
Des ign and Part ial Evaluat ion of M e t a - o b j e c t s
for a Concurrent Ref lec t ive Language

Hidehiko Masuhara 1 and Akinori Yonezawa 2

1 Department of Graphics and Computer Science,
Graduate School of Arts and Sciences, University of Tokyo

masuhara@graco , c . u - t o k y o , a c . jp
2 Department of Information Science, University of Tokyo

yoneza.a@is, s. u-tokyo, ac. jp

A b s t r a c t . Customizable meta-objects are a powerful abstraction for
extending language features and implementation mechanisms, but in-
terpretive execution suffers from severe performance penalty. Some of
this penalty can be reduced by applying partial evaluation to meta-
interpreters, but partial evaluation of meta-objects in existing concur-
rent object-oriented languages is ineffective. This paper proposes a new
meta-object design for our reflective language ABCL/R3. It yields meta-
objects that can be optimized effectively using partial evaluation. The
crux of the design is the separation of state-related operations from other
operations, and this separation is accomplished by using reader/writer
methods in our concurrent object-oriented language called Schematic.
Our benchmark trials show that non-trivial programs with partially eval-
uated meta-objects run more than six times faster than ones that are
interpreted by meta-objects. In addition, a partially evaluated program
that uses a customized meta-object runs as efficiently as a program that
is manually rewritten so as to have the same functionality without using
meta-objects.

1 Introduction

1.1 R e f l e c t i o n in P a r a l l e l / D i s t r i b u t e d P r o g r a m s

The structure of objects in parallel and distr ibuted applications tends to be
complex because they would otherwise not be efficient, reliable, portable and
reusable. A number of language mechanisms-- inheri tance, transaction, object
migration, e tc . - - reducing this complexity have therefore been proposed. Guarded
method invocation, for example, which accepts invocation requests conditionally,
is useful for describing objects like bounded buffers. In many languages, however,
such mechanisms are not always implemented because (1) some are incompati-
ble with each other, (2) supporting a new mechanism can degrade the language
efficiency even when the mechanism is not used in a program, and (3) imple-
mentat ion of a new mechanism in the language requires a t remendous amount
of effort.

419

A possibly better approach is to extend languages by using meta-objects.
By installing a customized meta-object, the application programmer can use a
new language mechanism as if it were built-in. Advanced programmers can even
develop their own meta-objects to meet specific requirements. This approach
is also beneficial to the language implementors; they can devote themselves to
the implementation of simple core languages, leaving hard-to-be-implemented
mechanisms to be dealt with as extensions.

We are consequently developing a reflective object-oriented concurrent lan-
guage, ABCL/R3, in which we provide such extensibility by means of compu-
tational reflection[17, 24]. In ABCL/R3, a meta-object provides an abstraction
with which the user can extend or modify crucial mechanisms of an object (e.g.,
method invocation request, method dispatch, state management, and mutual
exclusion). In addition, a meta-interpreter provides an abstraction that can be
used to customize the syntax and semantics of bodies of methods and func-
tions. Reflective annotations, which can also be defined by means of meta-level
programming, are used as programming directives in base-level programs.

The features of ABCL/R3 have been described in detail elsewhere[19, 21]. The
present paper discusses the meta-object design of ABCL/R3 from the viewpoint
of efficient implementation.

1.2 Techniques for I m p l e m e n t a t i o n of Meta -ob jec t s

Despite the extensibility they provide, customizable meta-objects have a problem
with regard to efficiency. Assume that a meta-object implements a customized
method dispatch algorithm. In a naive implementation, the method dispatch
for the corresponding base-level object is achieved by a number of method in-
vocations at the meta-level; i.e., by interpretive execution. Moreover, the cus-
tomization hinders the application of important optimization techniques such
as method inlining[4] because such techniques are defined under the assumption
that the semantics (rules for method dispatch, in this case) of the language is
stable. As a result, the existence of meta-objects easily slow the execution of the
language by a factor of more than 10.

There have been several studies on this problem:

- Some parts of the meta-system are not subject to meta-level modification
by means of reification. In the reflective language Open C++ version 116],
for example, only message passing, object creation, and instance variable ac-
cesses can be reified. This not only restricts user programmability, but also
makes the language model unclear because much of the meta-level function-
alities are hidden inside 'black-boxes.' The programmer therefore cannot get
a clear view of how his meta-level programming and the black boxes will
interact.
Another example is JDK 1.1, which offers "reflection" API[25]. It supports
only introspective operations, which are obviously implemented efficiently.
They give, however, few extensibility at the same time.

420

- The system embodies a set of ad-hoc optimizations transparent to the user.
For example, our previous language ABCL/R2[20] assumes that most objects
will not be customized, and thus compiles objects without meta-objects.
When the user accesses a meta-object, the corresponding object is then
switched to general interpreted execution. Its effectiveness, however, is lim-
ited to cases where optimization is possible. When optimization is not pos-
sible, the interpretation overhead greatly affects the overall performance.

- The compiler inspects behavior of a meta-level program with respect to
a base-level program and removes interpretation by using techniques like
partial evaluation[12]. This approach is more systematic than the above two
approaches, but it requires intensive analysis of the meta-level program that
may include user customization.

1.3 Optimization Using Partial Evaluation

A base-level program in a reflective language is executed by an interpreter. The
interpreter, which is represented as an object at the meta-level of the language,
can be customized by the programmer. Once the base-level program is given,
however, most computation that depends only on the base-level program can
be performed in advance to the program execution. By removing such com-
putation, a specialized program that contains computation which depends on
run-time data for the base-level program, can thus be extracted from the meta-
level computation. This process is often referred as partial evaluation[12] of the
meta-level program with respect to the base-level program, or as the first Futa-
mura projection[7]. Our previous studies successfully apply partial evaluation to
the meta-interpreters in reflective languages[2, 19].

