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A b s t r a c t .  Customizable meta-objects are a powerful abstraction for 
extending language features and implementation mechanisms, but in- 
terpretive execution suffers from severe performance penalty. Some of 
this penalty can be reduced by applying partial evaluation to meta- 
interpreters, but partial evaluation of meta-objects in existing concur- 
rent object-oriented languages is ineffective. This paper proposes a new 
meta-object design for our reflective language ABCL/R3. It yields meta- 
objects that can be optimized effectively using partial evaluation. The 
crux of the design is the separation of state-related operations from other 
operations, and this separation is accomplished by using reader/writer 
methods in our concurrent object-oriented language called Schematic. 
Our benchmark trials show that non-trivial programs with partially eval- 
uated meta-objects run more than six times faster than ones that are 
interpreted by meta-objects. In addition, a partially evaluated program 
that uses a customized meta-object runs as efficiently as a program that 
is manually rewritten so as to have the same functionality without using 
meta-objects. 

1 Introduction 

1.1 R e f l e c t i o n  in P a r a l l e l / D i s t r i b u t e d  P r o g r a m s  

The structure of objects in parallel and distr ibuted applications tends to be 
complex because they would otherwise not be efficient, reliable, portable and 
reusable. A number  of language mechanisms-- inheri tance,  transaction, object 
migration, e tc . - - reducing this complexity have therefore been proposed. Guarded 
method invocation, for example, which accepts invocation requests conditionally, 
is useful for describing objects like bounded buffers. In many  languages, however, 
such mechanisms are not always implemented because (1) some are incompati- 
ble with each other, (2) supporting a new mechanism can degrade the language 
efficiency even when the mechanism is not used in a program, and (3) imple- 
mentat ion of a new mechanism in the language requires a t remendous amount  
of effort. 



419 

A possibly better approach is to extend languages by using meta-objects. 
By installing a customized meta-object, the application programmer can use a 
new language mechanism as if it were built-in. Advanced programmers can even 
develop their own meta-objects to meet specific requirements. This approach 
is also beneficial to the language implementors; they can devote themselves to 
the implementation of simple core languages, leaving hard-to-be-implemented 
mechanisms to be dealt with as extensions. 

We are consequently developing a reflective object-oriented concurrent lan- 
guage, ABCL/R3, in which we provide such extensibility by means of compu- 
tational reflection[17, 24]. In ABCL/R3, a meta-object provides an abstraction 
with which the user can extend or modify crucial mechanisms of an object (e.g., 
method invocation request, method dispatch, state management, and mutual 
exclusion). In addition, a meta-interpreter provides an abstraction that can be 
used to customize the syntax and semantics of bodies of methods and func- 
tions. Reflective annotations, which can also be defined by means of meta-level 
programming, are used as programming directives in base-level programs. 

The features of ABCL/R3 have been described in detail elsewhere[19, 21]. The 
present paper discusses the meta-object design of ABCL/R3 from the viewpoint 
of efficient implementation. 

1.2 Techniques for I m p l e m e n t a t i o n  of  Meta -ob jec t s  

Despite the extensibility they provide, customizable meta-objects have a problem 
with regard to efficiency. Assume that a meta-object implements a customized 
method dispatch algorithm. In a naive implementation, the method dispatch 
for the corresponding base-level object is achieved by a number of method in- 
vocations at the meta-level; i.e., by interpretive execution. Moreover, the cus- 
tomization hinders the application of important optimization techniques such 
as method inlining[4] because such techniques are defined under the assumption 
that the semantics (rules for method dispatch, in this case) of the language is 
stable. As a result, the existence of meta-objects easily slow the execution of the 
language by a factor of more than 10. 

There have been several studies on this problem: 

- Some parts of the meta-system are not subject to meta-level modification 
by means of reification. In the reflective language Open C++  version 116], 
for example, only message passing, object creation, and instance variable ac- 
cesses can be reified. This not only restricts user programmability, but also 
makes the language model unclear because much of the meta-level function- 
alities are hidden inside 'black-boxes.' The programmer therefore cannot get 
a clear view of how his meta-level programming and the black boxes will 
interact. 
Another example is JDK 1.1, which offers "reflection" API[25]. It supports 
only introspective operations, which are obviously implemented efficiently. 
They give, however, few extensibility at the same time. 
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- The system embodies a set of ad-hoc optimizations transparent to the user. 
For example, our previous language ABCL/R2[20] assumes that most objects 
will not be customized, and thus compiles objects without meta-objects. 
When the user accesses a meta-object, the corresponding object is then 
switched to general interpreted execution. Its effectiveness, however, is lim- 
ited to cases where optimization is possible. When optimization is not pos- 
sible, the interpretation overhead greatly affects the overall performance. 

- The compiler inspects behavior of a meta-level program with respect to 
a base-level program and removes interpretation by using techniques like 
partial evaluation[12]. This approach is more systematic than the above two 
approaches, but it requires intensive analysis of the meta-level program that 
may include user customization. 

1.3 Optimization Using Partial Evaluation 

A base-level program in a reflective language is executed by an interpreter. The 
interpreter, which is represented as an object at the meta-level of the language, 
can be customized by the programmer. Once the base-level program is given, 
however, most computation that depends only on the base-level program can 
be performed in advance to the program execution. By removing such com- 
putation, a specialized program that contains computation which depends on 
run-time data for the base-level program, can thus be extracted from the meta- 
level computation. This process is often referred as partial evaluation[12] of the 
meta-level program with respect to the base-level program, or as the first Futa- 
mura projection[7]. Our previous studies successfully apply partial evaluation to 
the meta-interpreters in reflective languages[2, 19]. 

