates

the interpreter loop. Additionally, it leaves a flag “user-

stack” in the user-stack.

• When it calls a function under the method-based com-

pilation, it uses the host-stack; i.e., it calls the inter-

preter function in the host language. Additionally, it

leaves a flag “host-stack” in the user-stack.

• When it returns from a function, it first checks a flag in

the user-stack. If the flag is “user-stack”, it restores the

8

Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework DLS ’20, November 17, 2020, Virtual, USA

context information from the user-stack. Otherwise, it

returns from the interpreter function using the host-

stack.

To support behaviors, we introduce an interpreter imple-

mentation style, which enables to embed both styles into

a single interpreter and switch its behavior depending on

the flag. Figure 7 shows a sketch of special syntax to sup-

port Stack Hybridization. The important syntaxes are is_mj
pseudo function, and US/HS special flags. US means a flag

“user-stack”, and HS means a flag “host-stack”.

is_mj is used for selecting suitable CALL definitions at

compilation time. This pseudo function returns true under

method-based compilation context, otherwise false. The
host-stack styled definition should be placed in the then
branch, and the user-stack styled definition is placed in the

else branch as shown in the left of Figure 7. Then, the meta-

hybrid JIT compiler traces the then branch in the context of

trace-based compilation, but traces the else branch under

method-based compilation context.

US and HS mean trace- and method-based compilation

contexts, respectively. These special variables are used for

detecting JIT compilation context dynamically when execut-

ing RETURN at runtime (not compilation time).

When defining CALL in an interpreter, US or HS is placed
at the top of a user-stack when language developers define

CALL instruction. At compilation time, these flags are treated

as red variable, so an instruction pushing US or HS flag is left
in a resulting trace. The compiler also leaves the branching

instruction (if JIT_flg == HS: ... else: ...) in a

resulting trace when tracing RET. This enables to find a JIT

compilation context, and cooperate resulting traces made

from the different two strategies at runtime.

For example, there are two traces, one (A) is made from

trace-based compilation and the other (B) is from method-

based compilation. When a function call from A to B is oc-

curred, a flag US is pushed to a user-defined stack. When

executing a RET instruction in B, the control executes a suit-
able definition by writing as shown in the right of Figure 7.

5 Evaluation
In this section, we evaluate the basic performance of Bac-

Caml’s trace-based and method-based compilers. We first

briefly introduce the current status of BacCaml, and how

we took the data of microbenchmark programs. Next, we

show the results of evaluatation for BacCaml by running

microbenchmark programs.

5.1 Setup
Implementation. We implemented the BacCaml meta-

hybrid JIT compiler framework based on the MinCaml com-

piler [34]. MinCaml is a small ML compiler designed for

education-purpose. MinCaml can generate native code al-

most as fast as other notable compilers such as GCC or

if instr == CALL:
addr = bytecode[pc]
branch considering by
a JIT ctx.
if is_mj():
push JIT flag (HS) to
``user-stack''
user_stack.push(HS)
ret_val = interp(addr)
user_stack.push(ret_value)

else:
push JIT flag (US) to
``user-stack''
user_stack.push(US)
user_stack.push(pc+1)
pc = addr

elif instr == RETURN:
ret_val = user_stack.pop()
get JIT ctx. flag from
``user-stack''
JIT_flg = user_stack.pop()
check the JIT ctx. and branch
if JIT_flg == HS:
return ret_val

else:
ret_addr = user_stack.pop()
user_stack.push(ret_val)
pc = ret_addr

Figure 7. A sketch of a interpreter definition with Stack

Hybridization. Some hint functions (e.g., can_enter_jit
and jit_merge_point), and other definitions are omitted

for simplicity. US and HS represents user-stack and host-stack,
respectively.

OCamlOpt. We did not extend RPython itself because the

implementation of RPython is too huge to comprehend. As

an initial step, we created a subset of RPython on a compiler

with reasonable implementation size
2
.

We also created a small functional programming language,

namely MinCaml−−, with the BacCaml framework for taking

microbenchmark. It is almost same to MinCaml, but limited

to unit, boolean and integer variables
3
.

Methodology. We attempted to run all of MinCaml’s test

programs
4
and shootout

5
benchmark suite by MinCaml−−

and BacCaml before taking microbenchmark. Then, we se-

lected all programs that can be successfully worked in them.

The names of microbenchmark programs are shown in the

X-axis of Figure 8.

When takingmicrobenchmark, we set a threshold for start-

ing JIT compilation at a lower-than-normal value to simplify

the situation. Basically, we set 100 as a threshold to deter-

mine whether starting JIT compilation or not. Therefore, this

microbenchmark can arrive at a steady-state by attempting

at most 50 iterations. Thus, we ran each program 150 times,

and the first 50 trials were ignored to exclude the warm-up.

