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Abstract
Signals are principal abstraction in reactive programming languages and constitute the basics of
reactive computations in modern systems, such as the Internet of Things. Signals sometimes utilize
past values, which leads to space leak, a problem where accumulated past values waste resources
such as the main memory. Persistent signals, an abstraction for time-varying values with their
execution histories, provide a generalized and standardized way of space leak management by leaving
this management to the database system. However, the current design of persistent signals is very
rudimental. For example, they cannot represent complex data structures; they can only be connected
using pre-defined API methods that implicitly synchronize the persistent signal network; and they
cannot be created dynamically.

In this paper, we show that these problems are derived from more fundamental one: no language
mechanism is provided to group related persistent signals. To address this problem, we propose
a new language mechanism signal classes. A signal class packages a network of related persistent
signals that comprises a complex data structure. A signal class defines the scope of synchronization,
making it possible to flexibly create persistent signal networks by methods not limited to the use of
pre-defined API methods. Furthermore, a signal class can be instantiated, and this instance forms a
unit of lifecycle management, which enables the dynamic creation of persistent signals. We formalize
signal classes as a small core language where the computation is deliberately defined to interact with
the underlying database system using relational algebra. Based on this formalization, we prove the
language’s glitch freedom. We also formulate its type soundness by introducing an additional check
of program well-formedness. This mechanism is implemented as a compiler and a runtime library
that is based on a time-series database. The usefulness of the language is demonstrated through the
vehicle tracking simulator and viewer case study. We also conducted a performance evaluation that
confirms the feasibility of this case study.
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1 Introduction

Signals are principal abstraction in reactive programming languages [10, 17, 30, 33]. Each
signal represents a data stream of a periodically updated value. By connecting them, we
can declaratively specify dataflow from inputs to outputs. This mechanism was proposed
as a representative construct in functional-reactive programming (FRP) [10], and has been
available in imperative languages [6, 20, 30, 17, 33]. Signals constitute the basics of reactive
computations in modern systems, such as the Internet of Things (IoT).
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Persistent signals [18] are the abstraction for time-varying values with their execution
histories in large storage such as a database. Unlike (transient) signals, past values of
persistent signals do not disappear even after the application stops. Furthermore, persistent
signals can utilize mostly “unlimited” past values. This means that persistent signals deal
with the space leak problem where accumulated past values in transient signals waste
resources such as the main memory. Instead, in persistent signals, space leak is managed by
the underlying time-series database with large storage. This mechanism is quite useful in
applications where a large amount of persistent past values is necessary, such as inspection
of accidents in a vehicle tracking system and simulations based on time-series data.

Even though the idea of persistent signals was presented with their implementation and
microbenchmarks, the existing persistent signals suffer from the following problems:

Persistent signals do not provide abstractions for representing complex data structures. For
example, when we implement a vehicle tracking system that records x- and y-coordinates
of the running vehicle, we need to use two signals corresponding to those coordinates,
instead of using one single signal representing “a vehicle.” Furthermore, there are no
mechanisms for ensuring the simultaneity of updates of those coordinates.
Persistent signals can be connected only using a predefined set of API methods, which
limits the use cases where persistent signals can be applied.
Persistent signals cannot be created dynamically. This means that we cannot add any new
vehicles during the execution of the vehicle tracking system. We consider this limitation
to be critical.
The structures of persistent signal networks are determined statically, and we cannot
change them dynamically.

In this paper, we show that all these problems arise from a fundamental restriction: no
language mechanism is provided to group and identify the related persistent signals. To
address this restriction, we propose signal classes for the packaging mechanism of persistent
signals. A set of related persistent signals (that form a persistent signal network) is grouped
into one signal class. Thus, for example, we can declare “a vehicle” using a signal class where
two persistent signals representing its coordinates are declared. Giving an identifier, a signal
class can be instantiated dynamically, and this instance defines a scope where all persistent
signals are synchronized. This instance also provides a unit of lifecycle management, which
makes it easy to provide consistent management regarding lifecycle events, such as dynamic
creation and destruction, as well as keeping persistency. Furthermore, by using a persistent
signal whose type is also a signal class (this is only an exception to the rule that a persistent
signal can have only a “primitive” type, i.e., a type that is supported by the underlying
database system), we can dynamically “switch” the persistent signal networks.

We design a programming language that supports signal classes as an extension of
SignalJ [17], and show how all the aforementioned problems are tackled using a simple
example of vehicle tracking system. Meanwhile, we define an abstract lifecycle model of
signal class instances that ensures some properties such as the bindings between persistent
signals and database constructs being kept transparent to hide the underlying database from
the program; e.g., multiple database tables are not created to store information regarding
the same identifier.

The usefulness of the language is demonstrated through the case study of vehicle tracking
simulator and viewer. In this application, a vehicle is represented as a signal class instance
that encapsulates a persistent signal network comprising the dataflow from the vehicle’s
coordinates to its velocity. An interactive viewer is implemented using a time-oriented
operation representing “scrolling back to a specific time,” which is simply realized as a
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declarative query on the vehicle. This application scenario implies that the proposed
mechanism is useful in applications that handle a time-series data in general, in particular
with an interactive user interface that shows both latest and past information. Examples
include weather information, IoT sensor monitoring, and SNS timelines.

We also formalize the core language of signal classes. Because a signal class encapsulates
its internal time-series data, the language needs to implicitly guarantee its internal consistency.
For example, every derived signal at any timestamp must be reproduced from the values of
the source signals at that timestamp. In our formalization, the computation is deliberately
defined to interact with the underlying database system using relational algebra [5], and
based on that, we prove the language’s glitch freedom, i.e., a well-typed program does not
produce any temporal inconsistencies. We also formulate its type soundness by introducing
an additional check of program well-formedness.

We implemented a compiler of signal classes where a signal class is translated into a normal
SignalJ class that accesses the runtime library of persistent signals. This runtime library
is an extension of the existing persistent signal library [18] where we devise a mechanism
that maintains the identities of signal class instances that follow the lifecycle model. This
implementation is performed on a time-series database. A performance evaluation is conducted
based on this implementation, and its result indicates that the vehicle tracking example is
realistic in this implementation.

Contributions of this paper is listed as follows:
Signal classes that tackle all the aforementioned problems of persistent signals, as well as
their instances’ lifecycle model, are developed.
The usefulness of signal classes is demonstrated through the vehicle tracking simulator
and viewer case study.
A core language of signal classes is formalized based on relational algebra (describing
the integration between signals and a time-series database) with the proofs of its glitch
freedom and type soundness.
Signal classes are implemented on the basis of a time-series database, which is proven to
be responsive through a performance evaluation.

Structure of this paper. Section 2 provides some technical premises on which the
proposal of signal classes is based. Section 3 discusses the difficulties in realizing persistent
signals. Section 4 introduces signal classes with the descriptions of the aforementioned
lifecycle model. The mechanism is explained using the vehicle tracking case study. Section 5
provides the formal definition of the core language with the proofs of glitch-freedom and
type soundness. Section 6 illustrates how signal classes are implemented, and shows its
performance evaluation results. Section 7 discusses related work, and Section 8 finally
concludes this paper.

2 Technical Premises

2.1 Signals
Signals are abstractions for time-varying values that can be declaratively connected to
form dataflows. Signals directly represent dataflows from inputs given by the environment
to outputs that respond to the changes in the environment. This feature is useful in
inplementing modern reactive systems, such as IoT applications. For example, assuming
that the power difference of an actuator is calculated by the function f that takes a sensor
value as an input, both the power difference and the sensor value can be represented as
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signals: powerDifference and sensorValue, respectively. We describe these signals using
SignalJ [17], an extension of Java that supports signals.

signal int sensorValue = 2000; //initial value
signal int powerDifference = f(sensorValue);

These declarations specify that the value of powerDifference is recalculated every time the
value of sensorValue is updated.

Although signals were first proposed in several functional languages such as Fran [10],
FrTime [6] and Flapjax [20] introduced their ability to imperatively change signals, and SignalJ
also supports this feature using an assignment expression. For example, we can imperatively
update the value of sensorValue, which is automatically propagated to powerDifference.

sensorValue = readFromSensors(); //powerDifference is also updated.

We note that the dependency between powerDifference and sensorValue is fixed during
the execution, i.e., reassignment of a value to powerDifference is not allowed. In SignalJ,
imperative update is allowed only for signals that do not depend on other signals, such as
sensorValue.

SignalJ supports signals with a class type, and does not perceive each internal state
change as a distinct update of that signal. Instead, a signal update is perceived only when
the identity of the object changes. For example, assuming that the following class C declares
a signal, namely, s, as its field, an assignment to s is not considered as a change in the signal
of type C. We can update that signal by assigning a new instance to that:

signal C c = new C("A"); // Class C declares a set of signals.
c.s = 44; // assignment to the internal signal is not propagated to "c"
c = new C("B"); // reassignment to "c" results in the "switched" network

This enables SignalJ to perform the switching of signal networks by encapsulating a network
of signals as a class instance.