Meta-objects, in theory, could also be optimized by partial evaluation, but 
they actually cannot because (1) the design of meta-ohjects in existing reflective 
languages is not suitable for partial evaluation, and (2) there are few partial 
evaluators that can deal with concurrent objects. We therefore redesigned meta- 
objects with consideration to the application of partial evaluation, and here we 
will show an optimization framework for the resulting meta-objects. 

The rest of the paper is organized as follows: In Section 2 we discuss why 
reasoning about the meta-objects is difficult by reviewing an existing meta- 
object design. In Section 3 we describe our proposed meta-object design, and in 
Section 4 we describe its optimization technique by using partial evaluation. In 
Section 5 we show our performance evaluation of the optimized objects, and in 
Section 6 we discuss other techniques for the efficient implementation of meta- 
objects. In Section 7 we conclude by briefly summarizing the paper. 

2 Problems of Exist ing Meta-object  Design 

Many concurrent object-oriented languages have mutual exclusion mechanisms 
to assure consistency. A conservative, commonly found, approach is to mutually 
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exclude all method executions on an object. This approach alleviates the pro- 
grammers'  concern about interference with multiple read/wri te  operations on an 
instance variable. 

The mutual exclusion mechanism in a language drastically affects the meta- 
object design. This is because (1) the meta-objects explicitly implement the 
mechanism of base-level objects, and (2) the meta-objects, themselves, are im- 
plicitly controlled by a certain mutual  exclusion mechanism, which is usually the 
same one as base-level objects. 

In order to meet the above requirements, a meta-object is defined as a state 
transition machine in previous reflective languages. For example, Figure 1 is a 
simplified definition 1 of the default meta-object in the language ABCL/R[28]. 
Its state transition diagram can be illustrated as in Figure 2. 

A method invocation on a base-level object is represented by an invocation of 
the method r e c e i v e  ! 2 on its meta-object.  In r e c e i v e  !, the message (an object 
that  contains the method name and arguments) is immediately put  into the 
message queue (queue), so that  it will eventually be processed. If the object is 
not processing any methods (i.e., mode is 'dormant) ,  the meta-object changes 
mode to ' a c t i v e  and calls the method a c c e p t ! .  

The method a c c e p t !  gets one message from queue and lets the evaluator 
execute the matching method for the message. The evaluator interprets expres- 
sions of the method recursively, and when it reaches the end of the base-level 
method, it invokes the method finish! of the meta-object. The method finish! 
examines queue for any pending messages received during the evaluation. If 
queue is empty, the meta-object changes mode to ' dormant. Otherwise, it in- 
vokes a c c e p t !  again for further execution. 

When we apply partial evaluation to this meta-object definition with respect 
to a certain base-level object, the result is far from satisfactory. The reasons are 
the following: 

- Since the meta-object is defined as a state transition machine, its behavior 
cannot be determined without static information on some key instance vari- 
ables such as mode and queue. For example, if the return value of (get  ! queue) 
in the method accep t !  were "unknown" (dynamic) at the specialization 
time, method dispatch ( ( f i n d  methods m)) and interpretation of the method 
body ( ( e v a l  e v a l u a t o r  exp env s e l f ) )  would be left unspecialized. This 
means that  a large amount of interpretive computation cannot be eliminated 
by merely applying partial evaluation. 

- Information that  should be "known" (static) to the partial evaluator is trans- 
ferred via instance variables between consecutive method invocations. Such 
information is not available on the receiver's side unless data  structures are 
analyzed extensively. For example, the value of (ge t !  queue) in a c c e p t ! ,  
which would be the value of message in r e c e i v e ! ,  is crucial for specializa- 

1 The syntax of the definition is that of in Schematic's[27] for the sake of uniformity. 
The exclamation mark in the method name conventionally indicates that the method 
may change the object's state. 
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;;; Class definition 
(de f ine -c l a s s  metaobj () 

mode queue s t a t e  methods evaluator)  ; instance variables 

;;; Method definition for class metaobj 
(define-method! metaobj ( receive!  s e l f  message) 

;; Here, s e l f  is bound to the meta-object itself. 
(put! queue message) 
(if (eq? mode 'dormant) ; I f  it is dormant, the received 

(begin (set ! mode 'active) ; message is accepted immediately. 
(future (accept! s e l f ) ) ) ) )  

;;; method dispatch 
(define-method! metaobj (accept!  self) 

( l e t*  ((rues (get!  queue)) ; Get a message from the queue. 
(m (f ind methods rues)) ; method lookup 
(env (make-env s e l f  (formals m) rues))) ; creation of an evaluation env. 

(future (eval evaluator (exps m) env self)))); evaluation 

;;; end of method execution 
(define-method! metaobj ( f in ish]  s e l f )  

( i f  (empty? queue) ; Check the queue for pending messages. 
( se t !  mode 'dormant) ; I f  none, turn into the dormant mode. 
( fu ture  (accept ! s e l f ) ) ) )  ; Otherwise, accept one of them. 

;;; recta-interpreter 
(define-method! metaobj (eva1 s e l f  exp env owner) 

It evaluates exp under env. When finished, it invokes f i n i sh !  of owner. 