Since BacCaml is a prototype, we convert a resulting trace

to Assembly, compile it by GCC at the compilation phase. The

compiler then dispatches the control to the machine code by

using dynamic loading in the execution phase. Particularly,

trace-generation and compilation processes consume much

time (approximately 80 % of a warm-up phase), so using a

2
BacCaml itself is written in OCaml, and its implementation can be accessed

at GitHub (https://github.com/prg-titech/BacCaml)
3
MinCaml−− is also available at GitHub (https://github.com/prg-titech/
MinCaml)
4https://github.com/esumii/min-caml/tree/master/test
5https://dada.perl.it/shootout/

9

https://github.com/prg-titech/BacCaml
https://github.com/prg-titech/MinCaml
https://github.com/prg-titech/MinCaml
https://github.com/esumii/min-caml/tree/master/test
https://dada.perl.it/shootout/

DLS ’20, November 17, 2020, Virtual, USA Yusuke Izawa and Hidehiko Masuhara

JIT native code generation framework such as libgccjit
6
or

GNU Lightning
7
is left as future work.

We ran all the microbenchmarks on Manjaro Linux with

Linux kernel version 5.6.16-1-MANJARO and dedicated hard-

ware with the following modules; CPU: AMD Ryzen 5 3600 6-

Core Processor; Memory: 32 GB DDR4 2666Mhz PC4-21300.

In the Figure 8a and Figure 8b, means BacCaml’s tracing

JIT, means BacCaml’s method JIT, means BacCaml’s

interpreter-only execution, means MinCaml (AOT), and

means BacCaml’s hybrid JIT (mixing tracing and method

JIT).

Threats to Validity. There are the following threats to

validity in our evaluation (including the experiment in the

next section). Our method-based compilation is naive, then

the inference which trace-based compilation is faster than

method-based compilation has a possibility to be overturned

by a full-fledged method-based compilers. This is actually

true not only to our method-based compiler, but also for our

trace-based compiler when compared against the state-of-

the-art trace-based compilers like PyPy.

5.2 Results of Standalone JIT Microbenchmark
For comparing the standalone performance of trace- and

method-based compilation strategies, we first applied both

strategies separately for programs written in MinCaml−−,
and compared the performances of MinCaml−− with JIT

with an interpreter-only execution of MinCaml−− and the

MinCaml ahead-of-time compiler.

Before showing data, we explain the limitations of our

method-based compilation. Compared to other state-of-the-

art method JIT compilers, our method-based compilation

does not inline them. It is because our method-based com-

pilation is designed to be applied to only programs with

the path-divergence problem. In other words, it is a fallback

strategy when trace-based compilation does not work well.

The results are shown in Figure 8a and 8b. Note that Fig-

ure 8a is normalized to the MinCaml (lower is better), but

Figure 8b is to the interpreter-only execution (higher is bet-

ter).

Figure 8a illustrates the performances of the two JIT com-

pilations comparing to the elapsed time of MinCaml−− (AOT).
In these results, our trace-based compilation () was from

1.12 to 12.4x slower than MinCaml (AOT) () in programs

which have straight-forwarded control flow (fib-tail, sum,

sum-tail, square, square-tail, fact, ary, prefix_sum). Our trace-

based compilation was effective on such programs since al-

most all executions are run on compiled straight-line traces.

However, it performs from 38.5 to 42.1x slower than other

strategies in programs with complex control flow (fib, ack,

tak, sieve), since these programs cause the path-divergence

problem. In Figure 8b, our trace-based compilation was from

6https://gcc.gnu.org/onlinedocs/jit/
7https://www.gnu.org/software/lightning/

6.02 to 31.92x faster than interpreter-only in programs with

straight-line control flow. However, it was still from 1.44

to 2.68x faster than interpreter-only in programs with the

path-divergence problem, since most of the execution was

done on the interpreter.

On the other hand, our method-based compilation () was

from 1.16 to 6.52x slower than MinCaml (AOT) in Figure 8a.

Besides, from Figure 8b, our method-based compilation also

performs from 15.04 to 37.8x faster than interpreter-only.

From these results, most execution ran on a resulting trace.

Our strategy prevented the path-divergence problem since

our method-based compilation covered the entire body of a

method.

Overall, our trace-based compilation was about 1.10x

faster in programs with straight-line control flow but about

11.8x slower in programs with complex control flow than

our method-based compilation. According to those results,

we can say that trace-based compilation’s performance de-

pends on the control flow of a target program (when fit-

ted to trace-based strategy, its performance was better than

method-based strategy). Still, a method-based strategy works

well on average. Therefore, we argue that combining the two

strategies is vital for further speedup on JIT compilation.