Meta-objects, in theory, could also be optimized by partial evaluation, but
they actually cannot because (1) the design of meta-ohjects in existing reflective
languages is not suitable for partial evaluation, and (2) there are few partial
evaluators that can deal with concurrent objects. We therefore redesigned meta-
objects with consideration to the application of partial evaluation, and here we
will show an optimization framework for the resulting meta-objects.

The rest of the paper is organized as follows: In Section 2 we discuss why
reasoning about the meta-objects is difficult by reviewing an existing meta-
object design. In Section 3 we describe our proposed meta-object design, and in
Section 4 we describe its optimization technique by using partial evaluation. In
Section 5 we show our performance evaluation of the optimized objects, and in
Section 6 we discuss other techniques for the efficient implementation of meta-
objects. In Section 7 we conclude by briefly summarizing the paper.

2 Problems of Exist ing Meta-object Design

Many concurrent object-oriented languages have mutual exclusion mechanisms
to assure consistency. A conservative, commonly found, approach is to mutually

421

exclude all method executions on an object. This approach alleviates the pro-
grammers' concern about interference with multiple read/wri te operations on an
instance variable.

The mutual exclusion mechanism in a language drastically affects the meta-
object design. This is because (1) the meta-objects explicitly implement the
mechanism of base-level objects, and (2) the meta-objects, themselves, are im-
plicitly controlled by a certain mutual exclusion mechanism, which is usually the
same one as base-level objects.

In order to meet the above requirements, a meta-object is defined as a state
transition machine in previous reflective languages. For example, Figure 1 is a
simplified definition 1 of the default meta-object in the language ABCL/R[28].
Its state transition diagram can be illustrated as in Figure 2.

A method invocation on a base-level object is represented by an invocation of
the method r e c e i v e ! 2 on its meta-object. In r e c e i v e !, the message (an object
that contains the method name and arguments) is immediately put into the
message queue (queue), so that it will eventually be processed. If the object is
not processing any methods (i.e., mode is 'dormant) , the meta-object changes
mode to ' a c t i v e and calls the method a c c e p t ! .

The method a c c e p t ! gets one message from queue and lets the evaluator
execute the matching method for the message. The evaluator interprets expres-
sions of the method recursively, and when it reaches the end of the base-level
method, it invokes the method finish! of the meta-object. The method finish!
examines queue for any pending messages received during the evaluation. If
queue is empty, the meta-object changes mode to ' dormant. Otherwise, it in-
vokes a c c e p t ! again for further execution.

When we apply partial evaluation to this meta-object definition with respect
to a certain base-level object, the result is far from satisfactory. The reasons are
the following:

- Since the meta-object is defined as a state transition machine, its behavior
cannot be determined without static information on some key instance vari-
ables such as mode and queue. For example, if the return value of (get ! queue)
in the method accep t ! were "unknown" (dynamic) at the specialization
time, method dispatch ((f i n d methods m)) and interpretation of the method
body ((e v a l e v a l u a t o r exp env s e l f)) would be left unspecialized. This
means that a large amount of interpretive computation cannot be eliminated
by merely applying partial evaluation.

- Information that should be "known" (static) to the partial evaluator is trans-
ferred via instance variables between consecutive method invocations. Such
information is not available on the receiver's side unless data structures are
analyzed extensively. For example, the value of (ge t ! queue) in a c c e p t ! ,
which would be the value of message in r e c e i v e ! , is crucial for specializa-

1 The syntax of the definition is that of in Schematic's[27] for the sake of uniformity.
The exclamation mark in the method name conventionally indicates that the method
may change the object's state.

422

;;; Class definition
(de f ine -c l a s s metaobj ()

mode queue s t a t e methods evaluator) ; instance variables

;;; Method definition for class metaobj
(define-method! metaobj (receive! s e l f message)

;; Here, s e l f is bound to the meta-object itself.
(put! queue message)
(if (eq? mode 'dormant) ; I f it is dormant, the received

(begin (set ! mode 'active) ; message is accepted immediately.
(future (accept! s e l f)))))

;;; method dispatch
(define-method! metaobj (accept! self)

(l e t* ((rues (get! queue)) ; Get a message from the queue.
(m (f ind methods rues)) ; method lookup
(env (make-env s e l f (formals m) rues))) ; creation of an evaluation env.

(future (eval evaluator (exps m) env self)))); evaluation

;;; end of method execution
(define-method! metaobj (f in ish] s e l f)

(i f (empty? queue) ; Check the queue for pending messages.
(se t ! mode 'dormant) ; I f none, turn into the dormant mode.
(fu ture (accept ! s e l f)))) ; Otherwise, accept one of them.

;;; recta-interpreter
(define-method! metaobj (eva1 s e l f exp env owner)

It evaluates exp under env. When finished, it invokes f i n i sh ! of owner.

The expression (fu ture (m r e x . . . e ,)) asynchronously invokes method m
of object r with parameters e z . . . e , . It is asynchronous in that the sender
continues subsequent computation without waiting for the return value. The
expression, (m r el . . . e ,) , on the other hand, is synchronous invocation; the
sender waits for the return value.

Fig. 1. Definition of an ABCL/R meta-object.

~receive !
receive I (.. ~ e ~ u e

] ~ - - - - - ~ ~ 'u x"-"/Iqueuel>O, accept
condition, action

Fig. 2. State transition diagram of an ABCL/R meta-object.

423

tion, but obtaining it requires analysis of queue. This requirement sometimes
become overwhelming because queue might be a user-defined object.

- The key instance variables are mutable; i.e., their values axe changed dur-
ing execution. The execution model of the meta-objects--ABCM[29] in this
case---however, specifies tha t method invocations will be processed in FIFO
order in each object. We thus have to anticipate that the execution of two
consecutive methods may be interleaved; i.e., it is safe to assume that mu-
table instance variables may be changed between method invocations. For
example, assume that the method r e c e i v e ! invokes the method a c c e p t ! .
The variable queue at the beginning of a ccep t ! may have a value different
from the one in r e c e i v e ! because other methods can be executed before
the execution of a c c e p t !. Though there are partial evaluators that can deal
with mutable variables, they regard a mutable variable as unknown (dy-
namic) unless they can statically determine all update operations to the
variable[l, 3].