The expression ( fu ture  (m r e x . . . e , ) )  asynchronously invokes method m 
of object r with parameters e z . . . e , .  It is asynchronous in that the sender 
continues subsequent computation without waiting for the return value. The 
expression, (m r el . . .  e , ) ,  on the other hand, is synchronous invocation; the 
sender waits for the return value. 

Fig. 1. Definition of an ABCL/R meta-object. 

~receive ! 
receive I (.. ~ e ~ u e  

] ~ - - - - - ~  ~ 'u . . . . . . . . . . . . . .  x"-"/Iqueuel>O, accept 
condition, action 

Fig. 2. State transition diagram of an ABCL/R meta-object. 
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tion, but obtaining it requires analysis of queue. This requirement sometimes 
become overwhelming because queue might be a user-defined object. 

- The key instance variables are mutable; i.e., their values axe changed dur- 
ing execution. The execution model of the meta-objects--ABCM[29] in this 
case---however, specifies tha t  method invocations will be processed in FIFO 
order in each object. We thus have to anticipate that  the execution of two 
consecutive methods may be interleaved; i.e., it is safe to assume that  mu- 
table instance variables may be changed between method invocations. For 
example, assume that  the method r e c e i v e !  invokes the method a c c e p t ! .  
The variable queue at the beginning of a ccep t  ! may have a value different 
from the one in r e c e i v e !  because other methods can be executed before 
the execution of a c c e p t  !. Though there are partial evaluators that  can deal 
with mutable variables, they regard a mutable variable as unknown (dy- 
namic) unless they can statically determine all update  operations to the 
variable[l, 3]. 

For the above reasons, a partial evaluator conservatively regards most variables 
as "dynamic." Without  much of "static" information, the partial evaluator yields 
a program that  still performs almost all the computation as the program for the 
original meta-object does. 

3 A N e w  M e t a - o b j e c t  D e s i g n  

We propose, for a reflective concurrent object-oriented language ABCL/R3[19, 
21], a meta-object design that  can be effectively optimized by partial evaluation. 
The key idea is to separate, using the reader and writer methods of Schematic, 
state-related operations from the other operations. 

3.1 Reader/Writer  Methods  

Schematic[23, 27] is a concurrent object-oriented language based on Scheme. It 
has concurrency primitives such as future and touch and has class-based objects, 
but we describe only the reader/writer methods because they play key roles in 
our meta-object design. 

The construct d e f i n e - m e t h o d !  defines a writer method, which can modify 
values of instance variables in an object. At the end of a writer method, there 
should be a form "(become rest :Vl el :v2 e2 �9 �9 �9 )" .  When this form is eval- 
uated, expressions ei are first evaluated in sequence. Then the results are set to 
the variables v~ all at once. Finally, the expression rest is evaluated. The value 
of rest is returned as the result of the become form. Multiple invocations of 
writer methods on an object are mutually excluded. (Precisely, the evaluation of 
rest is not excluded; i.e., the critical section finishes immediately after updating 
instance variables.) 

The construct d e f i n e - m e t h o d  defines a reader method, which cannot modify 
instance variables. The reader methods are not governed by the mutual  exclusion 
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mechanism; a reader method on an object can even be executed concurrently 
with a writer method on the same object. During execution of a reader method, 
the instance variables are bound to the values extracted from the object 's state 
at the beginning of the method. Even when a writer method executes become to 
modify some of the instance variables, reader methods that  have started their 
execution before the become operation do not observe the effect of modification. 

3.2 Proposed Meta-object Design 

The outline of a new meta-object  design solving the problems discussed in Sec- 
tion 2 is shown in Figure 3, in which we exploit the reader/wri ter  methods of 
Schematic. Our design has the following characteristics: 

- The behavior of the meta-object  is principally defined in the reader methods. 
Operations that  deal with mutable data  are defined separately as writer 
methods or as method invocations on external objects. For example, values 
of instance variables tha t  are mutable are packed in the mutable vector 
object state-values, and accesses to state-values are effected by using 
the writer methods c e l l - s e t !  and c e l l - r e f .  

- The meta-object straightforwardly processes each method invocation request 
and provides mutual  exclusion by using blocking operations (e.g., a c q u i r e !  
and r e l e a s e ! ) .  As a result, the meta-object is no longer a state-transition 
machine. The reader methods, which can be invoked without mutual  ex- 
clusion, make it possible to define such a meta-object. If the meta-objects 
were defined with only writer methods, use of the blocking operations would 
easily lead to deadlock. 

- For mutual  exclusion, a meta-object  has the instance variable l o ck  in place 
of mode and queue. By default, l o ck  is a simple semaphore that  has the 
operations a c q u i r e !  and r e l e a s e ! .  The user can replace l o c k  with an ar- 
bi trary object, such as a FIFO queue and a priority queue, by means of the 
meta-level programming. 

These characteristics solve the application problems of partial evaluation that  
were discussed in Section 2. (1) Under the execution model of Schematic[27], 
it is safe to assume that  consecutive invocations of reader methods are not in- 
terrupted by other activities; we therefore can use most partial evaluation tech- 
niques for sequential languages by regarding the reader methods as functions. 
(2) Since the "known" (static) information is propagated through the arguments 
of the method invocations, the partial evaluators easily use such information for 
specialization. (3) The mutual  exclusion mechanism, which is implemented by 
the blocking operations, gets rid of the dynamic branches (conditionals with 
dynamic predicates) that  would cause a termination-detection problem during 
specialization. 