Besides this mechanism to specify the dependency between time-varying values, SignalJ
provides specific features that are intensively used throughout this paper. First, in SignalJ,
a signal is used anywhere a non-signal is expected. Thus, in the above example, the function
f can be a method that does not accept a signal but just an integer value. Thus, we can
connect signals using legacy library methods that do not support signals, and the dependency
between sensorValue and powerDifference is determined statically. Secondly, in SignalJ,
a signal implicitly implements some API methods. One example of such an API method
is subscribe, which registers an event handler that is called when the receiver signal is
updated. In the following section, we will see that query API methods for persistent signals
are also provided in this way.

2.2 Persistent signals
One important building block for modern reactive systems is to store time-series data, which
are the histories of time-varying values comprising the reactive system. We explain this
using the example of a vehicle tracking system [18]. This system records the position of each
vehicle, which is obtained from automotive devices. The position changes while the vehicle is
moving. In other words, the position of the vehicle is a time-varying value. There are also
some other time-varying values that depend on the position, such as the estimated velocity
and the total traveled distance of that vehicle. These dependencies on time-varying values
motivate us to develop the system using signals. This vehicle tracking system also allows for
post analysis (e.g., inspecting the cause of a car accident) and simulation. This means that
the change history of each time-varying value stored in the time-series database is necessary.
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Table 1 Persistent signal API (selective). In this table, we use T as a type parameter. For
example, signal[T] is a type T whose modifier includes signal. (Adapted from [18]).

Type Signature Description

Basic

within( Time-series data within the extent specified by a time-
java.sql.Timestamp ts, stamp ts and interval representing its interval
String interval)

bucket(String interval)
Time-series data using the sampling rate specified by
interval

Analytic avg(), max(), min(), etc. Average, maximum, and minimum value of the
receiver signal, resp.
Difference between the current value of the receiver

Domain lastDiff(int i) signal and the ith value since the last value of that
specific signal

distance(signal[T] s) Distance between the receiver signal and s

Persistent signals [18] are abstractions for time-varying values with their execution
histories. A persistent signal is declared as a variant of signals that encapsulates details of
its execution history, which is stored in the underlying database. Queries on this execution
history are supported by API methods equipped with persistent signals in advance. Each
call of the API method is internally translated to the corresponding database query. Because
the management of the history is left to the database system, persistent signals solve the
space leak problem, where accumulated histories waste resources such as the main memory.
Furthermore, persistent signals make their histories available even after the application stops.

In SignalJ, a signal is declared as a persistent signal using the modifier persistent. In
the following example, car1234_x and car1234_y are declared as persistent signals whose
time-varying values are of type int.

persistent signal int car1234_x, car1234_y;
signal int c12x = car1234_x.within(Timeseries.now, "12 hours");
signal int c12y = car1234_y.within(Timeseries.now, "12 hours");

In this example, these persistent signals represent the position of a specific vehicle; car1234_x
represents the x-coordinate and car1234_y represents the y-coordinate.

Persistent signals are equipped with several query API methods, which are summarized
in Table 1. For example, the within method shown above returns another persistent signal
that contains all the receiver’s values that have been recorded within the specified period
(the past 12 hours in the above example). In other words, the return value of within (c12x
or c12y in the above example) is a view of the receiver of within. We call such a persistent
signal a view signal.

View signals are also used to avoid glitches among signals related with the transitive
dependency (instead, temporal consistency between signals like car1234_x and car1234_y
must manually be handled by the programmer). SignalJ supports pull-based signals, which
means that a signal is re-evaluated whenever it is accessed (and it is guaranteed to be
glitch-free). This strategy is also applied to the construction of view signals. Each view signal
refers to a view that is created by a SELECT SQL query corresponding to an API method in
Table 1. This query is executed on-demand when the view signal is accessed.

One particular feature of the current implementation of persistent signals is its timing of
table and view generation; they are generated at compile time. In other words, lifecycle of
persistent and view signals is not considered in the prior work.

ECOOP 2021
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2.3 Time-series databases
Time-series databases are used to implement persistent signals. They are usually specialized
to store time-series data, and they provide a compact representation and convenient time-
oriented API for time-series data. Because time-series data are very common in modern
applications, there have been intensive research efforts in this area [16, 8, 26, 1, 19]. There
are also many industrial and/or open source implementations of time-series databases, such
as TimescaleDB1, OpenTSDB2, and InfluxDB3.

The aforementioned implementation of persistent signals uses TimescaleDB, which is an
extension of PostgreSQL, as a backend. Persistent signals have several specific properties:
each record has a timestamp; once inserted, entries are not normally updated; and recent
entries are more likely to be queried. To effectively interact with such time-series data,
TimescaleDB provides an abstraction of a single continuous table across all space and time
intervals; this is called a hypertable. All interactions with TimescaleDB (such as SQL queries)
are implicitly with hypertables. The preliminary experiments on persistent signals indicate
that the existing implementation is sufficiently responsive in most cases.

3 Challenges

The current design of persistent signals suffers from several problems. First, persistent signals
do not provide abstractions for representing complex data structures. This problem is indeed
illustrated by the aforementioned vehicle tracking example, where the position of the vehicle
is represented by two distinct persistent signals, namely, car1234_x and car1234_y. This
is because the persistent signals are only supported with primitive types. Thus, we cannot
represent “a vehicle” as one single persistent signal, and the correspondence between x- and
y-coordinates and even their synchronization must be manually written by the programmers.
This imposes programming with row-level abstractions on the programmers, which is error
prone.

Secondly, a view signal must be defined using an API method prepared in advance, where
its SQL correspondence is defined. This is because it is difficult to derive a SQL query that
creates a view from an arbitrary Java expression. However, this restriction limits the use
cases where the persistent signals can be applied. For example, in the vehicle tracking system,
we may want to calculate the distance to the destination as follows (assuming that Position
is a legacy class that is not a part of the persistent signal library):

Position target = new Position(..);
signal double dist = target.getDistance(car1234_x,car1234_y);

The variable dist represents a time-varying value, as its depends on signals car1234_x and
car1234_y (as mentioned above, even though getDistance does not expect signals as its
arguments, SignalJ can construct a signal network that connects dist with car1234_x and
car1234_y). It is also useful if we can use the update history of dist derived from database
tables for car1234_x and car1234_y. This is unfortunately difficult because deriving the
view is not defined in getDistance.

A more serious problem is that persistent signals cannot be created dynamically. This
is because the database schema corresponding to persistent signals is determined by the
compiler. This approach makes it easy to implement the bindings between persistent signals

1 https://www.timescale.com
2 http://opentsdb.net
3 https://www.influxdata.com

https://www.timescale.com
http://opentsdb.net
https://www.influxdata.com
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and database constructs because database constructs already exist before the application is
running, and their identities do not change during the execution. However, this is a relatively
strict limitation. In the vehicle tracking example, this means that every vehicle to be tracked
must be statically identified, and we cannot add any vehicles after the application is running.
We consider this limitation unacceptable for real applications.

Furthermore, structures of persistent signal networks cannot be changed dynamically.
This is because we cannot use a network of persistent signals as a first class citizen. In
SignalJ, a signal is always evaluated to the current value (instead of obtaining “the signal
itself”) when it is accessed. With this semantics, SignalJ supports the switching of signal
networks by encapsulating a network of signals as a class instance. However, persistent
signals cannot perform this switching because they cannot have a class type.

To understand these problems, we elaborate on the details of them. First, to represent
a persistent signal of “a vehicle,” we might consider a complex-type persistent signal. For
example, Kamina and Aotani noted that existing object-relation mapping might be applied
to implement persistent signals with complex types [18], which seems to be straightforward.
We define an object (e.g., a vehicle) as a persistent signal, where its internal state changes are
considered its execution history maintained by the database table. This might be achieved
by defining the mapping from the “Vehicle” class to the relation.

Unfortunately, this approach is not as easy as expected. One problem is that there might
be deep nesting of internal states where one property of the internal state is another object
with a complex type. Furthermore, this contradicts the SignalJ semantics where a signal
update is perceived only when the identity of the object changes.

Second, the reason why we want dist to be implemented using a view is that we want
to update its history simultaneously with updates of car1234_x and car1234_y. We might
consider another approach where every update of dist is stored in a separated database
table, i.e., dist is not a view signal but another persistent signal whose update history is
recorded every time car1234_x and car1234_y are updated. This means that the value of
dist is no longer calculated by the database query statement creating the view. Instead, the
update of dist is pushed, which is synchronized with pushes of car1234_x and car1234_y.
Thus, we must keep track of which persistent signals are synchronized. For example, there
may be a number of vehicles whose updates are independent from others, and we must share
the timestamp at the update only among the related persistent signals. The prior work [18]
proposes the syntax for parallel assignment of persistent signals to specify the group of
synchronous updates; however, intensive use of such a specific syntax makes the program
very clumsy.