6 Hybrid JIT Experiment
In this section, we demonstrate the result of an experiment

for a hybrid JIT compilation strategy. This experiment aims

to confirm if there are programs that are faster with a hybrid

strategy than standalone strategies. This experimentwas also

performed by the same implementations used in Section 5.

6.1 Setup
Methodology. Wefirst synthesized two types of functions,

one is suitable for trace-based compilation, and the other is

for method-based compilation according to the result shown

in Section 5. Then, we applied hybrid JIT compilation for

them; trace-based compilation is applied for a program with

straight-line control flow, and method-based compilation is

applied for a program with complex control flow. Finally,

we compared the performance with standalone JIT strate-

gies (tracing JIT only and method JIT only) and BacCaml’s

interpreter-only execution.

According to the result shown in Section 5.2, we chose

sum, fib, and tak from the microbenchmark programs. It

is because sum is faster in trace-based compilation than

in method-based compilation, and fib and tak are faster in

method-based compilation than a trace-based compilation.

Then we manually synthesized those functions for preparing

test programs, namely sum-fib, fib-sum, sum-tak and tak-

sum, that shown in Figure 9.

For taking data, we used the same implementations and

hardware employed in Section 5. We also took 150 iterations

and ignored the first 50 trials to exclude warm-up.

10

https://gcc.gnu.org/onlinedocs/jit/
https://www.gnu.org/software/lightning/

Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework DLS ’20, November 17, 2020, Virtual, USA

fib

fib-ta
il

su
m

su
m

-ta
il

sq
uar

e

sq
uar

e-t
ail fa

ctac
k

ta
k ar

y

pre
fix

su
m

ra
ndomsie

ve

0

10

20

30

E
la

p
se

d
ti

m
e

re
la

ti
ve

to
th

e
M

in
C

a
m

l
(A

O
T

).

BacCaml (tracing JIT)

BacCaml (method JIT)

MinCaml (AOT)

(a) Elapsed time relative to the MinCaml (AOT) for each target program. Lower is better.

fib

fib-ta
il

su
m

su
m

-ta
il

sq
uar

e

sq
uar

e-t
ail fa

ctac
k

ta
k ar

y

pre
fix

su
m

ra
ndomsie

ve

0

10

20

30

S
p

ee
d
u
p

ra
ti

o
co

m
p
ar

in
g

to
th

e
in

te
rp

re
te

r.

BacCaml (tracing JIT)

BacCaml (method JIT)

BacCaml (interp.)

(b) Speedup ratio of JITs comparing to the interpreter-only execution for each target program. Higher is better.

Figure 8. Results of standalone JIT microbenchmarking. The five programs on the left have a complex control flow, and the

remaining programs have a straight control flow. The error bars represent the standard deviations.

Since the algorithm that decides to apply which compi-

lation strategy to which part of a program is left for future

work, we manually decided the program parts’ strategies. In

a hybrid JIT compilation strategy, we applied trace-based

compilation to sum, andmethod-based compilation to fib and

tak manually. Despite this, in other strategies, we used only

a single strategy for those test programs. Specifically, we ap-

plied trace-based compilation to sum, fib and tak in a tracing

JIT only strategy, and applied method-based compilation for

them in a method JIT only strategy.

6.2 Results of Hybrid JIT Experiment
The results of the hybrid JIT experiment are shown in Fig-

ure 10. Overall, our hybrid compilation strategy () was from

1.01 to 2.17x faster than our method-based compilation-only.

Our hybrid JIT strategy avoided the overhead of recursive

function calls in sum when executing the native code gener-

ated from sum, since the recursive call part was inlined by

trace-based compilation.

In contrast, our hybrid strategy was from 1.01 to 1.59x

faster than the trace-based compilation-only in fib-sum and

tak-sum. Moreover, our hybrid strategy was about 20x faster

in sum-fib and sum-tak. This difference was caused by the

structure of the target program’s control flow. In fib-sum and

tak-sum, fib and tak can be connected to the sum’s recursive

call and return parts. Otherwise, in sum-fib and sum-tak,

let rec fib n =
if n <= 1 then 1 else
fib (n-1) + fib (n-2) in

let rec sum i n =
if i <= 1 then n else
let m = fib 10 in
sum (i-1) (n+m) in

print_int (sum 1000 0)

(a) sum-fib

let rec sum acc n =
if n <= 1 then acc else
sum (acc+n) (n-1) in

let rec fib n =
if n <= 2 then sum 0 1000
else
fib (n-1) + fib (n-2) in

print_int (fib 20)

(b) fib-sum
let rec tak x y z =
if x <= y then z else
tak (tak (x-1) y z)

(tak (y-1) z x)
(tak (z-1) x y) in

let rec sum i n =
if i <= 1 then n else
let m = tak 12 6 4 in
sum (i-1) (n + m) in

print_int (sum 100 0)

(c) sum-tak

let rec sum i n =
if i <= 1 then n else
sum (i-1) (n+i) in

let rec tak x y z =
if x <= y then sum 1000 0
else
tak (tak (x-1) y z)

(tak (y-1) z x)
(tak (z-1) x y) in

print_int (tak 8 4 2)

(d) tak-sum

Figure 9. Target programs written in MinCaml−− used for

the hybrid JIT experiment.

sum cannot be connected to entire fib and tak, since our

trace-based compiler cannot cover entire body of fib and tak

functions by the path-divergence problem.

