
Aspectual Caml: an Aspect-Oriented Functional Language

Hideaki Tatsuzawa
Department of Computer

Science, University of Tokyo

hideaki@is.s.u-tokyo.ac.jp

Hidehiko Masuhara
Graduate School of Arts and
Sciences, University of Tokyo

masuhara@acm.org

Akinori Yonezawa
Department of Computer

Science, University of Tokyo

yonezawa@is.s.u-tokyo.ac.jp

ABSTRACT
We propose an aspect-oriented programming (AOP) lan-
guage called Aspectual Caml based on a strongly-typed func-
tional language Objective Caml. Aspectual Caml offers two
AOP mechanisms, namely the pointcut and advice mecha-
nism and the type extension mechanism, which gives simi-
lar functionality to the inter-type declarations in AspectJ.
Those mechanisms are not simple adaptation of the similar
mechanisms in existing AOP languages, but re-designed for
common programming styles in functional languages such
as type inference, polymorphic types, and curried functions.
We implemented a prototype compiler of the language and
used the language for separating crosscutting concerns in
application programs, including separating a type system
from a compiler of a simple language.

1. INTRODUCTION
Aspect-Oriented Programming (AOP)[7, 16] is a program-
ming paradigm for modularizing crosscutting concerns, which
can not be well modularized with existing module mecha-
nisms. Although AOP would be useful to many program-
ming languages with module mechanisms, it has been mainly
studied in the contexts of object-oriented programming lan-
guages such as Java[4, 5, 14, 15], C++[18], and Smalltalk[6,
12].

In this paper, we propose an AOP language called Aspectual
Caml based on a functional language Objective Caml. The
goal of development of Aspectual Caml is twofold. First, we
aim to enable practical AOP for development of functional
programs. Since there have been developed large and com-
plicated application programs in functional languages[13,
20], such as compilers, theorem provers[3] and software ver-
ification tools[2], AOP features should be useful to mod-
ularize crosscutting concerns also in functional languages.
Second, we aim to provide Aspectual Caml as a basis of
further theoretical studies on AOP features. Strongly-typed
functional languages, such as ML and Haskell, offer many
powerful language features based on solid theoretical foun-

dations. Aspectual Caml, which incorporates existing AOP
language features into a strongly-type functional language,
would help theoretical examination of the features.

Aspectual Caml is an AOP extension to Objective Caml, a
dialect of the functional language ML. We design its AOP
features by adapting the AOP features in AspectJ, includ-
ing the pointcut and advice mechanism and the inter-type
declaration mechanism, for a functional language with poly-
morphic types and type inference. We also design the AOP
features so that they would fit key properties of strongly-
typed functional programming including type safety, type
inference, and curried functions.

The language is implemented as a translator to Objective
Caml by extending the parser and type checker of the Ob-
jective Caml compiler.

The rest of the paper is organized as follows. Section 2 in-
troduces the AOP features of Aspectual Caml. Section 3
presents our current implementation. Section 4 shows case
studies of modularization of crosscutting concerns in some
application programs with Aspectual Caml. Section 5 presents
relevant studies. Section 6 concludes the paper.

2. LANGUAGE DESIGN
This section describes the language design of Aspectual Caml.
First, we overview problems in introducing AOP features
into functional languages and solutions to those problems.
Next, we present an example of extending a small program
(which is called a base program in this paper) with an aspect.
We then discuss the design of the AOP features, namely
the pointcut and advice mechanism and the type extension
mechanism with emphases on the differences from AspectJ.

2.1 Design Issues
Although the AOP features of Aspectual Caml are similar
to the ones in AspectJ, the design of those features was not a
trivial task. The differences of programming styles between
the base languages (i.e., Objective Caml and Java) such as
the higher-order functions, variant records, and polymorphic
types, require reconsideration of most AOP features.

Below, we briefly discuss some of the notable issues in the
design of AOP features in Aspectual Caml, and our proposed
solutions:

• ML (including Objective Caml) and Haskell programs

1

usually omit types in expressions thanks to the type in-
ference system, whereas types are more explicitly writ-
ten in Java and AspectJ program. Aspectual Caml
has a type inference system for pointcut and advice
descriptions.