For the above reasons, a partial evaluator conservatively regards most variables
as "dynamic." Without much of "static" information, the partial evaluator yields
a program that still performs almost all the computation as the program for the
original meta-object does.

3 A N e w M e t a - o b j e c t D e s i g n

We propose, for a reflective concurrent object-oriented language ABCL/R3[19,
21], a meta-object design that can be effectively optimized by partial evaluation.
The key idea is to separate, using the reader and writer methods of Schematic,
state-related operations from the other operations.

3.1 Reader/Writer Methods

Schematic[23, 27] is a concurrent object-oriented language based on Scheme. It
has concurrency primitives such as future and touch and has class-based objects,
but we describe only the reader/writer methods because they play key roles in
our meta-object design.

The construct d e f i n e - m e t h o d ! defines a writer method, which can modify
values of instance variables in an object. At the end of a writer method, there
should be a form "(become rest :Vl el :v2 e2 �9 �9 �9)" . When this form is eval-
uated, expressions ei are first evaluated in sequence. Then the results are set to
the variables v~ all at once. Finally, the expression rest is evaluated. The value
of rest is returned as the result of the become form. Multiple invocations of
writer methods on an object are mutually excluded. (Precisely, the evaluation of
rest is not excluded; i.e., the critical section finishes immediately after updating
instance variables.)

The construct d e f i n e - m e t h o d defines a reader method, which cannot modify
instance variables. The reader methods are not governed by the mutual exclusion

424

mechanism; a reader method on an object can even be executed concurrently
with a writer method on the same object. During execution of a reader method,
the instance variables are bound to the values extracted from the object 's state
at the beginning of the method. Even when a writer method executes become to
modify some of the instance variables, reader methods that have started their
execution before the become operation do not observe the effect of modification.

3.2 Proposed Meta-object Design

The outline of a new meta-object design solving the problems discussed in Sec-
tion 2 is shown in Figure 3, in which we exploit the reader/wri ter methods of
Schematic. Our design has the following characteristics:

- The behavior of the meta-object is principally defined in the reader methods.
Operations that deal with mutable data are defined separately as writer
methods or as method invocations on external objects. For example, values
of instance variables tha t are mutable are packed in the mutable vector
object state-values, and accesses to state-values are effected by using
the writer methods c e l l - s e t ! and c e l l - r e f .

- The meta-object straightforwardly processes each method invocation request
and provides mutual exclusion by using blocking operations (e.g., a c q u i r e !
and r e l e a s e !) . As a result, the meta-object is no longer a state-transition
machine. The reader methods, which can be invoked without mutual ex-
clusion, make it possible to define such a meta-object. If the meta-objects
were defined with only writer methods, use of the blocking operations would
easily lead to deadlock.

- For mutual exclusion, a meta-object has the instance variable l o ck in place
of mode and queue. By default, l o ck is a simple semaphore that has the
operations a c q u i r e ! and r e l e a s e ! . The user can replace l o c k with an ar-
bi trary object, such as a FIFO queue and a priority queue, by means of the
meta-level programming.

These characteristics solve the application problems of partial evaluation that
were discussed in Section 2. (1) Under the execution model of Schematic[27],
it is safe to assume that consecutive invocations of reader methods are not in-
terrupted by other activities; we therefore can use most partial evaluation tech-
niques for sequential languages by regarding the reader methods as functions.
(2) Since the "known" (static) information is propagated through the arguments
of the method invocations, the partial evaluators easily use such information for
specialization. (3) The mutual exclusion mechanism, which is implemented by
the blocking operations, gets rid of the dynamic branches (conditionals with
dynamic predicates) that would cause a termination-detection problem during
specialization.

How the methods in Figure 3 handle messages sent to the base-level object
is explained as follows:

425

;;; Class definition
(d e f i n e - c l a s s metaobj ()
lock state-variables state-values methods evaluator)

;;; Reception of a message
(de f ine -method metaobj (r e c e i v e s e l f message)

(i f (w r i t e r ? (s e l e c t o r message)) ; check message type
(accept-W self message) ; / o r a wmtermethod
(accep t self message 'dummy))) ; / o r a reader method

;;; Processing for a writer method
(de f ine -method metaobj (accept-W s e l f message)

(let ((c (make-channel))) ; channel /or receiving updated state
(a c q u i r e ! lock) ; mutual exclusion begins
(l e t ((r e s u l t (accept s e l f messages c)))

(c e l l - s e t ! s t a t e - v a l u e s (touch c)) ; update instance variables
(release! lock) ; end of mutual exclusion
r e s u l t)))

;;;Method ~okup and invocation
(de f ine -me thod metaobj (accep t s e l f message upda t e - c ha nne l)

(l e t * ((m (find methods message)) ;me thod lookup
(env (make-ear s e l f (fo rmals m) message)))

(f u t u r e (eva l e v a l u a t o r (method-body m) env u p d a t e - c h a n n e l))))

;;; Meta-interpreter
(de f ine -method e v a l u a t o r (eva l s e l f exp env upda t e - c ha nne l)

It evaluates exp under env. When a become [orm is evaluated, it creates a
vector of new updated instance variables, and sends it to upda t e - channe l .)

The primitive make-channel creates an empty channel, which is a communi-
cation medium among concurrently running threads. A thread sends a value
to a channel c by executing (r e p l y va lue e) , and receives from c by (touch
c).

F ig . 3. Our new meta-object design.