Finally, the dynamic creation of persistent signals requires the lifecycle of persistent
signals to be managed at runtime while supporting persistency. The identity of a dynamically
created persistent signal, which is statically unknown, should be retained even after the
application crashes. This is because persistent signals are used to ensure tracing of past
executions. After the application restarts, this identity should be taken over by the new
execution because, for example, it is desirable that the vehicles in the system can be traced
again using the records, including those updated before the application stopped. It is also
possible that the life of persistent signal ends when the execution history of the corresponding
vehicle is no longer necessary.

To enable such lifecycle management, we must keep the consistency between the related
persistent signals. For example, in the vehicle tracking system we cannot simply drop
car1234_x as it is conceptually coupled with another persistent signal car1234_y. As the
dependencies between persistent signals are implicit in the original work, we must analyze

ECOOP 2021
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signal class Vehicle {
String onwer, company, name;
Position target;

persistent signal double x, y;
signal double x12h = x.within(Timeseries.now, "12 hours");
signal double y12h = y.within(Timeseries.now, "12 hours");
signal double dx = x12h.lastDiff(1);
signal double dy = y12h.lastDiff(1);
signal double v = dx.distance(dy);
signal double dist = target.getDistance(x,y);

public Vehicle(String id, String owner, String company,
String name, Position target) {

this.owner = owner; this.company = company;
this.name = name; this.target = target;

}
...

}

Figure 1 Declaration of vehicle using a signal class.

which persistent signal is related to another one, which might be very difficult without
assuming hints from the programmers. This leads to the resignation of dynamic persistent
signal management.

This observation leads to our hypothesis that all these problems are just instances of
more fundamental one: no syntactical support is provided to group and identify the related
persistent signals. The lack of grouping mechanism leads to the separate declarations of
primitive persistent signals. Such separate declarations are the cause of implicitly constructed
persistent signal networks. This implicit construction makes it difficult to identify the set of
persistent signals that follow the same lifecycle and can be a unit of switching of persistent
signal networks. In the following section, we show that providing this grouping mechanism
actually solves all these problems.

4 Signal Classes

To provide a grouping mechanism for persistent signals, we develop a language construct
“signal classes” that packages a network of persistent signals into one single class. A signal
class itself represents a complex data structure using a set of (primitive) persistent signals.
Furthermore, a persistent signal can also have a signal class type, which realizes the dynamic
switching of persistent signal networks. By providing an identifier, a signal class can be
instantiated dynamically, and the persistent signals enclosed in the signal class are also
created when the instance of the signal class is created4. Each signal class instance also
forms a unit of synchronization and lifecycle management.

4 More precisely, when the persistent signals are created is determined by the lifecycle model explained in
Section 4.2.
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An example of a signal class is shown in Figure 1, which declares the “Vehicle” class in
the vehicle tracking system. A signal class is declared using the modifier signal in the class
declaration. A persistent signal is declared using the modifier persistent, as in the prior
work, but now it is declared within a signal class. In Figure 1, two persistent signals, x and y,
are declared to record the position of the vehicle. We note that in this example, we assume
that the position of a vehicle, which is monitored by automotive sensors, is periodically
sent to a data center that records the vehicle’s movement history. Each Vehicle instance
is an agent reflecting the status of the “real” vehicle identified by the id parameter of the
constructor. This instance is created at the data center when a new vehicle is registered to
the system.

There are also six signals that depend on x and y, namely, x12h, y12h, dx, dy, v, and dist.
While we can imperatively update the values of persistent signals x and y, any imperative
re-assignment for signals depending on x and y are not allowed, and the values of them are
calculated on-demand. Unlike the prior work, the construction of the right-hand side of those
signals is not limited to the set of pre-defined API methods. For example, in the right-hand
side of the signal dist, the receiver target of the method getDistance is not a signal on
which the pre-defined API methods can be called. We assume that the right-hand side of
each signal declaration is side-effect-free. For example, we can use the existing checker that
checks a method with annotation @SideEffectFree does not produce any side-effects5:

class Position { ...
@SideEffectFree
public double getDistance(double x, double y) { ... }
... }

This check is also necessary to ensure the glitch-freedom (Section 5).
We can still use view signals in this setting. A view signal is a signal whose definition

(i.e., the right-hand side of its declaration) is of the form p.m(e), where p is a persistent or
view signal, m is the name of an API method defined in advance, and each ei is an argument
for m. In Figure 1, x12h, y12h, dx, dy, and v are view signals. We note that the value of
view signal is also calculated on demand. One advantage of using view signals is it reduces
the update overhead of persistent signals. Furthermore, view signals are useful to “filter”
the persistent signals that contain all the execution histories managed by the underlying
database system. For example, in Figure 1 we use the within query to filter out the old data
to avoid performance degradation [18]. Two other API methods, lastDiff and distance
taken from Table 1, are also used.

In summary, the behavior of the Vehicle instance is interpreted as follows. Once the
instance, namely, aCar, of Vehicle is created, we can call the set method, which is an
interface method that all signal classes implicitly implement, to update persistent signals x
and y:

aCar.set(33.239148, 131.611722); // setting an initial position.

This set method first sets the value of x and y with the provided arguments and then
implicitly calculates the value of dest using the current values of x and y. The value of each
view signal is automatically determined by the database query statement that creates the
corresponding view. For example, dx and dy calculate the delta between the current value
and the last value for each x- and y-coordinate, respectively. The view signal v calculates
the estimated velocity of the moving vehicle.

5 http://checkerframework.org
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4.1 Time-oriented queries on signal class instances
Our vehicle tracking system consists of two subsystems: the vehicle controller (simulating
the vehicle’s behavior by periodically calling set) and the vehicle viewer. Those subsystems
run as two distinct processes, and each process has its own signal class instance of the same
vehicle. We assume that only the controller continuously updates the vehicles and the viewer
accesses each vehicle’s time-series data.

To implement the viewer, we can perform time-oriented queries on signal class instances.
For example, we can obtain a snapshot of the aCar instance at the time when it causes an
accident. The following snapshot method provides a temporal view of aCar at the time
specified by the timestamp provided as an argument:

aCar.snapshot("2018-06-01T18:10:00").v

This query set the internal cursor of the receiver instance to the specified timestamp, which
makes the value of every persistent signal on aCar be calculated using values of the specified
timestamp. This query is called every time the GUI slider is set to point a specific timestamp.
Moreover, an argument for snapshot can be a variable such as a signal. For example, assuming
that a variable slider is a signal of “currently selected timestamp using the slider,” a vehicle
at the time selected by the slider can simply be represented as aCar.snapshot(slider).

We note that the vehicle can still continue to update its persistent signals using set,
which can be accessed by resetting the cursor to current time using the timestamp “NOW()”:

aCar.snapshot("NOW()");

4.2 Lifecycle of a signal class instance
We develop the lifecycle model of signal class instances. In the original work, the underlying
database tables for persistent signals are generated by the compiler [18]; this forces persistent
signals to be defined statically and makes it very difficult to add new persistent signals
at runtime. In the proposed lifecycle model, a signal class instance can be instantiated
dynamically, and thus the underlying database tables are generated at runtime. A signal
class encapsulates related persistent signals into one module, and this module provides a
unit of lifecycle management.

Once created, the history of a signal class instance can exist on the disk even after the
application stops. Its identity is preserved on the disk, and when the application restarts,
this instance becomes available again from the program. For example, consider the following
declaration of a Vehicle instance:

Vehicle aCar = new Vehicle("501a1234", "Haskell", "Toyota", "Sienta");

If there are no database constructs on the disk that correspond to aCar, the Vehicle instance
is created with fresh database constructs. If there already exist such constructs, aCar is
simply bound to them. In this mechanism, we must keep track of this binding on the disk,
and this is done using the id parameter, which is mandatory for every constructor in a signal
class. This is used as a key to identify the signal class instance.

Figure 2 formalizes this lifecycle model using a state machine diagram. This diagram
models one instance that has a full-control to its history (e.g., updating the history like the
vehicle controller). There may exist other instances that only perform queries on the history
(like the vehicle viewer), but the diagram simply omits such details. Each event that changes
its state is triggered by environmental changes or internal program operations. Some of them
can be explicitly triggered by calling the interface methods that every signal class implicitly



T. Kamina, T. Aotani, and H. Masuhara 17:11

Figure 2 State machine diagram of signal class instance.

public interface SignalClassInstance {
public void set(Object ... newValues);
public void reset();
public void destroy();

}

Figure 3 Interface for representing signal class lifecycle events.

implements. This interface is shown in Figure 3. We note that this listing imprecisely
describes the formal parameters of set to indicate that the number of its formal parameters
and their types are not defined in advance; the interface of set is implicitly derived from the
persistent signals declared in that signal class. For example, set for Vehicle is declared as
follows by listing the formal parameters that correspond to the persistent signals x and y:

public void set(double x, double y);

This interface changes by definition of the signal class. The compiler translates the invocation
of set to make it compatible with the runtime library, which provides the generalized
interface.