• Strongly typed languages such as ML and Haskell also
have the feature of polymorphic types. We found that
type inference with polymorphic types does not fit to
programmers’ intuition. This is coped with two types
of pointcuts, namely polymorphic and monomorphic
pointcuts.

• Functional programs often use curried functions to re-
ceive more than one parameters. If the semantics of
call pointcut were merely capture one application to
functions, it would be inconvenient to identify second
or later applications to curried functions. To cope with
this problem, Aspectual Caml offers curried pointcuts.

• Although AOP features similar to the inter-type dec-
larations in AspectJ would be useful, they should be
carefully designed because functional programs usu-
ally represent structured data by using variant record
types, whereas object-oriented programs do by using
classes. In particular, the inter-type declarations in
AspectJ relies on the type compatibility of classes with
additional instance variables and methods, which is
not guaranteed for the variant record types. The type
extension mechanism in Aspectual Caml therefore has
limited scope to preserve type compatibility.

2.2 Example: Extending Simple Interpreter
In this section, we will show an example of a simple pro-
gram with an aspect. The base program is an interpreter
of a small language, which merely has numbers, variables,
additions and let-terms. The aspect adds a new kind of
terms—subtractions—into the language. Since Aspectual
Caml is an extension to Objective Caml, the interpreter is
written in Objective Caml.

2.2.1 Interpreter
The interpreter definition begins with definitions for vari-
ables which are of type id, an identifier type:

type id = I of string

let get_name (I s) = s

A term is of variant record type t, which can vary over
number (Num), variable (Var), addition (Add), or let (Let)
terms:

type t = Num of int

| Var of id

| Add of t * t

| Let of id * t * t

There are a few functions for manipulating environments,
whose definitions are omitted here:

let extend = (* env -> id -> int -> env *)

let lookup = (* id -> env -> int *)

let empty_env = (* env *)

The interpreter eval is a recursive function that takes an
environment and a term and returns its value:

aspect AddSubtraction

type+ t = ... | Sub of t * t

pointcut evaluation env t = call eval env; t

advice eval_sub = [around evaluation env t]

match t with

Sub(t1, t2) -> (eval env t1) - (eval env t2)

| _ -> proceed t

end

Figure 1: An aspect that adds subtraction to inter-
preter

let rec eval env t = match t with

| Num(n) -> n

| Var(id) -> lookup id env

| Add(t1, t2) ->

let e = eval env in (e t1) + (e t2)

| Let(id, t1, t2) ->

eval (extend env id (eval env t1)) t2

For example, the following expression represents evaluation
of let x=3+4 in x+x, which yields 14.

eval empty_env (Let(I("x"), Add(Num(3),Num(4)),

Add(Var(I("x")),Var(I("x")))))

2.2.2 Adding Subtraction to the Simple Language
The code fragment in Figure 1 shows an aspect definition
in Aspectual Caml that extends the interpreter to support
subtractions. The first line declares the beginning of an
aspect named AddSubtraction, which spans until keyword
end. The body of the aspect consists of an extension to the
data structure and a modification to the evaluation behav-
ior.

The second line is type extension that adds an additional
constructor Sub to type t so that extended interpreter can
handle subtraction terms. Within AddSubtraction aspect,
the type t has a constructor Sub as well as other construc-
tors defined in the base program. Section 2.4 explains this
mechanism in detail.

The third line defines a pointcut named evaluation that
specifies any application of an environment and a term to
eval function. The pointcut also binds variables env and t

to the parameters of eval. This is also an example of curried
pointcut that can specify applications to curried functions.
Section 2.3.2.4 will explain this in detail.

Lines 4–7 are an advice declaration named eval_sub that
evaluates subtraction terms augmented above. The keyword
around on the right hand side at the fourth line specifies that
the body of the advice runs instead of a function application
matching the pointcut evaluation. The lines 5–7 are the
body of the advice, which subtracts values of two sub-terms
when the term is a Sub constructor. Otherwise, it lets the
original eval interpret the term by applying the term to
a special variable proceed, which is bound to a function
that represents the rest of the computation at the function
application.