How the methods in Figure 3 handle messages sent to the base-level object 
is explained as follows: 
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;;; Class definition 
( d e f i n e - c l a s s  metaobj  () 
lock state-variables state-values methods evaluator) 

;;; Reception of a message 
(de f ine -method  metaobj  ( r e c e i v e  s e l f  message) 

( i f  ( w r i t e r ?  ( s e l e c t o r  message))  ; check message type 
(accept-W self message) ; / o r  a wmtermethod 
( accep t  self message 'dummy))) ; / o r  a reader method 

;;; Processing for a writer method 
(de f ine -method  metaobj  (accept-W s e l f  message) 

(let ( (c (make-channel)) ) ; channel /or  receiving updated state 
( a c q u i r e !  lock)  ; mutual exclusion begins 
( l e t  ( ( r e s u l t  (accept s e l f  messages c))) 

( c e l l - s e t !  s t a t e - v a l u e s  ( touch c) )  ; update instance variables 
(release! lock) ; end of  mutual exclusion 
r e s u l t )  ) ) 

;;;Method ~okup and invocation 
(de f ine -me thod  metaobj  ( accep t  s e l f  message upda t e - c ha nne l )  

( l e t *  ((m (find methods message))  ;me thod  lookup 
(env (make-ear  s e l f  ( fo rmals  m) message) ) )  

( f u t u r e  ( eva l  e v a l u a t o r  (method-body m) env u p d a t e - c h a n n e l ) ) ) )  

;;; Meta-interpreter 
(de f ine -method  e v a l u a t o r  ( eva l  s e l f  exp env upda t e - c ha nne l )  

It evaluates exp under env. When a become [orm is evaluated, it creates a 
vector of  new updated instance variables, and sends it to upda t e - channe l .  ) 

The primitive make-channel  creates an empty  channel, which is a communi- 
cation medium among concurrently running threads. A thread sends a value 
to a channel c by executing ( r e p l y  va lue  e) ,  and receives from c by ( touch 
c). 

F ig .  3. Our new meta-object  design. 
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r e c e i v e :  The method  r e c e i v e  simply proceeds to invoke methods accept-W 
or a c c e p t ,  depending on the type of the base-level method tha t  is to be 
invoked. 

accept-W: The  method accept-W wraps the method a c c e p t  in the code for 
mutual  exclusion and update  of base-level instance variables. I t  first locks 
the object  and then calls the method a c c e p t  of the same object with a 
channel c. I t  then waits for a vector of updated  instance variables--which 
is sent by the become form in the base-level m e t h o d - - o n  c by executing the 
t o u c h  form and updates  s t a t e - v a l u e s  with the received value. Finally, it 
unlocks the object and returns the result of the method.  Note tha t  accept-W 
itself does not modify instance variables. 

a c c e p t :  The  method a c c e p t  merely looks up a method for a given message 
and lets the evaluator execute it. The method make-env,  whose definition 
is omitted,  creates an evaluation environment.  I t  first extracts  a vector of 
instance variable values by executing ( c e l l - r e f  s t a t e - v a l u e s )  and then 
creates an association list tha t  maps  each of the instance variable names to 
the extracted value and maps each formal paramete r  name of the method to 
the paramete r  value in the m e s s a g e .  

e v a l :  The method e v a l  of class e v a l u a t o r  and its auxiliary methods em- 
body a meta-circular interpreter,  which is similar to the tradit ional Lisp 
meta-circular  interpreter.  When it encounters a become form, it creates 
a vector of the updated  instance variables and then sends the vector to 
upda t  e -  channel .  

Since the reader /wri ter  methods are not supported in the previous meta-objects,  
the proposed meta-object  design does not have the same semantics as the pre- 
vious one. 

4 Optimization Using Partial Evaluation 

In our proposed meta-objects,  most  operations are defined in the reader methods,  
and a few invocations on external objects are used for mutual  exclusion and state 
modification. As we s tated earlier, the meta-objects  can, from the viewpoint of 
partial  evaluation, be regarded as functional programs with I /O- type  side-effects. 
In this section we describe an optimization framework for our meta-objects  by 
using part ial  evaluation. 

The  biggest problem we face in using part ial  evaluation is that  there are no 
part ial  evaluators appropriate  for our purpose because the meta-object  is writ ten 
in a concurrent  object-oriented language. Although there are studies on partial  
evaluators for concurrent languages[8, 9, 18], they focus on concurrency and pay 
little at tent ion to the support  of features crucial to sequential languages, such 
as function closures and da ta  structures. 

Our solution is to translate meta-objects  into a sequential program and use 
a part ial  evaluator for a sequential language. Part ial  evaluation is applied for 
each base-level method invocation; i.e., the specialization point is a base-level 
method invocation. Since the methods of meta-objects  exhibit almost sequential 
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ABCL/R3 

Scheme 

Schematic 

recta-level base-level 

7 ~ ~ ~ i n t  functi:nsl 

]classes & constructors ] -- I methods] fu~nc 

_ pro- 
processing 

I partial 
(c) evaluation 

7- processing 

Fig. 4. Overview of our optimization framework. 