The states in the lifecycle model are defined as follows:
Initial: The signal class instance has never been created, and there are no persistent or

view signals that are bound with this signal class instance.
Active: We can access this signal class instance if it is in this state. A signal class

instance will be active just after it is created using the new expression. This state consists of
the substates Empty and Non-empty.

Empty: This is the state of a signal class instance where the histories (i.e., the data in
the database) of persistent and view signals contained in it are empty. As indicated by the
incoming edge from the history state “H”, Empty is the initial substate of the Active state,
which means that every signal class instance starts with empty histories. The reset event
also makes the signal class instance empty. Some operations for signals (for example, taking
a last value) cannot be performed when the signal class instance is empty.

Non-empty: Persistent and view signals contained in the signal class instance have
recorded some of their execution histories. Any operations for signals can be performed when
the signal class instance is non-empty.

Inactive: We cannot access this signal class instance if it is in this state. A signal
class instance will be inactive if there becomes no pointers that access this instance or
the application stops for some reason (e.g., maintenance or crash). A signal class instance
preserves its identity on the disk even after it is removed from the main memory.

ECOOP 2021



17:12 Signal Classes: Mechanism for Building Synchronous and Persistent Signal Networks

Final: The signal class instance is destroyed, and persistent and view signals in this
instance no longer exist.

The events in the lifecycle model are defined as follows:
new: This event is triggered by the new expression, which creates a signal class instance.

It generates different side-effects on the signal class instance according to its previous state.
If this event occurs with the initial state, it creates new persistent and view signals in the
signal class instance with their empty contents. If this event occurs with the inactive state,
the signal class instance becomes active and resumes its internal substate, as indicated by
the history state “H”.

set: This event can be generated only when the signal class instance is active. It is
triggered when the persistent signals contained in the signal class instance are updated. If
there are multiple persistent signals (as in the case of Vehicle), their updates are synchronized.
The signal class implicitly provides the set method for this synchronized update, which
makes the state of the signal class instance non-empty.

reset: This event can also be generated only when the signal class instance is active. It
is triggered by the reset method declared in Figure 3, which cleans the existing histories of
the persistent and view signals. This event makes the state of the signal class instance empty.

down: This event is triggered by external or internal environmental changes; it is
triggered if the signal class instance can no longer be accessed or the application stops for
some reason. After this event, the signal class instance disappears. This instance can however
be reactivated, like the “ship of Theseus,” using the blueprint of it stored in the database,
i.e., when the application restarts, the new event can be triggered to restore this instance.

destroy: The signal class instance completes its life when the histories of its persistent
and view signals are no longer necessary, and this is performed by generating the destroy
event. This event can be fired by calling the destroy method shown in Figure 3. It can also
be generated by some external environmental changes (e.g., dropping the tables and views
from the console of the database management system). After firing this event, no events can
be fired on this signal class instance. We note that we can still generate the new event using
the same identifier (passed to the id parameter) again, which starts another independent
lifecycle of this id.

Importantly, every lifecycle management is performed on the basis of this model. We
cannot solely generate, update, or drop the content of each persistent signal. Instead, all
related signals are simultaneously generated, updated, and dropped. This makes it easy to
ensure data consistency between them.

One important property of the signal class instance is that there should not be multiple
signal class instances with the same id. This property is ensured according to the lifecycle
model. This is because this model does not accept any event sequences where multiple new
events are triggered until the next down or destroy events are issued. The new event must
be the first event of the sequence, and it can follow only the down event. Thus, the signal
class instance can be activated only when there are no other signal class instances with the
same id.

4.3 Synchronized update

The vehicle controller continuously updates the histories of the running vehicles. Each signal
class instance forms a unit of synchronization. Each signal class provides the set method
for synchronized update of persistent signals. This improves the synchronized update in
the original work [18], where the programmers must ensure that persistent signals that are



T. Kamina, T. Aotani, and H. Masuhara 17:13

defined independently are updated at the same time. For example, we can define the following
run method in the Vehicle class that periodically updates the position of the vehicle:

public void run() {
double[] current = new double[2];
while (true) {

current = getGeographicCoordinatesFromSensors();
set(current[0], current[1]);

} }

This set method first computes the value of dist using current[0] and current[1],
and then inserts the triple of current timestamp, current[0], and current[1]. Thus, all
persistent and view signals are updated at once, and the programmers do not have to worry
about any glitches inside the instance.

4.4 Switching network of persistent signals
In SignalJ, we can construct a signal of an object that encapsulates other signals [17]. This
feature can be extended to the persistent signals: we can construct a persistent signal of a
signal class instance that encapsulates other persistent signals. This allows us to construct
a network of persistent signals that changes dynamically, like the “switch” in the FRP
languages.

For example, we can construct a signal class that monitors a particular instance of
Vehicle.

signal class Monitor {
persistent signal Vehicle v;
public Monitor(String id) { .. } }

According to the lifecycle model, we can initialize the persistent signal v by issuing the set
event on the instance m of Monitor6

Monitor m = new Monitor("aMonitor");
m.set(aCar);

The subsequent set events on m change the instance of Vehicle that m monitors, and this
change is recorded in the history that is bound with m. For example, we may want to monitor
some suspicious vehicles more intensively, and the history of m is available for inspecting
which vehicles were considered suspicious in the past.

We note that SignalJ’s object-type signals are considered updated only when the identity
of the object changes, and this property is also available in the persistent signals. This means
that the persistent signal v in Monitor does not have to record the instance of Vehicle but
only its identifier, which is provided by the programmer using the id parameter of the signal
class constructor.

4.5 Threat to Validity
While the vehicle tracking example well describes the problems of prior work [18] and how
signal classes address them, we have not performed any other empirical studies in this work.
We consider that discussions in this paper also apply to other applications that handle

6 We further discuss the initialization issue in Section 6.2.
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CL ::= signal class C { PS FS M }
PS ::= persistent signal C p;
FS ::= signal C p=e;
M ::= C m(C x) { return e; }
e ::= x | e.p | e.set(e) | e.snapshot(t) | e.m(e) | new C(l) | l | t
v ::= l | t

Figure 4 Abstract syntax of signal classes.

timelines of time-varying values that can be identified by some ids, such as SNS applications
and IoT device monitoring. Further analysis on such application scenarios remain as future
work.

5 Formalization

To study important properties of signal classes such as glitch-freedom, we formally define
the formal semantics of signal classes based on the simplified syntax of SignalJ shown in
Figure 4. The syntax is based on Featherweight Java [15]. Let the metavariables C and D
range over class names; o and p range over persistent signals; e range over expressions; x
range over variables, which include a special variable this; l range over identifiers; t range
over timestamps; v range over values; and m range over method names. Overlines denote
sequences, e.g., e represents a possibly empty sequence ei, · · · , en, where n denotes the length
of the sequence. We write the length of sequence e as #(e). We use C p as shorthand for
“C1 p1 · · · Cn pn” and C s=e as shorthand for “C1 s1=e1 · · · Cn sn=en.”

An expression can be either a variable, an access to a persistent signal, an invocation
of special methods set and snapshot that correspond to the set event and a time-oriented
query, respectively, a method invocation other than set and snapshot, an instance creation,
or a value that can be either an identifier l or a timestamp t. The instance creation receives
only one identifier as its argument. We assume the set Id of identifiers and l ∈ Id. We also
assume a total order set Time of timestamps where ⊥∈ Time and ∀t ∈ Time. ⊥≤ t, i.e., ⊥
is a bottom element.

In our proposal, there are two kinds of persistent signals: a persistent signal whose value
is imperatively set by calling the set method, and that whose value is updated on-demand
when it is accessed. Figure 4 syntactically distinguishes those two: a persistent signal
declaration PS representing the former, and a persistent signal declaration FS representing
the latter; its value is updated on-demand by evaluating the expression e that appears in the
right-hand side. We note that the latter includes view signals that are calculated using API
methods such as database aggregates shown in Section 2.2, as rows in a view are calculated
on-demand.

We also apply another simplification to the calculus: the syntax does not provide
subclassing, meaning that there are no subtyping rules in the calculus. This is a drastic
simplification, but subclassing actually does not interact with the behavior of signal classes,
as the execution history is stored for each instance and thus signal lookup is performed in
per-instance basis, meaning that the class hierarchy is actually not used during the signal
lookup.

A program (CT, e) consists of a class table CT that maps a class name C to a class
declaration CL and an expression e that corresponds to the body of the main method. We
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signal class C { persistent signal C p; ... }

sources(C) = C p

signal class C { persistent signal C p; ... }

signalType(C, pi) = Ci

signal class C { ... signal C p=e; ... }

signalType(C, pi) = Ci

signal class C { ... signal C p=e; ... }

signalExpr(C, pi) = ei

signal class C { ... C0 m(C x) { return e0; } }

mbody(m, C) = x.e

signal class C { ... C0 m(C x) { return e0; } }

mtype(m, C) = C → C0

Figure 5 Auxiliary definitions.

assume that CT(C) = signal class C ... for any C ∈ dom(CT). We also assume that all
signals and methods in the same class, and all parameters in the same method are distinct.