Note that the pointcut and the body of the advice have no
type descriptions, which is similar to other function defini-

2

Table 1: Kinds of Join Points in Aspectual Caml
and AspectJ

in Aspectual Caml in AspectJ

function call method call
function execution method execution
construction of a variant constructor call
pattern matching field get

tions in Objective Caml. The type system infers appropriate
types and guarantees type safety of the program.

2.3 Pointcut and Advice Mechanism
Aspectual Caml offers a pointcut and advice mechanism for
modularizing crosscutting program behavior. The following
three key elements explains the mechanism:

• join points are the points in program execution whose
behavior can be augmented or altered by advice dec-
larations.

• pointcuts are the means of identifying join points, and

• advice declarations are the means of effecting join points.

The design is basically similar to those in AspectJ-like AOP
languages. We mainly explain the notable differences below.

2.3.1 Join Points
Similar to AspectJ-like languages, Aspectual Caml employs
a dynamic join point model, in which join points are the
points in program execution, rather than the points in a
program text. There are four kinds of join points in Aspec-
tual Caml, which are listed in Table 1 with their AspectJ
counterparts.

Note that the correspondences between Aspectual Caml and
AspectJ are rather subjective as functional programs and
Java-like object-oriented programs often express similar con-
cepts in different ways. For example, functional programs
often use variant records to represent compound data while
object-oriented programs use objects. Therefore we place
the pattern matching (which takes field values out of a vari-
ant record) and field get join points in the same row. There
are no field-set-like join points in Aspectual Caml since vari-
ant records are immutable1.

A join point holds properties of the execution, such as the
name of the function to be applied to and arguments. The
names of functions are those directly appear in program
text. For example, evaluation of let lookup = List.assoc

in lookup var env generates a function call join point whose
function name is lookup, rather than List.assoc. We be-
lieve that programmers give meaningful names to functions
even if the higher-order functions make renaming of func-
tions quite easy in functional programming.

1Many functional programming languages offer references
for representing mutable data. The operations over refer-
ences are also the candidates of join points in future version
of Aspectual Caml.

Table 2: Summary of Primitive Pointcuts
syntax matching join points

call N P1 ; ...; Pn function call
exec N P1 ; ...; Pn function execution
new N(P1,. . .,Pn) construction of a variant
match P pattern matching (before

selecting a variant)
within N all join points within a

static scope specified N

2.3.2 Pointcuts
A pointcut is a predicate over join points. It tests join points
based on the kinds and properties of join points, and binds
values in the join point to variables when matches.

2.3.2.1 Primitive Pointcuts
Similar to AspectJ, Aspectual Caml has a sublanguage to
describe pointcuts. Table 2 lists the syntax of primitive
pointcuts and kinds of join points selected by respective
pointcuts. In the table, N denotes a name pattern and Pi

denotes a parameter pattern.

A name pattern N is a string of alphabets, numbers, and
wildcards followed by a type expression. It matches any
function or constructor whose name matches the former
part, and whose type matches the latter part. The type
expression can be omitted for matching functions of any
type.

A parameter pattern P is a pattern that used to describe
a formal parameter of a function in Objective Caml2. It is
either a variable name, or a constructor with parameter pat-
terns, followed by a type expression. It matches any value
of the specified type, or any value that is constructed with
the specified constructor and the field values that match re-
spective the parameter patterns. Again, the type expression
can be omitted. For example, “x:int” matches any inte-
ger. “Add(Num(x),Var(y))” matches any Add term whose
first and second fields are any Num and Var terms, respec-
tively. Note that parameter patterns with constructors are
basically runtime conditions. This is similar to args, this
and target pointcuts in AspectJ which can specify runtime
types of parameters.

Pointcut within(N) matches any join point that is created
by an expression appearing in a lexical element (e.g., a func-
tion definition) matching N . In order to specify function
definitions nested in other function definitions, the pattern
N can use a path expression, which is not explained in the
paper.