426

r e c e i v e : The method r e c e i v e simply proceeds to invoke methods accept-W
or a c c e p t , depending on the type of the base-level method tha t is to be
invoked.

accept-W: The method accept-W wraps the method a c c e p t in the code for
mutual exclusion and update of base-level instance variables. I t first locks
the object and then calls the method a c c e p t of the same object with a
channel c. I t then waits for a vector of updated instance variables--which
is sent by the become form in the base-level m e t h o d - - o n c by executing the
t o u c h form and updates s t a t e - v a l u e s with the received value. Finally, it
unlocks the object and returns the result of the method. Note tha t accept-W
itself does not modify instance variables.

a c c e p t : The method a c c e p t merely looks up a method for a given message
and lets the evaluator execute it. The method make-env, whose definition
is omitted, creates an evaluation environment. I t first extracts a vector of
instance variable values by executing (c e l l - r e f s t a t e - v a l u e s) and then
creates an association list tha t maps each of the instance variable names to
the extracted value and maps each formal paramete r name of the method to
the paramete r value in the m e s s a g e .

e v a l : The method e v a l of class e v a l u a t o r and its auxiliary methods em-
body a meta-circular interpreter, which is similar to the tradit ional Lisp
meta-circular interpreter. When it encounters a become form, it creates
a vector of the updated instance variables and then sends the vector to
upda t e - channel .

Since the reader /wri ter methods are not supported in the previous meta-objects,
the proposed meta-object design does not have the same semantics as the pre-
vious one.

4 Optimization Using Partial Evaluation

In our proposed meta-objects, most operations are defined in the reader methods,
and a few invocations on external objects are used for mutual exclusion and state
modification. As we s tated earlier, the meta-objects can, from the viewpoint of
partial evaluation, be regarded as functional programs with I /O- type side-effects.
In this section we describe an optimization framework for our meta-objects by
using part ial evaluation.

The biggest problem we face in using part ial evaluation is that there are no
part ial evaluators appropriate for our purpose because the meta-object is writ ten
in a concurrent object-oriented language. Although there are studies on partial
evaluators for concurrent languages[8, 9, 18], they focus on concurrency and pay
little at tent ion to the support of features crucial to sequential languages, such
as function closures and da ta structures.

Our solution is to translate meta-objects into a sequential program and use
a part ial evaluator for a sequential language. Part ial evaluation is applied for
each base-level method invocation; i.e., the specialization point is a base-level
method invocation. Since the methods of meta-objects exhibit almost sequential

427

ABCL/R3

Scheme

Schematic

recta-level base-level

7 ~ ~ ~ i n t functi:nsl

]classes & constructors] -- I methods] fu~nc

_ pro-
processing

I partial
(c) evaluation

7- processing

Fig. 4. Overview of our optimization framework.

;;; 2d-point
(d e f i n e - c l a s s point () x y)

;;; returns the distance f romthe omgin---a reader method
(define-method point (distance self)

(sqrt (+ (square x) (square y))))

;;;moves a point---a writer method
(define-method! point (move! self dx dy)

(b e c o m e #t :x (+ x dx) :y (+ y dy)))

Fig. 5. Example base-level program.

behavior, the partial evaluator for a sequential language can effectively opti-
mize the meta-objects. Concurrency in the meta-objects will be residualized as
applications to primitives.

Another problem is compatibility with other objects. The optimized object
should support meta-level operations that are defined in the original meta-object.
At the same time, the object should behave like a base-level object so that it
can be used with other base-level objects. To satisfy these two requirements, our
framework generates an object that combines the base- and meta-level objects in
a single level. The object has the same methods that are in the original base-level
object, and the body of each method is a specialized code of the meta-object.

Figure 4 shows the overview of our optimization framework, in which there
are three steps: (1) translation from ABCL/R3 to Scheme, (2) partial evaluation,
and (3) translation from Scheme to Schematic. In the following subsections we
explain each step in detail by using an example base-level program (Figure 5)
and the default meta-object metaobj (Figure 3).

428

4.1 Preprocessing

Meta-object definitions are translated into a Scheme program so that they can
be processed by a Scheme partial evaluator (Figure 4(a)). A meta-level object is
converted into a record 3 whose fields are its class name and values of instance
variables. A reader method is converted into a dispatching function and a class-
specific function. The former examines the class-name field in the receiver and
calls a matching class-specific function.

Invocations of writer methods that are defined at the meta-level should not
be performed during the partial evaluation because they will modify the state of
objects. Therefore, the writer methods are not passed to the partial evaluators
but are instead simply copied into the resulting Schematic program (Figure 4(b)).

No translations are needed for the base-level definitions, since they are used
as data for the meta-level program. Functions, however, are simply copied to the
resulting Schematic program (Figure 4(c)).

4.2 P a r t i a l E v a l u a t i o n

We partially evaluate the meta-level program for each base-level method invo-
cation. For example, given the base-level program like that in Figure 5, the
meta-level computation that will be processed is the one corresponding to the
following base-level method invocation:

(move! p dx dy)
where p = p o i n t { x = x, y = y}.

The variables written in italic font (e.g., dx, dy, x, and y) are dynamic data. The
data denoted by the variable p is a partially static; it is known as an object of
class po in t , but values of instance variables x and y are dynamic (unknown).

The corresponding meta-level computation is the following expression:

(r e c e i v e mobj message)

where

mobj = metaobj{class ---- 'point,

methods---- '((distance (self) ...) ...),

state-vars ---- ' (x y), state-values ---- s, lock = l,

evaluator ---- (make-evaluator)},

message = message{selector = 'move!, arguments = (list dx dy)}.

To partially evaluate a meta-level computation like the above one, we generate
a specialization point function for each base-level method (Figure 4(d)). The
function takes as its arguments a vector of instance variables, lock, and param-
eters for the method. When called, it creates mobj and message, and it invokes
the method r e c e i v e on mobj (Figure 6). The function is specialized under the
assumption that all the arguments are dynamic.

3 Since our partial evaluator does not natively support records, we further translate
the record into cons-cells.

429

(define (specalization-point-move!-point state-values lock dx dy)
(let ((mobj (metaobject 'point '((distance (self) ...) ...)