11

DLS ’20, November 17, 2020, Virtual, USA Yusuke Izawa and Hidehiko Masuhara

su
m

-fi
b

fib
-s

um

su
m

-t
ak

ta
k-

su
m

0

10

20

30

40

50

BacCaml (hybrid JIT) BacCaml (tracing JIT only)

BacCaml (method JIT only) BacCaml (interp. only)

Figure 10. Results of hybrid JIT microbenchmarking. X-axis

represents the name of a target program, and Y-axis repre-

sents speedup ratio relative to the interpreter-only execution.

Higher is better. The error bars represent the standard devi-

ations.

From the results, we can report that there are programs

that can be run faster by the hybrid compilation strategy.

7 Related Work
Self-optimizing Abstract-syntax-tree interpreter.

Self-optimizing abstract-syntax-tree interpreter [38] also

enables language developers to implement effective virtual

machines. The framework and the compiler are called

Truffle and Graal, respectively. The difference from our

system is the basic compilation unit. Our system is based on

a meta-tracing compiler, so the compilation unit is a trace.

In contrust, Truffle/Graal applies partial evaluation for an

AST-based interpreter of an interpreter at execution time.

By profiling the runtime types and values, it can optimize a

base-program and run it efficiently.

GraalSqueak. GraalSqueak [28] is a Squeak/Smalltalk

VM implementation written in Truffle framework. In [27],

Niephaus et al. provided an efficient way to compile a

bytecode-formatted program; that is, they showed a way

to apply trace-based compilation with an AST-rewriting in-

terpreter strategy.

We extend the meta-tracing JIT compilation framework

to support method-based compilation, but their approach

involves creating an interpreter to enable trace-based compi-

lation on a partial evaluation-based meta-JIT compiler frame-

work. Their idea is to implement an interpreter with some

specific hint annotations to expand the loop of an applica-

tion program. Sulong has already demonstrated the same

idea [32], and it was applied for implementing Squeak/S-

malltalk VM.

Region-based JIT compiler. HHVM [29] is a high-

performance VM for PHP and Hack programming languages.

An important aspect of HHVM 2nd generation is its region-

based JIT compiler. A region-based compiler [18] is not re-

stricted to compile the entire body of methods, basic blocks,

or straight-line traces; it can compile a combination of several

program areas. Their compilation strategy is more flexible

than our hybrid compilation strategy, because an HHVM

region-based compiler can compile basic blocks, the entire

body of methods, loops, and any combination of them. How-

ever, their approach is limited to a specific language system;

we aim to provide some flexibility of compilation as a meta

JIT compiler framework.

Lazy basic block versioning. Lazy basic block version-

ing [11] is a JIT compilation technique based on basic blocks.

This strategy combines type specialization and code duplica-

tion to remove redundant type checking, and it can generate

effective machine code. Moreover, as well as HHVM’s region-

based JIT compiler, it can compile straight-line code paths

and the entire method bodies by constructing basic blocks.

Chevalier-Boisvert and Feely implemented lazy basic block

versioning on Higgs, a research-oriented JavaScript VM
8
.

Their method-based compilation is similar to ours; tracing

both sides of conditional branches, not inlining functions,

and not handle loops specially. The difference is that our

method-based compilation is not based on basic blocks, but

on traces. Moreover, our hybrid compilation can be applied

not only for specific, but also for any languages.

HPS: High Performance Smalltalk. High Performance

Smalltalk (HPS) is a virtual machine used in VisualWorks

Smalltalk [25]. HPS achieves efficient performance by well-

planned stack frame management. In HPS, the key technique

for efficient implementation of contexts is mapping (closure

or method) activations to stack frames in runtime. HPS has

three context representaions. (1) Volatile contexts: precedure
activations which have yet to be accessed as context objects.

(2) Stable contexts: the normal object form of procedures. (3)

Hybrid contexts: a pair of a context object and its associated

activation. By preparing extra slots for hybrid contexts in

the stack frames, HPS can distinguish between hybrid and

volatile contexts. This technique is similar to our stack hy-

bridization. Stack hybridization also has the two contexts,

which represent tracing and method JIT, respectively. More-

over, the stack hybridization checks the return pc by a flag in

an user-defined array structure as well as HPS manages the

context in a separate array object. To avoid impacting the

garbage collector, the header of a hybrid context is spotted

as an object including raw bits rather than object pointers.

