modeling crosscutting
In aspect-oriented mechanisms

Hidehiko Masuhara
(University of Tokyo)

joint work with Gregor Kiczales
(University of British Columbia)

aspect-oriented programming

* AOP supports modularization of
crosscutting concerns Kiczales et al.1997]
Display

update(FigureElement)| * e.dg., a drawing editor &
. a concern: update display
Figure elementsf FigureElement When figure moves

move’fh{{igt)
| T . +#= woAOP vs. | w/ AOP

Point Line . .
getX() getP1() DisplayUpdating

getY() getP2() uﬁda}te)(FigEJr:) FigEim) |
seti) _ _|_ L setP? = after(e) : update(FigElm
se:(.%l- 1-r ggtp%g 1 \ e.display.update(e)

(so called) COMpoONents aspects

what's the essence of AOP?

* a nailve model does not capture
— symmetric mechanism in Hyper/J
— dynamic mechanism in AspectJ
— more specialized mechanisms (e.g., Demeter)

. we.’.c.l like to find a model

— general enough to capture
many mechanisms

— not too general so that
we can see the nature of AOP

a naive model ' LG

crosscutting!

contributions & approach

. Aspect
1. provide a common . SandBox — real AOP
- 7’

= impl. R

| >{ AspectJ

impl. [

| ?{ Hyper/J

impl. [
|

2. explain impl. 4/»l Demeter
modular crosscutting

- — [Kiczales*01]
tepesenplified Lisbernermo6,67)
Implementations

talk outline

* Implementations of core AOP mechanisms
— PA: an AspectJ-like (dynamic) mechanism
— COMPOSITOR: a Hyper/J-like mechanism
— (TRAV: a Demeter-like mechanism)
— (OC: an AspectJ-like (static) mechanism)

* the modeling framework

* modular crosscutting
in terms of the modeling framework

PA — pointcuts and advice

» simplified from (dynamic part of) Aspectd [Kiczaleso1]

o k | ts- an example advice:
ey elements. update display

— join point: point in execution after moving
l.e., a method call any element

update(lI:Diigsl?l!z\élement) ¢ fies When af.rer.():
| call(void Point.setX(int))

call(void Point.setY(int))
call(void Line.setP1(Point))
call(void Line.setP2(Point)) {
display.update();

Jularity

PA: implementation

, an interpreter (a la EOPL)
(define eval-exp

(lambda (exp env) a join point represents a

(cond ((call-exp? exp) method call

(call-me‘rhod (call-exp-mname exp)
(eval-exp (call-exp-obj exp) env)
(eval-rands (call-exp-rands e

5) ’ a method call is to:

(define-struct call-jp (mname target args)y* Create a join point

e | 1i h
(define call-method identify a method

(lambda (mname obj args) O Identlfy
(let*((jp (make-call-jp mname obj apgs)) advice decls.
(method (lookup-method jp)) L« execute

(advice (lookup-advice jp))) advice decls.

execute-advice advice |
((lambda () JpP -+ execute method

(execute-method method jp)jJ))))

7

observations from
PA implementation

 method and advice a naive model /VG
are treated similarly:
lookup & execute

=» symmetric model

* join points come from execution
=» “weaving into components” is not good
=» weaving in the third space
(i.e., execution)

COMPOSITOR —
class composition

simplified from Hyper/J [osshero1]

» class hierarchy for each concern Disclay
(no dominant modularity)

update(FigureElement)||”

composition of class hierarchies
to get an executable b, e
Oh Oy S +*° ! e gzzpzo

[] [] [] (] [] 070)‘(‘ (oof‘ ,‘/
4y e g Sery "Ligpt! oy setP1(Point)
composition specification ey i
2, . moveBy(int,int)

Observable
moved()
display.update(this);
} “"update(FigureElement)

COMPOSITOR: implementation

ate(FigureElement)

source-to-source
translation

. computes all possible |
COmblnat|onS w 4tP1(P t)\

. determines whether
each should be merged J;

ram-a>
-b>
. "match Pojnt.setX »ﬂ}éwservab/e,m ved
merges bodies & mateh Paitbses? with Ohservablemolba
- match Line.setPl with Observable.moved
match Lin sfPZW/ﬂzObs b/m ved")

adds to program }

____Disoiay /|
ate(Figure! ent)

* . [Figure potecienis | ngE|met|—>
(* very naive approach; H

just for explanation) E I

tP2(P)
move By@

COMPOSITOR: implementation

generate combinations

define compositor:
(define compositor:weave of methods

(lambda (pgm-a pgm-b relationships)