;;; 2d-point 
( d e f i n e - c l a s s  point () x y) 

;;; returns the distance f romthe  omgin---a reader method 
(define-method point (distance self) 

(sqrt (+ (square x) (square y)))) 

;;;moves a point---a writer method 
(define-method! point (move! self  dx dy) 

( b e c o m e  #t :x (+ x dx) :y (+ y dy))) 

Fig. 5. Example base-level program. 

behavior, the partial evaluator for a sequential language can effectively opti- 
mize the meta-objects. Concurrency in the meta-objects will be residualized as 
applications to primitives. 

Another problem is compatibility with other objects. The optimized object 
should support meta-level operations that are defined in the original meta-object. 
At the same time, the object should behave like a base-level object so that it 
can be used with other base-level objects. To satisfy these two requirements, our 
framework generates an object that combines the base- and meta-level objects in 
a single level. The object has the same methods that are in the original base-level 
object, and the body of each method is a specialized code of the meta-object. 

Figure 4 shows the overview of our optimization framework, in which there 
are three steps: (1) translation from ABCL/R3 to Scheme, (2) partial evaluation, 
and (3) translation from Scheme to Schematic. In the following subsections we 
explain each step in detail by using an example base-level program (Figure 5) 
and the default meta-object metaobj (Figure 3). 
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4.1 Preprocessing 

Meta-object definitions are translated into a Scheme program so that  they can 
be processed by a Scheme partial evaluator (Figure 4(a)). A meta-level object is 
converted into a record 3 whose fields are its class name and values of instance 
variables. A reader method is converted into a dispatching function and a class- 
specific function. The former examines the class-name field in the receiver and 
calls a matching class-specific function. 

Invocations of writer methods that  are defined at the meta-level should not 
be performed during the partial evaluation because they will modify the state of 
objects. Therefore, the writer methods are not passed to the partial evaluators 
but  are instead simply copied into the resulting Schematic program (Figure 4(b)). 

No translations are needed for the base-level definitions, since they are used 
as data  for the meta-level program. Functions, however, are simply copied to the 
resulting Schematic program (Figure 4(c)). 

4.2 P a r t i a l  E v a l u a t i o n  

We partially evaluate the meta-level program for each base-level method invo- 
cation. For example, given the base-level program like that  in Figure 5, the 
meta-level computation that  will be processed is the one corresponding to the 
following base-level method invocation: 

(move! p dx dy) 
where p = p o i n t { x  = x, y = y}. 

The variables written in italic font (e.g., dx, dy, x, and y) are dynamic data. The 
data  denoted by the variable p is a partially static; it is known as an object of 
class po in t ,  but values of instance variables x and y are dynamic (unknown). 

The corresponding meta-level computation is the following expression: 

( r e c e i v e  mobj message) 

where 

mobj = metaobj{class ---- 'point, 

methods---- '((distance (self) ...) ...), 

state-vars ---- ' (x y), state-values ---- s, lock = l, 

evaluator ---- (make-evaluator)}, 

message = message{selector = 'move!, arguments = (list dx dy)}. 

To partially evaluate a meta-level computation like the above one, we generate 
a specialization point function for each base-level method (Figure 4(d)). The 
function takes as its arguments a vector of instance variables, lock, and param- 
eters for the method. When called, it creates mobj and message, and it invokes 
the method r e c e i v e  on mobj (Figure 6). The function is specialized under the 
assumption that  all the arguments are dynamic. 

3 Since our partial evaluator does not natively support records, we further translate 
the record into cons-cells. 
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(define (specalization-point-move!-point state-values lock dx dy) 
(let ((mobj (metaobject 'point '((distance (self) ...) ...) 

'(x y) state-values lock 
(make-evaluator))) 

(message (message 'move! (list dx dy)))) 
(receive mobj message))) 

Fig. 6. Specialization point function for method move ! of class point. 

An online partial evaluator for Scheme[3] (Figure 4(e)) specializes not only 
the methods of metaobj,  but also those of e v a l u a t o r  4. The compilation tech- 
niques of the meta-interpreter are described elsewhere[19]. 

4.3 P o s t p r o c e s s i n g  

The final step is to translate the results of partial evaluation (in Scheme) back 
into concurrent objects (in Schematic). This is done by generating class decla- 
rations, constructor functions, and methods as shown in Figure 7. 

- For each combination of base- and meta-level classes, a specialized class is 
defined (Figure 4(f)). Since the class is a specialized version of the meta-level 
class, it has the same instance variables as the original meta-object. (E.g., 
the class metaobject**point in Figure 7.) 

- A function that mimics the base-level constructor is defined for each special- 
ized class (Figure 4(g)). For example, the function point in Figure 7 is a base- 
level constructor that creates an object belonging to class metaobject**point 
with proper initial values. 

- Methods of the specialized classes are defined (Figure 4(h)). The name of 
each method is the same as that of the original base-level method. (The 
method distance and move! of class metaobject**point in Figure 7 are 
examples.) The specialized object therefore has the same interface as the 
original base-level program. The body of the method is the result of partial 
evaluation. Note that because the generated methods are specialized versions 
of receive of the meta-object, they should be defined as reader methods 
regardless of the type of the corresponding base-level method. 