In the following discussion, we use the auxiliary definitions shown in Figure 5. The
function sources(C) returns a sequence of all pairs of a signal declared with persistent and
its type in class C. The function signalType(p, C) returns the type of signal p (regardless to
say that it is declared with persistent) in class C. The functions mbody(p, C) returns a pair
x.e of parameters and a method body of method m in class C. Similarly, mtype(p, C) returns
a pair C → C of parameter types and a return type of method m in class C.

5.1 Small-step semantics
We show the reduction rules of expressions in Figure 6. Those are given by the relation of
the form µ | e −→ µ′ | e′, which is read as “an expression e under an environment µ reduces
to e′ under µ′.” The environment µ is a set of mapping l 7→ RC(l), where l is the identifier
of the signal class instance, and RC(l) is an execution history of l that is a relation defined
as follows:

sources(C) = C p

RC(l) = (time, p)

This relation is handled using the operations provided by the relational algebra [5]: πcol(R)
represents a projection of a relation R by col (i.e., selecting the column col from R), and
σc(R) represents filtering R using the condition c. We often use a singleton set {l} and its
value l interchangeably. We use the predicate latest, which is true only if the time field of
the tuple has the largest value among the relation.
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µ(l0) = RC(l0) πp(σlatest(RC(l0))) = l

µ | l0.p −→ µ | l
(R-Psignal)

µ(l0) = RC(l0) signalExpr(C, p) = e

µ | l0.p −→ µ | e
(R-Vsignal)

µ | new C(l) −→ µ ⊕ (l 7→ ∅) | l (R-New)

R′
C(l) = {(t, l)} ∪ RC(l) t > σlatest(πtime(RC(l)))

µ(l) = RC(l) µ′ = µ ⊕ (l 7→ R′
C(l)) l ∈ dom(µ)

µ | l.set(l) −→ µ′ | l
(R-Set)

µ(l0) = RC(l0) R′
C(l0) = RC(l0) \ σt<time(RC(l0))

µ′ = µ ⊕ (l0 7→ R′
C(l0)) R′

C(l0) ̸= ∅
µ | l0.snapshot(t) −→ µ′ | l0

(R-Time)

µ(l) = RC(l) mbody(m, C) = x.e m ̸= set m ̸= q

µ | l.m(l) −→ µ | e[x/l, this/l]
(R-Invk)

Figure 6 Small-step computation rules for expressions.

The rules R-Psignal and R-Vsignal define how an access to a signal behaves. These
rules are straightforward. An access to the persistent signal p results in the value in the p
column of the latest tuple in RC(l). An access to a non-source signal results in the right-hand
side of its declaration.

The rule R-New defines the reduction of the signal class instance creation; it adds the
mapping from l, which is the identifier of the created instance, to its execution history to µ

and returns l. We use ⊕ as a destructive update of the mapping, i.e., (x ⊕ y)(k) = y(k) if k

is in the domain of y or x(k) otherwise.
There are three rules for method invocation. In the rule R-Set for the call of set,

which represents the synchronized update, we first choose a timestamp t that is greater
than the “largest” value in Time and put the tuple (t, l) into the relation. We assume
that σlatest(πtime(R)) returns ⊥ if R = ∅. A call of set returns the identifier of its receiver,
which allows us to describe subsequent computations on the receiver. The rule R-Time
destructively changes the relation µ(l0) so as to be filtered by the given timestamp t (as
the calculus does not model the database cursor). We note that this is a simplification
of the original language’s behavior; i.e., unlike the original language, we cannot recover
the time-series values that are lost by the snapshot operation. R-Time requires that the
resulting relation must not be empty. The rule R-Invk for method invocation (other than
set and snapshot) is straightforward.

We also define the congruence rule that enables a reduction of subexpressions. For this
purpose, we first introduce the evaluation context E, which is defined as follows:

E ::= [] | E.p | E.set(e) | l.set(l,E,e) | E.snapshot(t) | E.m(e) |
l.m(l,E,e)
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signal class C1 {
persistent signal D p;
C2 m() { return new C2(l2).set(this); }

}
signal class C2 {

persistent signal C1 p;
signal C1 q = this.p.set(new D(l3).set(...));
signal E n = this.o(this.p.p,this.q.p);
E o(D x, D y) { ... }

}

Figure 7 A glitch-introducing program.

Each evaluation context is an expression with a hole (written []) somewhere inside it. We
write E[e] for an expression obtained by replacing the hole in E with e.

Using E, the congruence rule is defined as follows:

µ | e −→ µ′ | e′

µ | E[e] −→ µ′ | E[e′]
(R-Cngl)

The evaluation context syntactically defines the evaluation order of subexpressions in a
method invocation, e.g., the arguments are not reduced until the receiver becomes an
identifier.

5.2 Static semantics
One significant research question is how the internal state of each signal class instance is
kept consistent. This question is also known as an assurance of glitch-freedom. Myter et al.
stated that the key intuition behind glitches is that they can only occur for certain topologies
of signal networks [23], where two or more propagations from the same source signal (A) join
at the other signal (B). A glitch is a situation where the value of B is calculated using A’s
values with different timestamps.

If no static checking is performed, a glitch can occur even in our simple calculus. Consider
the signal classes C1 and C2 declared in Figure 7, and the main expression new C1(l1).m().n.
The signal n calls the method o that consumes signals C2.p and C2.q. Those signals depend
on the same signal p that is a member of new C1(l1). Furthermore, the signal C2.q calls
the set method when its value is accessed. This set updates the signal C1.p with a new
timestamp; thus the signal n handles values of the same signal with different timestamps.
This is a glitch7.

Another important role of static analysis is to ensure the calculus type soundness, i.e., to
avoid a situation where a program get stuck by, e.g., accessing an undefined attribute in R.
To ensure the calculus glitch-freedom and type soundness, we develop a type system of the
proposed calculus.

7 In general, a signal network can contain nodes with different timestamps. Such a network is often
useful, as illustrated by the signal network constructed using lastDiff (Figure 1, the calculus omits
this feature). A glitch is the situation where “the same node” is observed with different timestamps.
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Γ = x : C

Γ | ∅ ⊢ xi : Ci

(T-Var)

Σ = l : C

∅ | Σ ⊢ li : Ci

(T-Id)
t ∈ Time

∅ | ∅ ⊢ t : T
(T-Ts)

Γ | Σ ⊢ e0 : C0 signalType(C0, p) = C

Γ | Σ ⊢ e0.p : C
(T-Signal)

Γ | Σ ⊢ e0 : C0 sources(C0) = C p Γ | Σ ⊢ e : C

Γ | Σ ⊢ e0.set(e) : C0
(T-Set)

Γ | Σ ⊢ e0 : C0 Γ | Σ ⊢ t : T

Γ | Σ ⊢ e0.snapshot(t) : C0
(T-Time)

Γ | Σ ⊢ e0 : C0 mtype(m, C0) = C → C Γ | Σ ⊢ e : C

Γ | Σ ⊢ e0.m(e) : C
(T-Invk)

Γ | Σ, l : C ⊢ new C(l) : C (T-New)

Figure 8 Expression typing.

x : C, this : C | ∅ ⊢ e0 : C0

C0 m(C x) { return e0; } ok in C
(T-Method)

this : C | ∅ ⊢ e : D sideeffectfree(e) M ok in C

signal class C { persistent signal C p; signal D o=e; M } ok
(T-Class)

Figure 9 Method and class typing.

Typing rules for expressions are shown in Figure 8. A type environment Γ is a finite
mapping from variables to class names. An identifier environment Σ is a finite mapping from
identifiers to class names. A type judgment for expressions is of the form Γ | Σ ⊢ e : C, read
as “expression e is given type C under the type environment Γ and identifier environment
Σ.” To formally describe type judgment, we also introduce a special type T for timestamps.
As we do not consider any subclasses, there are no subtyping rules in the type system. All
typing rules in Figure 8 are straightforward. We note that T-Set checks that the number of
arguments for set is same as the number of source signals of the receiver, and the type of
each argument matches the type of the corresponding persistent signal.

Typing rules for method and class declarations are shown in Figure 9. A type judgment
for methods in a class is of the form M ok in C, read as “method M is well-formed in class C.”
The typing rule T-Method only checks that the method body is given the declared type
C0 under the type environment constructed by formal parameters and the special variable
this. A signal class C is well-formed if the right-hand side expressions e of all the non-source
signals are given the declared type under the type environment this : C, and all methods
are well-formed. Furthermore, it checks that each ei in e is side-effect-free. As explained
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µ(l) = RC(l) p ∈ RC(l)

sources(µ, l.p) = { l.p }

µ(l) = RC(l) FP(C, p) = e ∀ei.pi ∈ e.µ | ei.pi −→∗ µi | li.pi

sources(µ, l.p) =
⋃

i sources(µi, li.pi)

Figure 10 Source signal lookup.