'(x y) state-values lock
(make-evaluator)))

(message (message 'move! (list dx dy))))
(receive mobj message)))

Fig. 6. Specialization point function for method move ! of class point.

An online partial evaluator for Scheme[3] (Figure 4(e)) specializes not only
the methods of metaobj, but also those of e v a l u a t o r 4. The compilation tech-
niques of the meta-interpreter are described elsewhere[19].

4.3 P o s t p r o c e s s i n g

The final step is to translate the results of partial evaluation (in Scheme) back
into concurrent objects (in Schematic). This is done by generating class decla-
rations, constructor functions, and methods as shown in Figure 7.

- For each combination of base- and meta-level classes, a specialized class is
defined (Figure 4(f)). Since the class is a specialized version of the meta-level
class, it has the same instance variables as the original meta-object. (E.g.,
the class metaobject**point in Figure 7.)

- A function that mimics the base-level constructor is defined for each special-
ized class (Figure 4(g)). For example, the function point in Figure 7 is a base-
level constructor that creates an object belonging to class metaobject**point
with proper initial values.

- Methods of the specialized classes are defined (Figure 4(h)). The name of
each method is the same as that of the original base-level method. (The
method distance and move! of class metaobject**point in Figure 7 are
examples.) The specialized object therefore has the same interface as the
original base-level program. The body of the method is the result of partial
evaluation. Note that because the generated methods are specialized versions
of receive of the meta-object, they should be defined as reader methods
regardless of the type of the corresponding base-level method.

When a meta-object is specialized with respect to a reader method, the
optimized method has the essentially same definition as the original base-level
method, except for the indirect accesses to the instance variables (cf. the method
distance in Figure 7). When it is specialized with respect to a writer method,
on the other hand, the optimized method evidently contains extra operations.
Although most of the operations in the optimized method are the same as the

4 For convenience in executing the benchmark programs, instead of using a real meta-
interpter we used a fake evaluator that directly executes the body of methods. This
will be discussed in Section 5.

430

;;; a combined class o f m e t a o b j e c t w.r.t , point
(define-class metaobject**point ()
class methods state-vars state-values lock evaluator)

;;; constructor

(define (point x y)
(metaobject**point
(quote *metaobject*) (quote *methods*) (quote (x y))
(make-cell (vector x y)) (make-lock) (quote *evaluator*)))

;;; reader method

(define-method metaobject**point (distance self)
(begin (let* ((valuesO (read-cel l s tate-values))

(xO (vector- te l valuesO 0))
(yO (vector-ref valuesO 1))
(gO (square xO))
(gl (square yO)))

(sqrt (+ gO g l)))))

;;; w ~ t e r m e t h o d
(define-method metaobject**point (move! self dx dy)

(begin (acquire! lock)
(let* ((state-update-channelO (make-channel))

(valuesO (read-cell state-values))
(xO (vector-ref valuesO 0))
(yO (vector-tel valuesO I))
(gO (vector (+ xO dx) (+ yO dy))))

(reply gO state-update-channelO)
(le t ((new-stateO (touch state-update-channelO)))

(update-cell! state-values new-stateO)
(release! lock)
#_~t))))

Fig. 7. Result of optimization (the underlined expressions come from the base-level
method).

431

operations performed in a writer method in Schematic, others are amenable to
further optimization. For example, the newly created vector of instance vari-
ables gO is handed over by means of r e p l y and touch operations in the same
thread because our current partial evaluator regards those operations as mere
"unknown" functions. An optimized method less extra operations could be pro-
duced by using partial evaluators for concurrent languages or by applying static
analysis for concurrent programs[10, 15, 16] to the resulting code.

5 P e r f o r m a n c e E v a l u a t i o n

To evaluate the efficiency of our partially evaluated meta-objects, we executed
benchmark programs in the following three ways:

PE(partially evaluated): The default meta-object was partially evaluated with
respect to each benchmark program, and the generated code was further
compiled by Schematic. This showed the performance of our optimization
framework.

I NT(interpreted): The default meta-object was directly compiled by Schematic,
and then the compiled code interpreted the benchmark programs. This showed
the performance of naively implemented meta-objects.

N R(nonreflective): The benchmark programs were directly compiled by Schematic s.
This showed the performance of nonreflective languages.

All programs were executed on Sun UltraEnterprise 4000 that had 1.2GB mem-
ory, 14 UltraSparc processors, 6 each operating at 167MHz, and was running
SunOS 5.5.1.

The differences between the PE and INT performances show the amount of
speedup gained by partial evaluation, while the differences between the PE and
NR performance show the residual overheads--the overheads that the partial
evaluator fails to eliminate.

The overheads solely caused by the meta-objects, were evaluated by exe-
cuting the body expressions in PE and INT without meta-interpreters. For ex-
ample, when a base-level program has an expression "(distance p)," then
a meta-object looks up d i s t a n c e in its method table and extracts instance
variables from p. However, the method body " (s q r t (+ (square x) (squa re
y)))" should be executed directly. To do this, we generate a fake evaluator for
each base-level class (Figure 8). Without fake evaluators, interpretive execution
of method bodies would make an overwhelmingly large contribution to the ex-
ecution time in iNT. The fake evaluators are also useful for skipping over the
partial evaluation of meta-interpreters whenever a base-level object uses only
the default meta-interpreter.

s Our Schematic compiler has some overheads for concurrent execution; a sequential
program (Richards) compiled by a sequential Scheme compiler (DEC Scheme-to-C)
was faster than the one compiled by Schematic by a factor of 5.4.
Though we used a multi-processor machine, the programs are executed on a single
processor execution.