2.3.2.2 Parameter Binding
The parameter patterns in a primitive pointcut also bind
parameters to variables. For example, when string "abc"

is applied to function lookup and there is a pointcut call

lookup name, the pointcut matches the join point and binds

2In Objective Caml, it is simply called a “pattern”, but we
refer it to as a “parameter pattern” for distinguishing from
the name patterns.

3

the string "abc" to the variable name so that the advice body
can access to the parameter values. When a pattern has an
underscore character (“ ”) instead of a variable name, it
ignores the parameter value.

2.3.2.3 Combining and Reusing Pointcuts
Aspectual Caml offers various means of combining and reusing
pointcuts similar to AspectJ. There are the operators for
combining pointcuts, namely and, or, not, and cflow. It
also supports named pointcuts. For example, the line 3 in
Figure 1 names a pointcut expression (call eval env; t)
evaluation,

pointcut evaluation env t = call eval env; t

which can be used in a similar manner to primitive pointcuts
in the subsequent pointcut expressions, like evaluation env

t at line 4 in the same figure.

2.3.2.4 Pointcuts for Curried Functions
The call and exec pointcuts also support curried functions.
For example, call eval env; t matches the second par-
tial application to function eval. Therefore, when an ex-
pression eval empty_env (Num 0) is evaluated, the point-
cut matches the application of (Num 0) to the function re-
turned by the evaluation of eval empty_env. The pointcut
matches even when the partially applied function is not im-
mediately applied. As a result, when let e = eval env in

(e t1) + (e t2) is evaluated, the applications of t1 and t2

to e match the above call pointcut.

The following definition gives more precise meaning to call

pointcuts:

• call N P1 matches evaluation of an expression (e0

e1) when the expression e0 matches the name pattern
N and the expression e1 matches the parameter pat-
tern P1.

• call N P1; ...; Pn matches evaluation of an ex-
pression (e0 e1) when the evaluated value of e0 is
returned from a join point matching to call N P1;

...; P(n−1) and the expression e1 matches the param-
eter pattern PN .

Similarly, exec pointcuts support curried functions on the
callee’s side.

Section 3.4 presents how this advice declarations with a cur-
ried pointcut can be implemented.

2.3.2.5 Type Inference for Pointcuts
When types are omitted in a pointcut expression, they are
automatically inferred from the advice body in which the
pointcut is used. This fits with the programming style in
Objective Caml, where types can be omitted as much as
possible.

For example, the advice eval_sub in Figure 1 has no type
expressions in the pointcut evaluation env t. However, it
is inferred from the expressions in the advice body, that the
types of the variables env and t and the return type of the
function are the types env, t and int, respectively. As a

result, the pointcut, whose definition is call eval env; t,
matches applications to a function named eval and of type
env→ t→ int.

The type inference gives the most general types to the vari-
ables in the pointcuts. In the following advice definition,
the system gives fresh type variables α and β to variables
env and t, respectively:

advice tracing = [around call eval env; t]

let result = proceed t in print_int result; result

As a result, the pointcut matches any applications to func-
tions whose type is more specific than α → β → int. As a
result, this advice captures applications to eval as well as
other eval functions that takes two parameters and returns
integer values.

2.3.2.6 Polymorphic and Monomorphic Pointcuts
Aspectual Caml provides a mechanism that programmers
can make the types in a named pointcut either polymor-
phic or monomorphic. This is useful when there are more
than one advice definition that uses the same named point-
cut. When a named pointcut is defined with the keyword
concrete, it is a monomorphic pointcut whose type vari-
ables can not be instantiated. Otherwise, it is a polymor-
phic pointcut whose type variables are instantiated when the
pointcut is used in an advice definition.

For example, the evaluation pointcut in Figure 1 is poly-
morphic. It matches any function applications eval of type
∀αβγ.α → β → γ. When evaluation used in advice eval_

sub, the type system instantiates α, β, and γ and then infers
the types with respect to the advice body. Therefore, an-
other advice definition that uses evaluation with different
types do not conflict with the previous advice definition:

advice tracing = [before evaluation env t]

print_string env; print_string t

end

This mechanism is quite similar to the let-polymorphism in
ML languages.