µ(l0) = RC(l0) p0 ∈ RC(l0)

timel0.p0
(µ, l0.p0) = πtime(RC(l0))

µ(l) = RC(l) p ∈ RC(l) l0 ̸= l ∨ p0 ̸= p

timel0.p0
(µ, l.p) = ∅

µ(l) = RC(l) FP(C, p) = e ∀ei.pi ∈ e.µ | ei.pi −→∗ µi | li.pi

timel0.p0
(µ, l.p) =

⋃
i timel0.p0

(µi, li.pi)

Figure 11 Source signal’s time-series.

earlier, our language does not provide this check but relies on an external checker. Thus, we
just define the predicate sideeffectfree(e0) as follows:

∀e ∈ subexpressions of e0.(µ | e −→n µ | l for some l ∧ ∀i ≤ n.µ | e −→i µ | e′ for some e′)
sideeffectfree(e0)

This means that each ei does not change the runtime environment during its reduction.

5.3 Properties
To formally state the glitch-freedom in our calculus, we further introduce two other auxiliary
definitions that perform signal network traverse. Figure 10 defines the source signal lookup
sources(µ, l.p) that returns a set consisting of all the source signals on which l.p depend.
If l.p is a source, which means that the value of p is stored in the relation R of the
receiver, sources(µ, l.p) just returns the singleton of l.p. Otherwise, it recursively searches
all the source signals by obtaining all signals contained in the right-hand side expression e
of l.p. Similarly, we define the auxiliary definition timel0.p0

(µ, l.p) that returns the set
of timestamps of the source signal l0.p0 that is observed from signal l.p. Intuitively, the
calculus is glitch-free if two or more subexpressions of the right-hand side of l.p depends on
the same source signal l0.p0, then the same set of timestamps of l0.p0 is observed from any
of those subexpressions. We formally describe this property as the following theorem.

▶ Theorem 5.1 (glitch-freedom). Let signal class C { ... } ok, µ(l0) = RC(l0) for
some µ, and p0 is a non-source signal declared in C whose right-hand side is specified as e0.
For all subexpressions e.p and e′.p′ in e0, we have ∀s ∈ sources(µ, e.p) ∩ sources(µ, e′.p′).
times(µ, e.p) = times(µ, e′.p′).
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Proof. By signal class C { ... } ok, we have sideeffectfree(e0). This means that we
always access the same µ during the traversals of subexpressions e.p and e′.p′ (i.e., µ does
not change in the premises of definitions of sources(µ, l.p) and timel0.p0

(µ, l.p)). Thus, it is
obvious that times(µ, e.p) = times(µ, e′.p′) for all s in sources(µ, e.p)∩sources(µ, e′.p′). ◀

Another remaining issue is the type soundness. Even though our type system is very
simple (e.g., there is no subtyping), formulation of the type soundness is not easy as expected,
because our calculus interacts with the database system. We first define the judgment
Σ ⊢ RC0(l0), read “relation RC0(l0) is well-formed under the environment Σ,” which indicates
that RC0(l0) is not empty and all values in RC0(l0) is well-typed, as follows:

∅ | Σ ⊢ l0 : C0 ∀p ∈ att(RC0(l0)).∅ | Σ ⊢ πp(RC0(l0)) : C ∧ signalType(C0, p) = C for some C

Σ ⊢ RC0(l0)

In this definition, we write the set of attributes in R as att(R). The judgment Σ ⊢
πp(RC0(l0)) : C returns true if all values in πp(RC0(l0)) have type C. Then, we define the
well-formedness of a runtime environment as follows.

▶ Definition 5.2. A runtime environment µ is said to be well-formed with respect to an
identifier environment Σ, written Σ ⊢ µ, if dom(µ) = dom(Σ) and Σ ⊢ µ(l) for every
l ∈ dom(µ).

We note that the well-formedness of the runtime environment is not always held during
the computation. For example, if the redex has the form new C(l), the runtime environment
contains an empty relation after the reduction. Thus, the type preservation theorem is
formulated as follows.

▶ Theorem 5.3 (preservasion). Suppose that ∀CL ∈ dom(CL).CL ok. If Γ | Σ ⊢ e : C, Σ ⊢ µ,
and µ | e −→ µ′ | e′, then Γ | Σ′ ⊢ e′ : C for some Σ′ ⊇ Σ, and µ′ = µ ⊕ {l 7→ ∅} or Σ′ ⊢ µ′.

Proof. See Appendix A.1. ◀

We also need to consider the fact that a database query may fail. For example, the type
system cannot prohibit the use of a timestamp that is earlier than the beginning of the
computation. This observation results in the following progress theorem.

▶ Theorem 5.4 (progress). Suppose that ∅ | Σ ⊢ e : C for some C and Σ. Then, either e is an
identifier or a time-oriented query l.snapshot(t) where µ(l) = σt<time(µ(l)) for some µ

and t, or, for any µ such that Σ ⊢ µ, there are some expression e′ such that µ | e −→ µ′ | e′

where µ′ = µ ⊕ {l 7→ ∅} or Σ′ ⊢ µ′ for some Σ′ ⊇ Σ.

Proof. See Appendix A.2. ◀

One issue for ensuring type soundness is that the runtime environment µ can contain an
empty relation during the computation. An access to a signal bound with such a relation
definitely fails, and to avoid such an access, the empty relation should be populated before
an access to the signal occurs. To address this issue, we simply take an approach where
all signal class instances are enforced to be immediately populated using set after their
creations. This is a simplification of the SignalJ’s solution discussed in Section 6.2; i.e., the
calculus does not model the lifecycle management but is developed to be applicable to this
management. To describe this enforcement, we define the well-formedness of expressions.
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▶ Definition 5.5. An expression e0 is said to be well-formed (written e wf) if and only if,
for all e ∈ subexpressions of e0 where e = new C(l) for some C and l, e is a subexpression
of e.set(e) for some e wf.

Using this definition, we define the well-formedness of method and class declarations as
follows.

e wf
C m(C x) { return e; } wf

e wf M wf
signal class C { ...; signal C p=e; M } wf

We write CT wf if all class declarations in CT are well-formed. Then, our type soundness
theorem is formulated as follows.

▶ Theorem 5.6 (type soundness). Consider a program (CT, e) with CT wf, ∅ | ∅ ⊢ e : C,
and e wf. If ∅ | e −→∗ µ | e′ for some µ with e′ a normal form, then e′ is either an
identifier l with ∅ | Σ ⊢ l : C for some Σ, or an expression containing a time-oriented query
l.snapshot(t) where µ(l) = σt<time(µ(l)) for some µ and t.

Proof. By induction on the length of ∅ | e −→∗ µ | e′. If {l 7→ ∅} ∈ µ′ where ∅ | e −→∗ µ′ | e′′

for some e′′, it is easy to show that the last applied computation rule is R-New. As e wf
and CT wf, all new expressions in e and CT are qualified by a set call, and because of the
evaluation order defined by R-Cngl, the following reduction always use R-Set, resulting in
the reduction µ′ | e′′ −→R-Set µ′′ | e′′′ and Σ ⊢ µ′′ for some Σ. Then, Theorems 5.3 and 5.4
finishes the case. Other cases are straightforward. ◀

6 Implementation

The proposed mechanism is implemented on TimescaleDB. We show the runtime architecture
of signal class instances in Figure 12. A signal class is compiled into a normal Java class.
Each compiled Java class uses the runtime library that prepares the connections to the
underlying database system and implements the runtime semantics of persistent signals.

6.1 Compilation
The compiler is implemented using ExtendJ [9]. Figure 12 shows the object diagram after
the compilation, where a signal class is translated into a Java class that implements the
SignalClassInstance interface, which provides the methods necessary for signal class
lifecycle management. The implementations of those methods are automatically inserted
into the class during the compilation.

Each persistent signal is converted into an instance of PersistentSignal, which is a part
of the runtime library. Each PersistentSignal instance encapsulates the database table
that contains all updates of the persistent signal. Every access to the persistent signal is
rewritten to the method invocation that returns the “current value” of that signal, and every
imperative operation that changes the value of the persistent signal (e.g., a reassignment
using =) is converted into the method invocation that updates the underlying database table.
More precisely, this update is not immediately performed when the reassignment on the
persistent signal is issued; it is postponed until the update requests on all the persistent
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Figure 12 Runtime architecture of signal class instances. Every signal class is introduced with
the SignalClassInstance interface by the compiler. Each persistent and view signal is converted to
an instance of PersistentSignal, which is a part of the runtime library that implements the API
methods. This instance accesses the projection of the underlying database table and views. There is
also the metatable that manages the existing signal class instances.

signals contained in the signal class instance are issued. An instance of Synchronizer,
which is also a part of the runtime library attached to the signal class instance, monitors
all the persistent signals in the signal class instance and calls the set method that updates
the underlying database table according to the provided synchronization policy such as
non-blocking-buffered, non-blocking-bufferless, blocking, and asynchronous.