432

;;; Class definition
(d e f i n e - c l a s s evaluator**point ())

;;; The method called by the meta-object.
(define-method evaluator**point (eval -begin s e l f method-name exp env)

(tend ((eq? method-name 'd i s tance) ; /or method d i s t a n c e
Clot ((x (lookup 'x env)) (y (lookup 'y env)))

(sqrt (+ (square X) (square y)))))
((eq? method-name 'move!) ;]or method move!

(l e t ((x (lookup 'x env)) (y (lookup 'y env))
(dx (lookup 'dx env)) (dy (lookup 'dy env)))

(l e t ((new-values (vector (+ x dx) (+ y dy))))
(update self new-values))))))

Each clause of the cond form in oval -begin corresponds to the method of the
base-level class point . A clause is selected by the argument method-name. The
body part of a clause has the code for extracting the base-level arguments and
instance variables and for the method body. A become form in the original
program is converted into an invocation of the update method of the meta-
object, which takes a vector of the updated instance variables as an argument.

Fig. 8. "Fake" evaluator for point .

5.1 B a s e - l e v e l A p p l i c a t i o n s

The following three kinds of programs were executed as the base-level applica-
tions:

Null Readers a n d Null Writers: Elapsed t ime for 1,000,000 method invocations
was measured by repeatedly calling a null method on an object. We tested
objects with different numbers of instance variables (i) and tested methods
with different numbers of arguments (j). The average t ime over some param-
eter combinations (i �9 {0, 5,10}, j E {1, 5, 10}) are shown as a representative
result.

Become: Elapsed t ime for 1,000,000 invocations of writer methods which up-
date instance variables was measured by repeatedly calling a method that
immediately performs become. We tested objects with different numbers of
updated variables (k), and the average t ime over the paramete r combinations
i -- 10, j = 1, k �9 {1, 5, 10} is shown as the representative result 7.

Richards: The Richards benchmark is an operating system simulation tha t is
used as a nontrivial program in evaluating several object-oriented languages[41.

RNA: RNA is a parallel search program for predicting RNA secondary struc-
tures[22, 261. This program uses an object to maintain and to share informa-
tion the found answers among concurrently running threads.

7 The combination of the values of i and j yields the worst result in Nu[[Writers.

433

Table 1. Performance improvement and residual overheads.

benchmark
applications

Null Readers
Null Writers
Become
(w/manual opt.
Richards
RNA

elapsed time (sec.)
PE INT NR
3.2 107.7 2.3

40.7 190.8 16.9
46.6 272.8 15.7

(21.3)
20.7 140.7 9.4
1.7 53.3 1.6

improvement residual overheads
INT/PE PE/NR

33.6 1.4
4.7 2.4
5.9 3.0

(12.8) (1.4)
6.8 2.1
30.8 1.1

Since Richards and RNA use both functions and methods, their executions show
how the efficiency of the meta-objects affects overall execution speed in realistic
applications.

The results are summarized in Table 1. As the "improvement" column shows,
the programs in PE are more than four times faster than the ones in INT. This
improvement is significant even in realistic applications such as Richards and
RNA, whose speeds are increased by factors of 6.8 and 30.8, respectively.

As the "residual overheads" column shows, the programs in PE are slower
than the ones in NR by factors of 1.1-3.0. These overheads are mainly due to the
limitations of current partial evaluators, as we have pointed out in Section 4.3. In
fact, when we further optimized the partially evaluated meta-objects for Become
by hand--e l iminat ing obvious channel communications, e t c . - - the average factor
by which programs are slowed because of residual overheads was reduced to 1.4.

5.2 Performance of Customized Meta-objects

The above benchmark programs were executed under the default meta-objects ,
but of more practical interest is the efficiency of customized meta-objects . The
next benchmark program was a bounded-buffer tha t uses the guarded method
invocation mechanism, which is implemented by a customized meta-object . Since
the guarded methods are not directly supported in Schematic, we simulated them
by user-level programming, in which objects are programmed to check the guard
conditions and to suspend/continue their invocation requests. The programs are
described in Appendix A.

Table 2 shows the elapsed t ime for 1,000 read/wri te operations f rom/ to a
bounded buffer whose size is 10. The PE buffer shows almost the same efficiency
as does the N R one. This result could be understood as tha t the the overheads
caused by frequent method invocations in N R cancel out the residual overheads
in the P E buffer. The N R buffer uses three methods in order to represent a
guarded method. On the other hand, the PE buffer uses only one because the
part ial evaluator successfully inlines the methods of the meta-object tha t deal
with the guarded methods.

434

Table 2. Performance of bounded buffer with guarded methods.

elapsed time (sec .) improvement residual overheads
PE INT NR INT/PE PE/NR

Bounded BufFer 3.94 4.46 3.96 1.13 0.99

The partially evaluated meta-objects are approximately 10 percent faster
than the interpreted ones (INT). This improvement is less significant than that
observed with the previous benchmarks. We conjecture that this is because each
of these benchmark programs requires a large number of context switches, and
context-switching is expensive in the current Schematic implementation. The
time spent for context-switching is thus so great that the efficiency differences
between the three programs are relatively small.

6 R e l a t e d W o r k

In CLOS Meta-Object Protocols (MOP), meta-level methods are split into func-
tional and procedural ones for caching (or memoization)[13, 14]. This splitting
approach in principle similar to our meta-object design, but the memoization
technique requires more careful protocol design because the unit of specializa-
tion is function. Thus the "functional" methods cannot include operations that
touch dynamic data. On the other hand, such operations can be written in our
reader methods, since the partial evaluator automatically residualizes them.

Another approach to efficient reflective systems is use compile-time MOP[5,
11], in which efficiency is guaranteed by allowing the meta-level computation to
be performed only at the compile-time. This means that the changes in the run-
time behavior of the base-level program should be made by writing translation
rules that convert the program into one containing the expected behavior. This
task could be burdensome if the modification involved run-time representation
of an object, because no run-time meta-objects are available in compile-time
MOPs.