When a meta-object is specialized with respect to a reader method, the 
optimized method has the essentially same definition as the original base-level 
method, except for the indirect accesses to the instance variables (cf. the method 
distance in Figure 7). When it is specialized with respect to a writer method, 
on the other hand, the optimized method evidently contains extra operations. 
Although most of the operations in the optimized method are the same as the 

4 For convenience in executing the benchmark programs, instead of using a real meta- 
interpter we used a fake evaluator that directly executes the body of methods. This 
will be discussed in Section 5. 
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;;; a combined class o f m e t a o b j e c t  w.r.t ,  point 
(define-class metaobject**point () 
class methods state-vars state-values lock evaluator) 

;;; constructor 

(define (point x y) 
(metaobject**point 
(quote *metaobject*) (quote *methods*) (quote (x y)) 
(make-cell (vector x y)) (make-lock) (quote *evaluator*))) 

;;; reader method 

(define-method metaobject**point (distance self)  
(begin (let* ((valuesO (read-cel l  s tate-values))  

(xO (vector- te l  valuesO 0)) 
(yO (vector-ref  valuesO 1)) 
(gO (square xO)) 
(gl (square yO))) 

(sqrt (+ gO g l ) ) ) ) )  

;;; w ~ t e r m e t h o d  
(define-method metaobject**point (move! self  dx dy) 

(begin (acquire! lock) 
(let* ((state-update-channelO (make-channel)) 

(valuesO (read-cell state-values)) 
(xO (vector-ref valuesO 0)) 
(yO (vector-tel valuesO I)) 
(gO (vector (+ xO dx) (+ yO dy)))) 

(reply gO state-update-channelO) 
( le t  ((new-stateO (touch state-update-channelO))) 

(update-cell! state-values new-stateO) 
(release! lock) 
#_~t)))) 

Fig. 7. Result of optimization (the underlined expressions come from the base-level 
method). 
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operations performed in a writer method in Schematic, others are amenable to 
further optimization. For example, the newly created vector of instance vari- 
ables gO is handed over by means of r e p l y  and touch  operations in the same 
thread because our current partial evaluator regards those operations as mere 
"unknown" functions. An optimized method less extra operations could be pro- 
duced by using partial evaluators for concurrent languages or by applying static 
analysis for concurrent programs[10, 15, 16] to the resulting code. 

5 P e r f o r m a n c e  E v a l u a t i o n  

To evaluate the efficiency of our partially evaluated meta-objects, we executed 
benchmark programs in the following three ways: 

PE(partially evaluated): The default meta-object was partially evaluated with 
respect to each benchmark program, and the generated code was further 
compiled by Schematic. This showed the performance of our optimization 
framework. 

I NT(interpreted): The default meta-object was directly compiled by Schematic, 
and then the compiled code interpreted the benchmark programs. This showed 
the performance of naively implemented meta-objects. 

N R(nonreflective): The benchmark programs were directly compiled by Schematic s. 
This showed the performance of nonreflective languages. 

All programs were executed on Sun UltraEnterprise 4000 that  had 1.2GB mem- 
ory, 14 UltraSparc processors, 6 each operating at 167MHz, and was running 
SunOS 5.5.1. 

The differences between the PE and INT performances show the amount of 
speedup gained by partial evaluation, while the differences between the PE and 
NR performance show the residual overheads--the overheads that  the partial 
evaluator fails to eliminate. 

The overheads solely caused by the meta-objects,  were evaluated by exe- 
cuting the body expressions in PE and INT without meta-interpreters. For ex- 
ample, when a base-level program has an expression "(distance p)," then 
a meta-object  looks up d i s t a n c e  in its method table and extracts instance 
variables from p. However, the method body " ( s q r t  (+ ( square  x) ( squa re  
y ) )  )" should be executed directly. To do this, we generate a fake evaluator for 
each base-level class (Figure 8). Without fake evaluators, interpretive execution 
of method bodies would make an overwhelmingly large contribution to the ex- 
ecution time in iNT. The fake evaluators are also useful for skipping over the 
partial evaluation of meta-interpreters whenever a base-level object uses only 
the default meta-interpreter.  

s Our Schematic compiler has some overheads for concurrent execution; a sequential 
program (Richards) compiled by a sequential Scheme compiler (DEC Scheme-to-C) 
was faster than the one compiled by Schematic by a factor of 5.4. 
Though we used a multi-processor machine, the programs are executed on a single 
processor execution. 
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;;; Class definition 
( d e f i n e - c l a s s  evaluator**point  ()) 

;;; The method called by the meta-object. 
(define-method evaluator**point  (eval -begin  s e l f  method-name exp env) 

(tend ((eq? method-name 'd i s tance)  ; /or method d i s t a n c e  
Clot ((x (lookup 'x env)) (y (lookup 'y env)) )  

(sqrt (+ (square X) (square y ) ) ) ) )  
((eq? method-name 'move!) ; ]or method move! 

( l e t  ((x (lookup 'x env)) (y (lookup 'y env)) 
(dx (lookup 'dx env)) (dy (lookup 'dy env) ) )  

( l e t  ( (new-values (vector  (+ x dx) (+ y dy) ) ) )  
(update self new-values)))) )) 

Each clause of the cond form in oval -begin  corresponds to the method of the 
base-level class point .  A clause is selected by the argument method-name. The 
body part of a clause has the code for extracting the base-level arguments and 
instance variables and for the method body. A become form in the original 
program is converted into an invocation of the update method of the meta- 
object, which takes a vector of the updated instance variables as an argument. 

Fig. 8. "Fake" evaluator for point .  

5.1 B a s e - l e v e l  A p p l i c a t i o n s  

The following three kinds of programs were executed as the base-level applica- 
tions: 

Null Readers a n d  Null Writers: Elapsed t ime for 1,000,000 method  invocations 
was measured by repeatedly calling a null method on an object.  We tested 
objects with different numbers  of instance variables (i) and tested methods 
with different numbers of arguments  (j). The average t ime over some param- 
eter combinations (i �9 {0, 5,10}, j E {1, 5, 10}) are shown as a representative 
result. 