Each constructor of the signal class is also translated to create all PersistentSignal
instances declared in the signal class. When the instance of PersistentSignal is created, it is
tested whether the corresponding database table already exists; if so, the PersistentSignal
instance is connected with that table; if not, a new table is created. Similarly, every view signal,
which is also an instance of PersistentSignal, is created by calling the API method that
is prepared in the runtime library in advance. For the creation of these PersistentSignal
instances, the compiler simply inserts a piece of code that calls these runtime library methods.
As there are chains of dependency between persistent and view signals, these creations
of PersistentSignal instances are topologically sorted in a similar manner to those in
Flapjax [20]. An instance of Synchronizer is also created within the constructor execution
that monitors all updates of PersistentSignal instances.

6.2 Naming and initialization

As explained in Section 4.2, the identifier of a signal class instance is always provided when
it is created. In Figure 1, the id parameter in the constructor of Vehicle is mandatory.
Internally, this identifier is used to determine the names of tables and views. The name
of persistent signal table is determined by the fully-qualified name of signal class and the
identifier. The name of the view is determined by the name of the table and the name of the
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view signal. For example, consider the following creation of the Vehicle instance again:

Vehicle aCar = new Vehicle("501a1234", "Haskell", "Toyota", "Sienta");

Assuming that Vehicle is declared in the vehicletracking package, the names of the table
and views are determined as follows.

vehicletracking_Vehicle_Oita501a1234 // table for persistent signals
vehicletracking_Vehicle_Oita501a1234_x12h // view for x12h
vehicletracking_Vehicle_Oita501a1234_y12h // view for y12h
vehicletracking_Vehicle_Oita501a1234_dx // view for dx
vehicletracking_Vehicle_Oita501a1234_dy // view for dy
vehicletracking_Vehicle_Oita501a1234_v // view for v

The signal class instance encapsulates these table and views. We cannot create multiple
Vehicle instances with the same identifier, but we can still use the same identifier in the
instances of other signal classes.

One subtle issue is providing an initial value to a persistent signal. Theorem 5.6 indicates
that the program sticks only when an unexpected timestamp is chosen for the time-oriented
query if the program is well-formed. This definition of well-formedness requires that a signal
class instance should be immediately initialized using set. However, in the real program
there is also a situation where the instance is bound with an existing database table. In such
a case, the call of set should not incur any effects.

To ensure that the initialization is performed only when the history of the persistent signal
is empty, the SignalClassInstance interface in Figure 3 provides an additional method:

public void setIfNotInitialized(Object ... newValues);

This method sets the values provided as arguments to persistent signals declared in the
receiver signal class instance only if their histories are empty. We note that, like set, this
interface is defined for the runtime library.

We note that the call of reset also makes the execution history empty, and currently our
compiler does not check the well-formedness of the program. Instead, the runtime system
raises an exception when an empty execution history is accessed.

6.3 Database implementation
TimescaleDB is an open-source time-series database that can run at edge systems as well as
in the cloud. Thus, we can implement a variety of applications, including an IoT system
where the time-series data is managed in an edge system and a data center that manages
massive amount of time-series data. As it is a relational database, the implementation of the
dynamic semantics in Section 5, which is based on the relational algebra, is straightforward.

All PersistentSignal instances in a signal class instance are connected with the under-
lying database system when it is created. They access the table for persistent signals and
views that corresponds to view signals. Those table and views are created if they do not
exist (i.e., if the new event is fired with the initial state in Figure 2). The view creating API
in Table 1 is also applicable in our system. For example, the expression “x.within(ts, “12
hours”)”, where x is a persistent signal containing the x-coordinate of the running vehicle,
executes the following SELECT query to create a view (rel_name is the table that x refers to):

SELECT time,x FROM [rel_name] WHERE time > ts - interval ’12 hours’
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Table 2 Performance evaluation results. Every measurement is expressed in millisecond (ms),
and was performed by taking an average of 10 vehicles.

(a) Response time of persistent/view signal

# records x x12h dx v

100 0.7 0.9 1.2 1.4
1000 0.8 1.0 1.6 1.9
10000 0.8 1.6 6.2 6.1

(b) Overhead of vehicle creation

table/view creation average time
w/ 48.7
w/o 42.1

Normally, the database system does not provide a mechanism to group those related table
and views. Thus, the binding between a signal class instance and its corresponding table
and views is maintained using the naming mechanism explained in Section 6.2.

Each table for persistent signals of a signal class instance (let the name of this instance
be a) consists of tuples of persistent signal values with their timestamps. If the persistent
signal refers to another signal class instance, the database table contains the name of that
instance. When accessed, that instance is restored from the database: if that signal class
instance is active, we obtain that instance from the hashtable that contains all active signal
class instances; otherwise, a new signal class instance is created using the name stored in the
database. The database table metatable remembers the names of signal class instances that
have been created to date, including inactive ones.

6.4 Performance Evaluation
To confirm that the explained application scenario is realistic in the proposed implementa-
tion, we performed simple microbenchmark experiments that measure the response time of
persistent signal accesses. These microbenchmarks were performed using TimescaleDB as a
backend, which is running on Linux kernel version 4.18.0. This system was running on six-
cores Intel Zeon E-2276G 3.80GHz with 16GB main memory and 512GB SSD. TimescaleDB
was tuned to have recommended memory settings, including 2GB shared buffers, 6GB
effective cache size, 1GB maintenance working memory, and 26,214KB working memory.

In these microbenchmarks, we first prepared histories of vehicles by virtually running
them, and then measured the performance of accesses to signals x (holding the x-coordinate
of each vehicle), x12h (holding the last 12 hours of data of x-coordinate), dx (holding the
difference between x12h and its previous value), and v (holding the estimated velocity of the
vehicle). Before these signals were accessed, each vehicle’s timestamp was randomly set by
issuing snapshot.

Table 2a summarizes the response time of accesses to persistent and view signals. The
performance depends on the amount of records the history has. Accesses to view signals
dx (calculated using join) and v (calculated using embedded functions) require around 6
ms when the history has 10,000 records. To confirm that this result is acceptable, we also
implemented a vehicle viewer that displays 10 vehicles with 10,000 records and 7 signals
(including the y-coordinate y, the last 12 hours of y-coordinate y12h, and the difference
between y12h and its previous value, in addition to signals that are shown in Table 2) of each
vehicle. This viewer provides a slider to allow the user time-travel, and 70 signals in total
are recalculated at once when a specific timestamp is set using the slider. In this viewer, we
observed that the slider was mostly responsive.

Table 2b shows the overhead of vehicle creation. This depends on whether the vehicle
instance is created by connecting the existing table and views, or creating new ones (i.e.,
new id is introduced). The creation of table and views (it consists of one table and 5 views)
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requires around 6 ms. Other overhead includes making connections to the database system.
This overhead looks relatively large, but we can reduce this by sharing the connections to
the database.

7 Related Work

Signals are a well-known abstraction in reactive programming (RP), which have been
inspired by synchronous languages [12, 4, 29] and functional-reactive programming (FRP)
languages [10]. FRP features are now available in general-purpose functional languages (e.g.,
the Yampa library [24] is available for Haskell), and recently they have made their way
into imperative object-oriented settings [20, 30, 17] by integrating signals with event-based
programming features (such as the event mechanism proposed by EScala [11]).

Even though Yampa’s switch and our switching mechanism look somewhat alike, there
are fundamental differences between them. First, in our switching, the old sub-network (e.g.,
the monitored vehicle) is not lost after switching and can be accessed if its id is restored.
In Yampa, on the other hand, the old signal is lost and we need to preserve every measure
manually if we want to access that again. Second, in our switching, there is no guarantee that
the switching is performed at the same time when the vehicle is updated, while in Yampa,
switches always occur at a global time step. In short, signal classes provide a more general
switching with less guarantees.

Although signals in RP languages are not persistent, some research efforts have been
made to record the update histories of signals to make them available for debugging. For
example, time-traveling [25] makes it possible to pause the execution and rewind to any earlier
execution point. This technique is now common in RP debuggers. Reactive Inspector [31], a
debugger for REScala [30], visualizes how signal networks are constructed and evolved and
how propagations take place over those networks during execution. Using this debugger,
a programmer can see the status of the networks at any execution point. Another way of
debugging FRP programs is to use temporal propositions, an FRP construct based on linear
temporal logic [27]. Time-traveling in FRP can also been seen in the literature [28] that
presents a uniform way to control how time flows, such as the direction of time flow and
sampling rate, by giving time transformations over time domains. Some tools also provide
visualization of such time-series data, such as allowing viewing of the execution history in a
single display to identify anomaly propagation patterns that are repeated over time [3, 14, 13].
Usually, such tools are dedicated to debugging; thus, they record the history of one execution.
Persistence across multiple executions, such as that discussed in the proposed lifecycle model,
is not considered. Furthermore, time-series data handled in such tools are not provided for
use by applications. For example, no convenient APIs to query over such time-series data
are provided.