(let loop ((pgm (Make-program '()))
(seeds (compute-seeds pgm-a pgm-b)))

(let (signature (all-match (car seeds)

i ; have matchin
relationships) °

signatures

i ?
(if (not (null? seeds)) test all methods
)

(if signature

(let* ((jp (car seeds)) . merge method
(decl (Merge-decls jp relationships))) bodies

(loop (add-decl-to-pgm decl pgm signaturey, and install

(remove-subsets jp (cdr seeds))))
(loop pgm (cdr seeds))))

sle[)))))

observations from
COMPOSITOR implementation

» no dominant modularity a naive model A/G
= symmetric model "

* join points are not only

from pgm-a (nor pgm-b)
=» “weaving into components” is not good
=» weaving in the third space

* matching rule can be modified
=» weaving parameters

TRAV & OC

similarly implemented

e TRAV: Demeter/Demeterd/DJ [Liberrherro7], etc.

— traversals through object graphs

* modular specification: “where to go” & “what to do”
otherwise scattered over classes

* OC: Aspectd’s introductions or ITD iczatesor;
(also in Flavors, etc. (camonsz...)

— can declare methods/fields
outside of the class declarations

the modeling framework:
PA's case

method & advice are parallel

*
" i
» .
] a
.

method S advice
decls.

weaving happens
at method calls
In computation

method calls computation

modeling framework:
COMPOSITOR’s case

B -

A - ¥ ; ' methods
methods %,) : &fields

META -

0
.0
’0
0
0
.0
.

(compositor:weavi

<program-b>
"match Point.setX wit! servable.moved
match Point.setY wit servable.moved
match Line.setP1 with Observable.moved
match Line.setP2 with Observable.moved")

X - composed programs

the modeling framework
A&B are parallel

B -
program

weaving happens
at X

X - computation
or program

join point

models for 4 mechanisms

PA

TRAV

COMPOSITOR

OC

program
execution

traversal
execution

composed
program

combined program

method calls

arrival at each
object

declarations in X

class declarations

c,m,f
declarations

c, f declarations

c,m,f
declarations

¢ declarations w/o OC
declarations

m signatures,
etc.

c, f signatures

c, m, f signatures

method signatures

execute method
body

provide
reachability

provide
declarations

provide declarations

advice
declarations

traversal spec. &
visitor

(=A)

OC method
declarations

pointcuts

traversal spec.

(= Ap)

effective method
signatures

execute advice
body

call visitor &
continue

(= AerF)

copy method
declarations

none

none

match & merge
rules

none

what's modular crosscutting?

* it Is said:
“AOP supports modular crosscutting”
but what is it?

* the modeling framework can explain:
two modules in A&B crosscut when
projections of the modules

into X intersect and
neither is subset of the other

an example of
modular crosscutting in PA

class aspect

., ydne Point DisplayUpdating .-
f.setP1 qis€etX = - =
-l \Q Y :

1getP1 etX

projection . projection of
of Line ... AN=Z e DisplayUpdating

call to L. tP1""--'I | call 1 p.getX

“Line and DisplayUpdating crosscut in the execution”

19

what's modular crosscutting?

A

>

a module
(eg class)

two modules in A&B crosscut when
projections of the modules
into X intersect and
neither is subset of the other

lines are missing
in proceedings

examples of

.0 Point.draw:
o Line.draw :

COMPOS-
ITOR

related work

« comparison two AOP mechanisms;
e.g., Demeter vs. AspectJ [Lieberherr97]

« formal models for particular AOP mechanism
[Wand*01], [Lammel01], etc.

* Filman-Friedman’s claim on non-invasiveness,
or “quantified assertions over programs
written by oblivious programmers”

— not explicit in our framework;
suggesting invasive AOP mechanisms is possible

summary

« 3 part modeling framework
— elements from A&B meet at JP in X

— based on executable implementations
www.cs.ubc.ca/labs/spl/projects/asb.html

« explanation of modular crosscutting
— in terms of projections of A&B modules into X

e future work:

— discuss more features in AOP on the framework
e.g., non-invasiveness, remodularization, ...