Become: Elapsed t ime for 1,000,000 invocations of writer methods which up- 
date instance variables was measured by repeatedly calling a method that  
immediately performs become. We tested objects with different numbers of 
updated  variables (k), and the average t ime over the paramete r  combinations 
i -- 10, j = 1, k �9 {1, 5, 10} is shown as the representative result 7. 

Richards: The Richards benchmark  is an operating system simulation tha t  is 
used as a nontrivial program in evaluating several object-oriented languages[41. 

RNA: RNA is a parallel search program for predicting RNA secondary struc- 
tures[22, 261. This program uses an object to maintain and to share informa- 
tion the found answers among concurrently running threads.  

7 The combination of the values of i and j yields the worst result in Nu[[ Writers. 
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Table  1. Performance improvement and residual overheads. 

benchmark 
applications 

Null Readers 
Null Writers 
Become 
(w/manual opt. 
Richards 
RNA 

elapsed time (sec.) 
PE INT NR 
3.2 107.7 2.3 

40.7 190.8 16.9 
46.6 272.8 15.7 

(21.3) 
20.7 140.7 9.4 
1.7 53.3 1.6 

improvement residual overheads 
INT/PE PE/NR 

33.6 1.4 
4.7 2.4 
5.9 3.0 

(12.8) (1.4) 
6.8 2.1 
30.8 1.1 

Since Richards and RNA use both  functions and methods,  their executions show 
how the efficiency of the meta-objects  affects overall execution speed in realistic 
applications. 

The results are summarized in Table 1. As the "improvement" column shows, 
the programs in PE are more than  four times faster than  the ones in INT. This 
improvement  is significant even in realistic applications such as Richards and 
RNA, whose speeds are increased by factors of 6.8 and 30.8, respectively. 

As the "residual overheads" column shows, the programs in PE are slower 
than  the ones in NR by factors of 1.1-3.0. These overheads are mainly due to the 
limitations of current partial  evaluators, as we have pointed out in Section 4.3. In 
fact, when we further optimized the partially evaluated meta-objects  for Become 
by hand--e l iminat ing  obvious channel communications,  e t c . - - the  average factor 
by which programs are slowed because of residual overheads was reduced to 1.4. 

5.2 Performance of  Customized  Meta-objects  

The above benchmark  programs were executed under the default meta-objects ,  
but  of more practical interest is the efficiency of customized meta-objects .  The 
next benchmark  program was a bounded-buffer tha t  uses the guarded method 
invocation mechanism, which is implemented by a customized meta-object .  Since 
the guarded methods are not directly supported in Schematic, we simulated them 
by user-level programming,  in which objects are programmed to check the guard 
conditions and to suspend/continue their  invocation requests. The programs are 
described in Appendix A. 

Table 2 shows the elapsed t ime for 1,000 read/wri te  operations f rom/ to  a 
bounded buffer whose size is 10. The  PE buffer shows almost the same efficiency 
as does the N R one. This result could be understood as tha t  the the overheads 
caused by frequent method invocations in N R cancel out the residual overheads 
in the P E buffer. The N R buffer uses three methods in order to represent a 
guarded method.  On the other hand, the PE buffer uses only one because the 
part ial  evaluator successfully inlines the methods  of the meta-object  tha t  deal 
with the guarded methods. 
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Table 2. Performance of bounded buffer with guarded methods. 

elapsed time ( sec . )  improvement residual overheads 
PE INT NR INT/PE PE/NR 

Bounded BufFer 3.94 4.46 3.96 1.13 0.99 

The partially evaluated meta-objects are approximately 10 percent faster 
than the interpreted ones (INT). This improvement is less significant than that 
observed with the previous benchmarks. We conjecture that this is because each 
of these benchmark programs requires a large number of context switches, and 
context-switching is expensive in the current Schematic implementation. The 
time spent for context-switching is thus so great that the efficiency differences 
between the three programs are relatively small. 

6 R e l a t e d  W o r k  

In CLOS Meta-Object Protocols (MOP), meta-level methods are split into func- 
tional and procedural ones for caching (or memoization)[13, 14]. This splitting 
approach in principle similar to our meta-object design, but the memoization 
technique requires more careful protocol design because the unit of specializa- 
tion is function. Thus the "functional" methods cannot include operations that 
touch dynamic data. On the other hand, such operations can be written in our 
reader methods, since the partial evaluator automatically residualizes them. 

Another approach to efficient reflective systems is use compile-time MOP[5, 
11], in which efficiency is guaranteed by allowing the meta-level computation to 
be performed only at the compile-time. This means that the changes in the run- 
time behavior of the base-level program should be made by writing translation 
rules that convert the program into one containing the expected behavior. This 
task could be burdensome if the modification involved run-time representation 
of an object, because no run-time meta-objects are available in compile-time 
MOPs. 