7 C o n c l u s i o n

We have described a method for designing meta-objects in the reflective language
ABCL/R3 and presented a framework for their optimization using partial evalu-
ation. In the meta-object's description, operations that are state-related are sep-
arated from operations that are not, and it is this separation that makes partial
evaluation effective. The meta-objects and their reader methods are translated
into records and functions in Scheme, and they are then optimized by using a
Scheme partial evaluator. The optimized code is a combination of the base-level
and meta-level programs, a combination from wihch most interpretive opera-
tions at the meta-level (such as the method dispatch and the manipulation of

435

the environment) have been removed. Effectiveness of this optimization frame-
work is shown by benchmark programs in which the partially evaluated objects
run significantly faster than the interpretive meta-objects . Moreover, the partial
evaluation lets a program with customized meta-objects run as efficiently as an
equivalent nonreflective program.

Acknowledgments

The earlier version of ABCL/I:t3 was designed in collaboration with Satoshi
Matsuoka, and we would like to express our thanks to him. We would also
like to thank Kenjiro Tanra, Kenichi Asai, and Ken Waki ta for their valuable
comments and for their technical help to run the Schematic compiler and the
Scheme part ial evaluator.

References

1. Andersen, L. O.: Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen (1994). (DIKU Report
94/19)

2. Asai, K., Masuhara, H., Matsuoka, S., Yonezawa, A.: Partial Evaluation as a Com-
piler for Reflective Languages. Technical Report 95-10, Department of Information
Science, University of Tokyo (1995)

3. Asai, K., Masuhara, H., Yonezawa, A.: Partial Evaluation of Call-by-value lambda-
calculus with Side-effects. In Partial Evaluation and Semantics-Based Program
Manipulation (PEPM'97), SIGPLAN Notices, Vol. 32, No. 12. ACM (1997) 12-21

4. Chambers, C., Ungar, D., Lee, E.: An Efficient Implementation of SELF, a
Dynamically-Type Object-Oriented Language Based on Prototypes. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA'89), SIG-
PLAN Notices, Vol. 24, No. 10. ACM (1989) 49-70

5. Chiba, S.: A Metaobject Protocol for C++. In Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA'95), SIGPLAN Notices, Vol. 30,
No. 10. ACM (1995) 285-299

6. Chiba, S. Masuda, T.: Designing an Extensible Distributed Language with a Meta-
Level Architecture. In European Conference on Object-Oriented Programming
(ECOOP'93), Lecture Notes in Computer Science, Vol. 707. Springer-Verlag (1993)
482-501.

7. Futamura, Y.: Partial Evaluation of Computation Process--an Approach to a
Compiler-compiler. Systems, Computers, Controls, Vol. 2, No. 5 (1971) 45-50

8. Gengler, M. Martel, M.: Self-applicable partial evaluation for the pi-calculus. In
Partial Evaluation and Semantics-Based Program Manipulation (PEPM'97), SIG-
PLAN Notices, Vol. 32, No. 12. ACM (1997)

9. Hosoya, H., Kobayashi, N., Yonezawa, A.: Partial Evaluation Scheme for Con-
current Languages and Its Correctness. Euro-Par'96 Parallel Processing, Lecture
Notes in Computer Science, Vol. 1123. Springer-Verlag (1996) 625-632

10. Igarashi, A. Kobayashi, N.: Type-Based Analysis of Usage of Communication
Channels for Concurrent Programming Languages. In International Static Analy-
sis Symposium (SAS'97), Lecture Notes in Computer Science, Vol. 1302. Springer-
Verlag, (1997) 187-201

436

11. Ishikawa, Y., Hori, A., Sato, M., Matsuda, M., Nolte, J., Tezuka, H., Konaka, H.,
Maeda, M., Kubota, K.: Design and Implementation of Metalevel Architecture in
C++: MPC++ Approach. In Reflection Symposium'96 (1996) 153-166

12. Jones, N. D., Gomard, C. K., Sestoft, P.: Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall (1993)

13. Kiczales, G., Rivi~res, J.des , Bobrow, D. G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA (1991)

14. Kiczales, G. Rodriguez, L.: Efficient Method Dispatch in PCL. In LISP and Func-
tional Programming (LFP'90), ACM (1990) 99-105

15. Kobayashi, N., Nakade, M., Yonezawa, A.: Static Analysis of Communication for
Asynchronous Concurrent Programming Languages. In International Static Anal-
ysis Symposium (SAS'95), Lecture Notes in Computer Science, Vol. 983. Springer-
Verlag (1995) 225-242

16. Kobayashi, N., Pierce, B. C., Turner, D. N.: Linearity and the Pi-Calculus. In
Principles of Programming Languages (POPL'96) (1996) 358-371

17. Maes, P.: Concepts and Experiments in Computational Reflection. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA'87), SIG-
PLAN Notices Vol. 22, No. 12. ACM (1987) 147-155

18. Marinescu, M. Goldberg, B.: Partial Evaluation Techniques for Concurrent Pro-
grams. In Partial Evaluation and Semantics-Based Program Manipulation
(PEPM'97), SIGPLAN Notices, Vol. 32, No. 12. ACM (1997) 47-62

19. Masuhara, H., Matsuoka, S., Asai, K., Yonezawa, A.: Compiling Away the Meta-
Level in Object-Oriented Concurrent Reflective Languages Using Partial Evalu-
ation. In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA'95), SIGPLAN Notices, Vol. 30, No. 10. ACM (1995) 300-315

20. Masuhara, H., Matsuoka, S., Watanabe, T., Yonezawa, A.: Object-Oriented Con-
current Reflective Languages can be Implemented Efficiently. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA'92), SIGPLAN
Notices, Vol. 27, No. 10. ACM (1992) 127-145

21. Masuhara, H., Matsuoka, S., Yonezawa, A.: Implementing Parallel Language Con-
structs Using a Reflective Object-Oriented Language. In Reflection Symposium'96,
San Francisco, CA. (1996) 79-91