However, stack hybridization is so naive that it currently

does not consider the impact of garbage collector.

8https://github.com/higgsjs/Higgs

12

https://github.com/higgsjs/Higgs

Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework DLS ’20, November 17, 2020, Virtual, USA

8 Conclusion and Future Work
8.1 Conclusion
We proposed a meta-hybrid JIT compiler framework to take

advantage of trace- and method-based compilation strate-

gies as a multilingual approach. For supporting the idea, we

chose a meta-tracing JIT compiler as our foundation and

extended it to perform method-based compilation using trac-

ing. By customizing the following features, we realized it: (1)

trace entry/exit points, (2) conditional branches, (3) function

calls, and (4) loops. We also proposed Stack Hybridization:

an interpreter design to enable connecting native code gen-

erated from different strategies. The key concept of Stack

Hybridization is (1) embedding two types of interpreter im-

plementation styles into a single definition, (2) selecting an

appropriate style at just-in-time compilation time, and (3)

putting a flag on the stack data structure to indicate whether

it is under trace- or method-based compilation.

We implemented a prototype of our meta-hybrid JIT com-

piler framework called BacCaml as a proof-of-concept. We

created a small meta-tracing JIT compiler on the MinCaml

compiler, and supported method-based compilation by ex-

tending trace-based compilation, and achieved Stack Hy-

bridization on it.

We evaluated the basic performance of BacCaml’s trace-

and method-based compilers. The results showed that our

trace-based compiler ran from 6.02 to 31.92x faster than

interpreter-only execution in programs with straight-line

control flow, but 1.44 to 2.68x faster in programs with com-

plex control flow. Our method-based compiler ran 15.04 to

37.8x faster than interpreter-only execution in all types of

programs.

We finally executed a synthetic experiment to confirm the

usefulness of the hybrid strategy, and reported that there are

example programs that are faster with the hybrid strategy.

8.2 Future Work
Selecting a suitable strategy dynamically. Since we fo-

cused on studying how to construct an essential mechanism

of hybrid compilation and how to connect code fragments

generated from different strategies, we have not investigated

an approach for automatic selection of a suitable strategy.

Such a mechanism is needed for applying our idea to more

complex and productive programs. To realize it, we currently

plan to create and combine the following profiling and ana-

lyzing techniques: (1) Profiling runtime information related

to branching biases and the depth of function calls. If a target

function has branching bias or deeply-function calls, we ap-

ply trace-based compilation to it. On the other hand, a target

program has complex control flow; we apply method-based

compilation to it. (2) Statically analysis the structure of a

target program. The analyzer parses the program and exam-

ines the complexity of the target’s control flow. When it has

straight-line control flow, we apply trace-based compilation

for it. On the other hand, if it has complex control flow, we

apply a method-based compilation on it.

Designing more fluent interpreter definition. Making

hybrid-capable interpreter definition easier is also our future

work. To support Stack Hybridization, the language designer

has to manually insert code fragments to record/check dif-

ferent stack styles, which would be tedious and error-prone.

This would be resolved by providing annotation functions

for function call/return. Those annotation functions would

also help develop further optimization techniques around

dynamic checks for hybridized stacks using stub return ad-

dresses.

Realizing our idea at a production level. BacCaml is

just a proof-of-concept meta-JIT compiler framework; there-

fore, to measure the impact of our hybrid JIT compilation on

real-world applications, we will create our hybrid compila-

tion strategy on a practical framework, such as RPython or

Truffle/Graal.

Acknowledgments
We would like to thank Stefan Marr, Carl Friedrich Bolz, and

Fabio Niephaus for their comments on earlier versions of

the paper. We also would like to thank the members of the

Programming Research Group at Tokyo Institute of Tech-

nology for their comments and suggestions. This work was

supported by KAKENHI (18H03219).

References
[1] Keith Adams, Jason Evans, BertrandMaher, Guilherme Ottoni, Andrew

Paroski, Brett Simmers, Edwin Smith, and Owen Yamauchi Facebook.

2014. The HipHop Virtual Machine. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Lan-
guages & Applications (Portland, Oregon, USA) (OOPSLA ’14). 777–790.
https://doi.org/10.1145/2660193.2660199

[2] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-

ter F. Sweeney. 2000. Adaptive Optimization in the Jalapeño JVM. In

Proceedings of the 15th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Minneapolis, Min-

nesota, USA) (OOPSLA ’00). Association for Computing Machinery,

New York, NY, USA, 47–65. https://doi.org/10.1145/353171.353175
[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dy-

namo: a Transparent Dynamic Optimization System. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation. https://doi.org/10.1145/349299.349303
arXiv:1003.4074

[4] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kir-

ilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-Hochstadt. 2015.