7 C o n c l u s i o n  

We have described a method for designing meta-objects in the reflective language 
ABCL/R3 and presented a framework for their optimization using partial evalu- 
ation. In the meta-object's description, operations that are state-related are sep- 
arated from operations that are not, and it is this separation that makes partial 
evaluation effective. The meta-objects and their reader methods are translated 
into records and functions in Scheme, and they are then optimized by using a 
Scheme partial evaluator. The optimized code is a combination of the base-level 
and meta-level programs, a combination from wihch most interpretive opera- 
tions at the meta-level (such as the method dispatch and the manipulation of 
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the environment) have been removed. Effectiveness of this optimization frame- 
work is shown by benchmark  programs in which the partially evaluated objects 
run significantly faster than  the interpretive meta-objects .  Moreover, the partial  
evaluation lets a program with customized meta-objects  run as efficiently as an 
equivalent nonreflective program. 
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A Programs Using Guarded Methods 

A.1 Base- level  P r o g r a m  

A base-level object that uses the guarded method mechanism has an optional 
form "( :metaclass . . .  )" in the class declaration, and has an expression "( :guard 
�9  )" in each guarded method. The following program is the definition of the 
bounded buffer used in Section 5.2: 

(define-class bb () size elements 
( :metaclass guard-meta) ) 

(def ine-method!  bb (put! s e l f  item) 
( :guard  (< ( leng th  elements)  s i z e ) )  ; guard expression 
(become self :elements (append elements (list item)))) 

A.2 Meta - l eve l  P r o g r a m  

We define the class guard-meta, as a subclass of metaobject, at the meta-level. 

( d e f i n e - c l a s s  guard-meta (metaobjec t )  ; a subclass of metaobjec t  
(guard (make-guard)) ) ; scheduler 

In the additional instance variable guard, each instance of guard-meta has a 
scheduler, which is a user-defined meta-level object. We Mso override the follow- 
ing two methods of guard-meta: 

(define-method guard-meta (receive self mes &reply-to mresult) 
(let* ((selector (message-selector mes)) 

(method (find-method methods selector)) 
(guard-exp (cdr (method-find-option method ':guard)))) 

(register guard 
(lambda () 

(let* ((env (make-env self (formals method) mes)) 
(result (eval evaluator guard-exp env))) 

(if result 
( r ep l y  (accept-W s e l f  mes) mresu l t ) )  

r e s u l t ) ) ) ) )  ; result ofguardexpression 

(define-method guard-meta (accept-W self mes) 
( l e t  ( ( r  (make-channel)))  

( l e t  ( ( r e s u l t  (accept  s e l f  mes r ) ) )  
(update s e l f  ( touch r ) )  
( n o t i f y  guard) 
result))) ; result of method body 
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The method receive registers a closure to guard. The closure, when activated 
by the scheduler, evaluates a guard expression and then invokes accept-W if the 
guard expression returns be true. The method accept-W, evaluates the method 
body, as accept-W of the class metaobj ect  does, and also notifies guard at the 
end of the evaluation. 

A.3 Opt imlzed  P r o g r a m  

From the base-level and the meta-level programs, our optimization framework 
generates the following combined program. The meta-level operations for guarded 
methods, which are defined in the methods rece ive  and accept-W of guard-meta, 
are embedded in the method put ' of the optimized class. 

(define-class guard-meta**bb () 
class methods state-vars state-values lock evaluator 
(guard (make-guard))) 

(define-method guard-meta**bb (put! s e l f  item &reply-to mresultO) 
( l e t  ((cO (lambda () 

;; evaluation of guard expression 
( le t*  ((valuesO ( r e a d - c e l l  s t a t e - v a l u e s ) )  

(sizeO (vec to r - r e f  valuesO 0)) 
(elementsO (vec to r - r e f  valuesO 1)) 
(resultO (< ( length  elementsO) sizeO)))  

( i f  resul tO 
;; execution of method body 
( le t*  ( (s ta te-update-chO (make-channel)) 

(va lues l  ( r e a d - c e l l  s t a t e - v a l u e s ) )  
( s i ze l  (vec to r - r e f  va lues l  0)) 
(elementsl  ( vec to r - r e f  va lues l  1))) 

(reply (vector  s i z e l  
(append elementsl  ( l i s t  i tem)))  

s ta te-update-chO) 
( l e t  ((new-stateO (touch s ta te-update-chO)))  

(update-cell! state-values new-stateO) 
(notify guard) 
(reply self mresultO))) ; result o]method body 

#f) 
r e s u l t 0 ) ) ) )  ; result o]guardexpression 

(register guard cO))) 

A.4 Nonref lect ive P r o g r a m  

Instead of using customized meta-objects, we can manually rewrite programs 
that have the same functionality to the ones using guarded methods. One of the 
simplest approach is to split each guarded into three actual methods: an entry 
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method, a guard method, and a body method. The following definitions are a 
manually rewritten bounded buffer: 

( de f ine - c l a s s  bb () ; nonreflective version 
s ize  elements (guard (make-guard)) 

(define-method bb (put! self item &reply-to r) 
(let ((c (lambda () 

(let ((guard-result (put!-guard self item))) 
(if guard-result 

(reply (put!-body self item) r)) 
guard-result)))) 

(register guard c))) 

(define-method bb (put ! -guard  s e l f  item) 
(< ( length  elements) s i ze ) )  ; guard expression 

(define-method! bb (put!-body self item) 
(become (begin (notify guard) ; notification 

self) 
:elements (append elements (list item)))) 

The class definition has an additional instance variable guard for the scheduler. 
The method put ! is an entry method that creates and re~4sters a closure to the 
scheduler. The method put ! -guard is the guard method, and put ! -body is the 
body method. They are invoked from the closure created in put!. 