— unified implementation and formalization

— apply to foundational work: semanticswando1 oz,
compilationmuasunara02.03, NEew feature designs...

Display
update(FigureElement)

TRAYV — traversals

 based on Demeter/DemeterdJ/D ' L

int setgPe1tPF?(§?nt
« traversals through object graph | = | | seaeon
— specification: “where to go” & “w
— otherwise scattered among classes

mo t mﬂ 'iint)
* e.g., counting FigureElements in a Figure

w/o aspects

Visitor counter = new CountElementsVisitor();
traverse("from Figure to FigureElement",

fig,

counter);

implementation of TRAV

update(FigureElement)

i SemantiCS: X i SIS FigureElement
from Figure

visit all objects
that can lead to goals to FigureElement | | &

setY(int)
an o . moveBy(int,int)
 nalve implementation:
a traversal engine
— walks over object graph

— locates current object
In the spec.

— visits & continues
walking if reachable
In terms of class graph

implementation of TRAV

weaver = traversal engine

(define trav:weave
(lambda (trav-spec root visitor)
(let arrive ((obj root)
(path (make-path (object-cname root)))) . _
(call-visitor visitor obj) * visit object
(for-each (lambda (fhame)
(let* ((next-obj (get-field fname obj))
(next-cname (object-cname next-obj))
(next-path (extend-path path * match path
next-cname)))
(if (match? next-path trav-spec) VS. Spec
(arrive next-obj next-path))))

(object->fnames obj))))) and cont.

model for TRAV

class

2field trayefsal spec.

& visitor desc.

arrival at object o —

OC — open classes

* based on Aspectd’s infroductions iczateso1;
Flavors, etc. cannonsz;...

 can declare methods/fields
outside of the class declarations

« example: add drawing functionality

class DisplayMethods {
void Point.draw() { Graphics.drawOval(...); }
void Line.draw() { Graphics.drawLine(...); }

}

implementation of OC

» a special case of COMPOSITOR
— a source-to-source translator
— class decls x oc decls — program

(define oc:weave
(lambda (pgm);-> pgm
(let ((pgm (remove-oc-mdecls pgm)) . A
(oc-mdecls (gather-oc-mdecls pgm))) - B
(make-pgm * anew program in X
(map (lambda (cdecl) cdeclis ajp
(let* ((cname (class-decl-cname cdecl))
(sname (class-decl-sname cdecl))
(per-class-oc-mdecls
(lookup-oc-mdecls cname oc-mdecls))) * IDg
(make-class-decl cname sname - EFF, and EFFg
(append (class-decl-decls cdecl)
(copy-oc-mdecls cname per-class-oc-mdecls)))))
(pgm-class-decls pgm))))))

model for OC

B -
OC decls.

JP-class x _ composed programs

QB — query-based browser

e a customizable code
exploration tool [Rajagopolan02]

» takes parameters:
— properties to extract
— order of properties

« can give different views of
a program,;
e.g., group classes by
method names

Variahles >> | |YMN, TN

QB — query-based browser

Variablas > | |P0N, 7N Wariables &> | i' P, A

method(?h par

SN, namel?h, P

-5 update

classes with
defined methods

igurekElement

Line

implementation of QB

ate(FigureElement)
{ .

extract metaobjects
build envs.
test query against

each env

add nodes to tree
guided by the var.
list

implementation of QB

(define gb:unweave
(lambda (pgm query tree-vars);->tree . :
(let* ((metaobjects (elaborate-program pgm)) > MO RIEPILEA
(all-envs (possible-envs (query-vars query) * tuples of jps
metaobjects))
(tree (make-empty-tree))) . B
(for-each (lambda (env)
(if (match? env query)
(let ((vals (map (lambda (var)
(lookup-var var env))
tree-vars)))
(add-to-treel vals tree)))) - EFFg

. IDg

all-envs)
* ret B
free)) return

model for QB

B:

.
L1 . .
u * < “‘
A-) ree

)

.
.
.

1

?MN, ?CN

this Is unweaving

' X: programs
class,method, ... prog process