Pycket: A Tracing JIT for a Functional Language. In Proceedings of the
20th ACM SIGPLAN International Conference on Functional Program-
ming (Vancouver, BC, Canada) (ICFP 2015). ACM, New York, NY, USA,

22–34. https://doi.org/10.1145/2784731.2784740
[5] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kir-

ilichev, Tobias Pape, Jeremy G. Siek, and Sam Tobin-Hochstadt. 2015.

Pycket’s Interpreter Definition. https://github.com/pycket/pycket/
blob/master/pycket/interpreter.py#L2505, visited 2020-09-07.

[6] Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco

Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman Venter.

13

https://doi.org/10.1145/2660193.2660199
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/349299.349303
https://arxiv.org/abs/1003.4074
https://doi.org/10.1145/2784731.2784740
https://github.com/pycket/pycket/blob/master/pycket/interpreter.py#L2505
https://github.com/pycket/pycket/blob/master/pycket/interpreter.py#L2505

DLS ’20, November 17, 2020, Virtual, USA Yusuke Izawa and Hidehiko Masuhara

2010. SPUR: A Trace-based JIT Compiler for CIL. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems
Languages and Applications (Reno/Tahoe, Nevada, USA) (OOPSLA ’10).
ACM, New York, NY, USA, 708–725. https://doi.org/10.1145/1869459.
1869517

[7] Carl Friedrich Bolz, Antonio Cuni, Maciej FijaBkowski, Michael

Leuschel, Samuele Pedroni, and Armin Rigo. 2011. Allocation Re-

moval by Partial Evaluation in a Tracing JIT. In Proceedings of the 20th
ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation (Austin, Texas, USA) (PEPM ’11). ACM, New York, NY, USA,

43–52. https://doi.org/10.1145/1929501.1929508
[8] Carl Friedrich Bolz, Antonio Cuni, Maciej FijaBkowski, Michael

Leuschel, Samuele Pedroni, and Armin Rigo. 2011. Runtime Feedback

in a Meta-tracing JIT for Efficient Dynamic Languages. In Proceedings
of the 6th Workshop on Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and Systems (Lancaster, United
Kingdom) (ICOOOLPS ’11). ACM, NewYork, NY, USA, Article 9, 8 pages.

https://doi.org/10.1145/2069172.2069181
[9] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin

Rigo. 2009. Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In

Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems
(Genova, Italy). ACM, New York, NY, USA, 18–25. https://doi.org/10.
1145/1565824.1565827

[10] Carl Friedrich Bolz and Laurence Tratt. 2015. The Impact of Meta-

tracing on VM Design and Implementation. Science of Computer Pro-
gramming 98 (2015), 408 – 421. https://doi.org/10.1016/j.scico.2013.02.
001 Special Issue on Advances in Dynamic Languages.

[11] Maxime Chevalier-Boisvert and Marc Feeley. 2015. Simple and Effec-

tive Type Check Removal through Lazy Basic Block Versioning. In 29th
European Conference on Object-Oriented Programming (ECOOP15) (Leib-
niz International Proceedings in Informatics (LIPIcs), Vol. 37), John Tang

Boyland (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 101–123. https://doi.org/10.4230/LIPIcs.ECOOP.
2015.101

[12] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implemen-

tation of the Smalltalk-80 System. In Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(Salt Lake City, Utah, USA) (POPL ’84). Association for Computing

Machinery, New York, NY, USA, 297–302. https://doi.org/10.1145/
800017.800542

[13] Tim Felgentreff, Tobias Pape, Patrick Rein, and Robert Hirschfeld.

2016. How to Build a High-Performance VM for Squeak/Smalltalk

in Your Spare Time: An Experience Report of Using the RPython

Toolchain. In Proceedings of the 11th Edition of the International Work-
shop on Smalltalk Technologies (Prague, Czech Republic) (IWST ’16).
Association for Computing Machinery, New York, NY, USA, Article

21, 10 pages. https://doi.org/10.1145/2991041.2991062
[14] LLVM Foundation. 2007. The LLVM Compiler Infrastucture. https:

//llvm.org/
[15] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David

Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,

Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith,

Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz.

2009. Trace-Based Just-in-Time Type Specialization for Dynamic

Languages. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Dublin, Ireland)

(PLDI ’09). Association for Computing Machinery, New York, NY, USA,

465–478. https://doi.org/10.1145/1542476.1542528
[16] Andreas Gal, Christian W. Probst, and Michael Franz. 2006. Hot-

pathVM: An Effective JIT Compiler for Resource-Constrained De-

vices. In Proceedings of the 2nd International Conference on Virtual
Execution Environments (Ottawa, Ontario, Canada) (VEE ’06). Asso-
ciation for Computing Machinery, New York, NY, USA, 144–153.

https://doi.org/10.1145/1134760.1134780
[17] Google. 2015. Google’s High-performance Open Source JavaScript and

WebAssembly Engine. https://v8.dev/, visited 2020-10-16.