Other research efforts that are relevant to persistent signals include fault-tolerant RP [21,
22] that provides an implementation for snapshotting mechanism of signals. In contrast,
SignalJ focuses more on applications that query over time-series data, which is also evident
in the formalization developed using relational algebra. In a larger picture, such time-series
data can be open, i.e., that are shared with and queried from multiple processes by referring
to that using the identifiers.

As discussed in the implementation of our system, time-series databases provide important
techniques to implement persistent signals. Jensen et al. presented a survey on time-series
databases, which are also known as time-series management systems [16]. In their survey, time-
series databases were categorized as internal data stores, external data stores, and relational
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database extensions. An internal data store (e.g., tsdb presented by Deri et al. [8]) integrates
both a data store and a processing engine together in the same application, allowing for deep
integration between the storage and processing engine. In another approach, an external data
store (e.g., Gorilla by Pelkonen et al. [26] and BTrDB by Andersen and Culler [1]) uses an
existing external management system, allowing for existing system deployments to be reused.
Finally, an relational database extension (e.g., TimeTravel by Khalefa et al. [19]) allows
the expressive power of the relational database to be applied to the time-series database.
TimescaleDB, as used in our implementation, falls into this last category. Overall, there have
been many time-series database implementations suitable for different use case scenarios.
Therefore, although we consider that the performance of TimescaleDB is satisfactory in many
cases, it will be beneficial to consider other implementations that might be suitable for some
specific application domain.

Finally, we do not consider the proposed persistent signal lifecyle model as new because
there have been much work on persistent objects where the lifetime of the objects can
be indefinite (e.g., [2]). We keep the model as simple as possible to extend it to the
objects containing a set of time-varying values. There have also been much work on the
implementation of persistent objects using SQL (e.g., [7]). Instead, in our system, the
mapping is defined only for the trivial cases, i.e., the mapping from persistent signals to the
table. We do not define the mapping for view signals; it is left for the programmers or domain
engineers. However, we consider some of this definition could be performed automatically
using program synthesis. Actually, program synthesis for SQL queries has recently been
intensively studied (e.g., the work by [32]). We consider application of such technologies to
automatic synthesis of view signals is also an interesting direction for future work.

8 Concluding Remarks

In this paper, we proposed a new language mechanism signal class, which encapsulates a
network of related persistent and view signals. Not only does this mechanism allow us to
represent persistent time-varying values with complex data types, but it also provides a
unit of lifecycle management and a unit of synchronization. All these features overcome the
drawbacks of existing persistent signals in that they cannot represent persistent time-varying
values with complex data types, they must be created only at compile time, and the network
is connected only using pre-defined methods. We clarified how each signal class instance
behaves by defining its lifecycle model and formal semantics that maps each signal class
instance to the underlying database system using relational algebra. In these definitions,
we confirmed several properties regarding database transparency, glitch-freedom, and type
soundness. All these results indicate that our approach is effective to implement reactive
systems using convenient abstractions of time-varying values with their execution histories.
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A Proofs

A.1 Proof of Theorem 5.3
We first show some lemmas required by the proof of Theorem 5.3.

▶ Lemma A.1 (weakening).
1. If Γ | Σ ⊢ e : C and x ̸∈ Γ, then Γ, x : D | Σ ⊢ e : C.
2. If Γ | Σ ⊢ e : C and l ̸∈ Σ, then Γ | Σ, l : C ⊢ e : C.

Proof. By straightforward induction on Γ | Σ ⊢ e : C. ◀

▶ Lemma A.2 (substitution). If Γ, x : C | Σ ⊢ e0 : C0 and Γ | Σ ⊢ l : C, then Γ | Σ ⊢ [l/x]e0 :
C0.

Proof. By induction on Γ | Σ ⊢ e : C. ◀

Proof of Theorem 5.3. By induction on the derivation of µ | e −→ µ′ | e′.
Case R-Psignal: e = l0.p e′ = l µ(l0) = RC0(l0) πp(σlatest(RC0(l0))) = l
By T-Signal, Γ | Σ ⊢ l0 : C′

0 and signalType(C′
0, p) = C for some C′

0. As Σ ⊢ µ, we have
Σ ⊢ RC0(l0), and by the definition of Σ ⊢ RC0(l0), we have ∅ | Σ ⊢ l0 : C0. By Lemma A.1,
Γ | Σ ⊢ l0 : C0. Thus C′

0 = C0. By the definition of Σ ⊢ RC0(l0) and T-Signal, we have
πp(σlatest(RC0(l0))). Then, Lemma A.1 finishes the case.

Case R-Vsignal: e = l0.p e′ = e0 µ(l0) = RC0(l0) signalExpr(C0, p) = e0
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https://doi.org/10.1145/2577080.2577083
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By T-Signal, Γ | Σ ⊢ l0 : C′
0 and signalType(C′

0, p) = C for some C′
0. As Σ ⊢ µ, we have

Σ ⊢ RC0(l0), and by the definition of Σ ⊢ RC0(l0), we have ∅ | Σ ⊢ l0 : C0. By Lemma A.1,
Γ | Σ ⊢ l0 : C0. Thus C′

0 = C0. By T-Class and the definitions of signalExpr and signalType,
we have this : C0 | ∅ ⊢ e0 : C. Then, Lemma A.1 finishes the case.

Case R-New: e = new C(l) e′ = l µ′ = µ ⊕ {l 7→ ∅}
Let Σ′ = Σ, l : C. By T-Id, Σ′ ⊢ l : C, finishing the case.
Case R-Set: e = l.set(l) e′ = l
It is easy to show that Γ | Σ ⊢ µ′, and by T-Set we have Γ | Σ ⊢ l : C, finishing the case.
Case R-Time: e = l0.snapshot(t) e′ = l0
It is easy to show that Γ | Σ ⊢ µ′, and by T-Time we have Γ | Σ ⊢ l0 : C, finishing the

case.
Case R-Invk: Finished by Lemma A.2, T-Invk, and definitions of mtype and mbody.
Case R-Cngl: Finished by the induction hypothesis. ◀

A.2 Proof of Theorem 5.4
Proof of Theorem 5.4. By induction on the derivation of Γ | Σ ⊢ e : C.

Cases T-Var and T-Ts: Cannot occur.
Case T-Id: Immediately finished.
Case T-Signal: e = e0.p ∅ | Σ ⊢ e0 : C0 signalType(C0, p) = C
There are three subcases based on the form of e0:
Subcase 1: e0 = l0
There are further subcases based on the definition of signalType: (1) signal class C

{... persistent signal C p; ...} and p ∈ p. Assuming ∅ | Σ ⊢ µ, we have Σ ⊢ µ(l0),
i.e., we have a non-empty µ(l0). Thus, πp(σlatest(µ(l0)) = l for some l. Thus, R-Psignal
can be applied to e, finishing the case; (2) signal class C {... signal C p=e; ...}
and p ∈ p. Similarly, R-Vsignal finishes the case.

Subcase 2: e0 = l0.snapshot(t)
Immediately finished because this is the case where e is an expression containing a

time-oriented query.
Subcase 3: Otherwise, R-Cong finishes the case.
Case T-Set: e = e0.set(e) ∅ | Σ ⊢ e0 : C ∅ | Σ ⊢ e : C
There are subcases based on the form of e0:
Subcase 1: e0 = l0
There are further subcases based on the form of e: (1) e = l. By T-Id, l ∈ dom(Σ),

and assuming Σ ⊢ µ, we have l ∈ dom(µ). We can choose t ∈ Time such that t >

σlatest(πtime(µ(l0))). Let R′
C(l0) = {(t, l)} ∪ µ(l0) and µ′ = µ ⊕ (l0 7→ R′

C(l0)). Then, R-Set
finishes the case; (2) Otherwise, R-Cong finishes the case.

Subcase 2: Otherwise, R-Cong finishes the case.
Case T-Time: e = e0.snapshot(t) ∅ | Σ ⊢ e0 : C ∅ | Σ ⊢ t : T
There are subcases based on the form of e0:
Subcase 1: e0 = l0
Immediately finished because this is the case where e is an expression containing a

time-oriented query.
Subcase 2: Otherwise, R-Cong finishes the case.
Case T-Invk: e = e0.m(e) ∅ | Σ ⊢ e0 : C0 mtype(m, C0) = C → C ∅ | Σ ⊢ e : C
There are subcases based on the form of e0:
Subcase 1: e0 = l0
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There are further subcases based on the form of e: (1) e = l. By the definition of mtype
and mbody, we have mbody(m, C0) = x.e where the number of l and that of x are the same.
Thus, R-Invk finishes the case; (2) Otherwise, R-Cong finishes the case.

Subcase 2: Otherwise, R-Cong finishes the case.
Case T-New: Immediately finished. ◀
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