22. Nakaya, A., Yamamoto, K., Yonezawa, A.: RNA Secondary Structure Prediction
Using Highly Parallel Computers. Compt. Appl. Biosci. 11 (1995) 685-692

23. Oyama, Y., Taura, K., Yonezawa, A.: An Efficient Compilation Framework for
Languages Based on a Concurrent Process Calculus. In Euro-Par '97 Object-
Oriented Programming, Lecture Notes in Computer Science, Vol. 1300. Springer-
Verlag, (1997)

24. Smith, B. C.: Reflection and Semantics in Lisp. In Principles of Programming
Languages (POPL'84), ACM (1984) 23-35

25. Sun Microsystems, : Java(TM) Core Reflection: API and Specification, (1997)
26. Taura, K.: Efficient and Reusable Implementation of Fine-Grain Multithreading

and Garbage Collection on Distributed-Memory Parallel Computers. PhD thesis,
Department of Information Science, University of Tokyo (1997).

27. Taura, K. Yonezawa, A.: Schematic: A Concurrent Object-Oriented Extension to
Scheme. In Object-Based Parallel and Distributed Computation, Lecture Notes in
Computer Science, Vol. 1107. Springer-Verlag, (1996) 59-82

28. Watanabe, T. Yonezawa, A.: Reflection in an Object-Oriented Concurrent Lan-
guage. In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA'88), SIGPLAN Notices, Vol. 23, No. 11. ACM (1988) 306-315.

437

29. Yonezawa, A. (ed.): ABCL: An Object-Oriented Concurrent System. MIT Press,
Cambridge, MA (1990)

A Programs Using Guarded Methods

A.1 Base- level P r o g r a m

A base-level object that uses the guarded method mechanism has an optional
form "(:metaclass . . .)" in the class declaration, and has an expression "(:guard
�9)" in each guarded method. The following program is the definition of the
bounded buffer used in Section 5.2:

(define-class bb () size elements
(:metaclass guard-meta))

(def ine-method! bb (put! s e l f item)
(:guard (< (leng th elements) s i z e)) ; guard expression
(become self :elements (append elements (list item))))

A.2 Meta - l eve l P r o g r a m

We define the class guard-meta, as a subclass of metaobject, at the meta-level.

(d e f i n e - c l a s s guard-meta (metaobjec t) ; a subclass of metaobjec t
(guard (make-guard))) ; scheduler

In the additional instance variable guard, each instance of guard-meta has a
scheduler, which is a user-defined meta-level object. We Mso override the follow-
ing two methods of guard-meta:

(define-method guard-meta (receive self mes &reply-to mresult)
(let* ((selector (message-selector mes))

(method (find-method methods selector))
(guard-exp (cdr (method-find-option method ':guard))))

(register guard
(lambda ()

(let* ((env (make-env self (formals method) mes))
(result (eval evaluator guard-exp env)))

(if result
(r ep l y (accept-W s e l f mes) mresu l t))

r e s u l t))))) ; result ofguardexpression

(define-method guard-meta (accept-W self mes)
(l e t ((r (make-channel)))

(l e t ((r e s u l t (accept s e l f mes r)))
(update s e l f (touch r))
(n o t i f y guard)
result))) ; result of method body

438

The method receive registers a closure to guard. The closure, when activated
by the scheduler, evaluates a guard expression and then invokes accept-W if the
guard expression returns be true. The method accept-W, evaluates the method
body, as accept-W of the class metaobj ect does, and also notifies guard at the
end of the evaluation.

A.3 Opt imlzed P r o g r a m

From the base-level and the meta-level programs, our optimization framework
generates the following combined program. The meta-level operations for guarded
methods, which are defined in the methods rece ive and accept-W of guard-meta,
are embedded in the method put ' of the optimized class.

(define-class guard-meta**bb ()
class methods state-vars state-values lock evaluator
(guard (make-guard)))

(define-method guard-meta**bb (put! s e l f item &reply-to mresultO)
(l e t ((cO (lambda ()

;; evaluation of guard expression
(le t* ((valuesO (r e a d - c e l l s t a t e - v a l u e s))

(sizeO (vec to r - r e f valuesO 0))
(elementsO (vec to r - r e f valuesO 1))
(resultO (< (length elementsO) sizeO)))

(i f resul tO
;; execution of method body
(le t* ((s ta te-update-chO (make-channel))

(va lues l (r e a d - c e l l s t a t e - v a l u e s))
(s i ze l (vec to r - r e f va lues l 0))
(elementsl (vec to r - r e f va lues l 1)))

(reply (vector s i z e l
(append elementsl (l i s t i tem)))

s ta te-update-chO)
(l e t ((new-stateO (touch s ta te-update-chO)))

(update-cell! state-values new-stateO)
(notify guard)
(reply self mresultO))) ; result o]method body

#f)
r e s u l t 0)))) ; result o]guardexpression

(register guard cO)))

A.4 Nonref lect ive P r o g r a m

Instead of using customized meta-objects, we can manually rewrite programs
that have the same functionality to the ones using guarded methods. One of the
simplest approach is to split each guarded into three actual methods: an entry

439

method, a guard method, and a body method. The following definitions are a
manually rewritten bounded buffer:

(de f ine - c l a s s bb () ; nonreflective version
s ize elements (guard (make-guard))

(define-method bb (put! self item &reply-to r)
(let ((c (lambda ()

(let ((guard-result (put!-guard self item)))
(if guard-result

(reply (put!-body self item) r))
guard-result))))

(register guard c)))

(define-method bb (put ! -guard s e l f item)
(< (length elements) s i ze)) ; guard expression

(define-method! bb (put!-body self item)
(become (begin (notify guard) ; notification

self)
:elements (append elements (list item))))

The class definition has an additional instance variable guard for the scheduler.
The method put ! is an entry method that creates and re~4sters a closure to the
scheduler. The method put ! -guard is the guard method, and put ! -body is the
body method. They are invoked from the closure created in put!.