[18] Richard E. Hank, Wen-Mei W. Hwu, and B. Ramakrishna Rau. 1995.

Region-Based Compilation: An Introduction and Motivation. In Pro-
ceedings of the 28th Annual International Symposium on Microarchitec-
ture (Ann Arbor, Michigan, USA) (MICRO 28). IEEE Computer Society

Press, Washington, DC, USA, 158–168.

[19] Michael Haupt, Robert Hirschfeld, Tobias Pape, Gregor Gabrysiak,

Stefan Marr, Arne Bergmann, Arvid Heise, Matthias Kleine, and

Robert Krahn. 2010. The SOM Family: Virtual Machines for Teaching

and Research. In Proceedings of the Fifteenth Annual Conference on
Innovation and Technology in Computer Science Education (Bilkent,

Ankara, Turkey) (ITiCSE ’10). ACM, New York, NY, USA, 18–22.

https://doi.org/10.1145/1822090.1822098
[20] Hiroshige Hayashizaki, Peng Wu, Hiroshi Inoue, Mauricio J. Serrano,

and Toshio Nakatani. 2011. Improving the Performance of Trace-

based Systems by False Loop Filtering. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Newport Beach, California, USA)
(ASPLOS XVI). ACM, New York, NY, USA, 405–418. https://doi.org/10.
1145/1950365.1950412

[21] Ruochen Huang, Hidehiko Masuhara, and Tomoyuki Aotani. 2016.

Improving Sequential Performance of Erlang Based on a Meta-tracing

Just-In-Time Compiler. In International Symposium on Trends in Func-
tional Programming. Springer, 44–58.

[22] Rouchen Huang, Hidehiko Masuhara, and Tomoyuki Aotani. 2016.

Pyrlang’s Interpreter Definition. https://bitbucket.org/hrc706/pyrlang/
src/0d4fa6b4d7e6a78d8abece9cdbdc38806ef819cd/interpreter/interp.
py#lines-666, visited 2020-09-07.

[23] Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani.

2011. A trace-based Java JIT Compiler Retrofitted from aMethod-based

Compiler. Proceedings - International Symposium on Code Generation
and Optimization, 246–256. https://doi.org/10.1109/CGO.2011.5764692

[24] Stefan Marr and Stéphane Ducasse. 2015. Tracing vs. Partial Evalu-

ation: Comparing Meta-compilation Approaches for Self-optimizing

Interpreters. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Pittsburgh, PA, USA) (OOPSLA ’15). ACM, New York, NY,

USA, 821–839. https://doi.org/10.1145/2814270.2814275
[25] Eliot Miranda. 1999. Context Management in VisualWorks 5i. In OOP-

SLA’99 Workshop on Simplicity, Performance and Portability in Virtual
Machine Design. Denver, CO. http://www.esug.org/data/Articles/misc/
oopsla99-contexts.pdf

[26] Mozilla. 2016. IonMonkey, the Next Generation JavaScript JIT for

SpiderMonkey. https://wiki.mozilla.org/IonMonkey
[27] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2018. Graal-

Squeak: A Fast Smalltalk Bytecode Interpreter Written in an AST Inter-

preter Framework. In Proceedings of the 13th Workshop on Implementa-
tion, Compilation, Optimization of Object-Oriented Languages, Programs
and Systems (Amsterdam, Netherlands) (ICOOOLPS ’18). ACM, New

York, NY, USA, 30–35. https://doi.org/10.1145/3242947.3242948
[28] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. Graal-

Squeak: Toward a Smalltalk-based Tooling Platform for Polyglot

Programming. In Proceedings of the 16th ACM SIGPLAN Interna-
tional Conference on Managed Programming Languages and Run-
times (Athens, Greece) (MPLR ’19). ACM, New York, NY, USA, 14–26.

https://doi.org/10.1145/3357390.3361024
[29] Guilherme Ottoni. 2018. HHVM JIT: A Profile-Guided, Region-Based

Compiler for PHP and Hack. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (Philadelphia, PA, USA) (PLDI ’18). Association for Computing

Machinery, New York, NY, USA, 151—-165. https://doi.org/10.1145/
3192366.3192374

14

https://doi.org/10.1145/1869459.1869517
https://doi.org/10.1145/1869459.1869517
https://doi.org/10.1145/1929501.1929508
https://doi.org/10.1145/2069172.2069181
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1016/j.scico.2013.02.001
https://doi.org/10.1016/j.scico.2013.02.001
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/2991041.2991062
https://llvm.org/
https://llvm.org/
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1134760.1134780
https://v8.dev/
https://doi.org/10.1145/1822090.1822098
https://doi.org/10.1145/1950365.1950412
https://doi.org/10.1145/1950365.1950412
https://bitbucket.org/hrc706/pyrlang/src/0d4fa6b4d7e6a78d8abece9cdbdc38806ef819cd/interpreter/interp.py#lines-666
https://bitbucket.org/hrc706/pyrlang/src/0d4fa6b4d7e6a78d8abece9cdbdc38806ef819cd/interpreter/interp.py#lines-666
https://bitbucket.org/hrc706/pyrlang/src/0d4fa6b4d7e6a78d8abece9cdbdc38806ef819cd/interpreter/interp.py#lines-666
https://doi.org/10.1109/CGO.2011.5764692
https://doi.org/10.1145/2814270.2814275
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
https://wiki.mozilla.org/IonMonkey
https://doi.org/10.1145/3242947.3242948
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3192366.3192374
https://doi.org/10.1145/3192366.3192374

Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework DLS ’20, November 17, 2020, Virtual, USA

[30] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java

HotspotTM Server Compiler. In Proceedings of the 2001 Symposium on
JavaTM Virtual Machine Research and Technology Symposium - Volume
1 (Monterey, California) (JVM’01). USENIX Association, USA, 1.

[31] Mike Pall. 2005. A Just-in-time Compiler for Lua Programming Lan-

guage. http://luajit.org/index.html
[32] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas

Würthinger, and Hanspeter Mössenböck. 2016. Bringing Low-level

Languages to the JVM: Efficient Execution of LLVM IR on Truffle. In

Proceedings of the 8th International Workshop on Virtual Machines and
Intermediate Languages (Amsterdam, Netherlands) (VMIL ’16). ACM,

New York, NY, USA, 6–15. https://doi.org/10.1145/2998415.2998416
[33] Armin Rigo, Maciej Fijalkowski, and Carl Friedrich Bolz-Tereick et al.

2020. PyPy’s Interpreter Definition. https://foss.heptapod.net/pypy/
pypy/-/blob/branch/default/pypy/interpreter/pyopcode.py#L1214, vis-
ited 2020-09-07.

[34] Eijiro Sumii. 2005. MinCaml: A Simple and Efficient Compiler for

a Minimal Functional Language. FDPE: Workshop on Functional and
Declaritive Programming in Education, 27–38. https://doi.org/10.1145/
1085114.1085122

[35] GCC Team. 1987. GCC, the GNU Compiler Collection. https://gcc.
gnu.org/

[36] Topaz Project. 2012. Topaz’s Interpreter Definition. https://github.com/
topazproject/topaz/blob/master/topaz/frame.py#L141, visited 2020-09-
07.

[37] David Ungar and Randall B. Smith. 1987. Self: The Power of Simplicity.

In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications (Orlando, Florida, USA) (OOPSLA ’87).
Association for Computing Machinery, New York, NY, USA, 227–242.

https://doi.org/10.1145/38765.38828
[38] Thomas Würthinger, Andreas Wöundefined, Lukas Stadler, Gilles Du-

boscq, Doug Simon, and Christian Wimmer. 2012. Self-Optimizing

AST Interpreters. In Proceedings of the 8th Symposium on Dynamic
Languages (Tucson, Arizona, USA) (DLS ’12). Association for Comput-

ing Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/
2384577.2384587

15

http://luajit.org/index.html
https://doi.org/10.1145/2998415.2998416
https://foss.heptapod.net/pypy/pypy/-/blob/branch/default/pypy/interpreter/pyopcode.py#L1214
https://foss.heptapod.net/pypy/pypy/-/blob/branch/default/pypy/interpreter/pyopcode.py#L1214
https://doi.org/10.1145/1085114.1085122
https://doi.org/10.1145/1085114.1085122
https://gcc.gnu.org/
https://gcc.gnu.org/
https://github.com/topazproject/topaz/blob/master/topaz/frame.py#L141
https://github.com/topazproject/topaz/blob/master/topaz/frame.py#L141
https://doi.org/10.1145/38765.38828
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587

	0: Title Page
	0: Welcome from the Chairs
	0: DLS 2020 Organization
	1: Amalgamating Different JIT Compilations in a Meta-tracing JIT Compiler Framework
	2: Wasm/k: Delimited Continuations for WebAssembly
	3: Pricing Python Parallelism: A Dynamic Language Cost Model for Heterogeneous Platforms
	4: DelayRepay: Delayed Execution for Kernel Fusion in Python
	5: Python 3 Types in the Wild: A Tale of Two Type Systems
	6: Framework-Aware Debugging with Stack Tailoring
	7: Dynamic Pattern Matching with Python
	8: Sampling Optimized Code for Type Feedback
	9: Sound, Heuristic Type Annotation Inference for Ruby