Although the polymorphic pointcuts are useful to define gen-
eralized pointcuts, they are sometimes inconvenient when
the programmer wants to specify the same set of join points
at any advice that uses the same pointcut. Monomorphic
pointcuts are useful in such a situation. Consider the follow-
ing aspect definition that prints messages at the beginning
and end of any function application:

aspect Logging

pointcut logged n = call ??$ n

advice log_entry = [before logged n]

print_string ("\nenters with "^(string_of_int n))

advice log_exit = [after logged n]

print_string "\nexits"

end

Since logged is a polymorphic pointcut that matches any
application to functions of type ∀αβ.α → β, the first advice
matches only functions that take integer values as their pa-
rameter, whereas the second matches any function. This is

4

because the types in the pointcut are inferred at each advice
definition.

By declaring logged pointcut with the keyword concrete

and type expression to the variables that are used in the
advice:

concrete pointcut logged n = call ??$ (n:int)

logged pointcut becomes monomorphic that matches any
application to functions of type int → α. With this point-
cut definition, the two advice definitions are guaranteed to
advise the same set of join points because the types in the
pointcut will not be instantiated further.

2.3.3 Advice
Advice, defined with a pointcut, gives behaviors at, before,
or after join points, these timing are decided by timing spec-
ifiers around, before, and after respectively, specified by
the pointcut. In the body of advice, programmers can use all
top-level variables, variables bound by the pointcut, and the
special function proceed (available only in around advice).
Since proceed means the replaced behavior, it restarts the
original execution when it takes an argument.

For preserving type safety, the body expression of around

advice must have the same type as returning values of spec-
ified join points. In addition, that of before and after

advice must have the type unit. In the example of subtrac-
tion extension, the body of eval_sub has the type int that
is the same type as a result value of eval.

2.4 Type Extension Mechanism
The type extension mechanism allows aspects to define extra
fields or constructors in variant types in a base program.
The former mechanism can be seen as a rough equivalent to
the inter-type instance variable declarations in AspectJ.

Despite the simplicity of the mechanism, we believe that
it is as crucial as the pointcut and advice mechanism. As
you can observe in example programs in AspectJ, not a few
crosscutting concerns contain not only behavior (which is
implemented by the pointcut advice mechanism) but also
data structures (which are implemented by the inter-type
declarations).

2.4.1 Defining Extra Constructs
One of the abilities of the type extension mechanism is to
define additional constructors to existing variant types. A
variant type definition type+ T = ... | C adds construc-
tor C to existing type whose type name is T . In Figure 1,
we have already seen an example that adds Sub constructor
to the type t.

The constructors added to a variant type by aspects often
make pattern matching non-exhaustive. In other words, a
base program that originally defined the variant type usu-
ally has functions that process for each variant differently
(e.g., eval in the simple interpreter). Therefore, an aspect
that added a constructor to a variant type would also need
to advise such functions so as to process the case for the
additional constructor. In the example Figure 1, the ad-
vice eval_sub processes the constructor Sub for the function
eval, which otherwise reports non-exhaustiveness warnings.

2.4.2 Defining Extra Fields
The type extension mechanism can also allow to define ad-
ditional fields to constructors of existing variant types. A
variant type definition

type+ T0 = C of ... * T1{e1} * · · · * Tn{en}

adds fields of type T1, . . . , Tn to a constructor C of type
T0. The expressions e1, . . . , en in the curly brackets specify
default values to the respective fields.

For example, assume we want to associate a number (e.g.,
a line number in a source program) to each variable in the
simple language of Section 2.2. A solution with the type
extension mechanism is to add an integer field to ident type
by writing the following definition:

type+ ident = I of ... * int{0}

As the base program originally defines ident type as type

ident = I of string, a value created by the constructor I
has a pair of string and integer.

Extended fields are available only in the aspects that define
the extension. This means that the type of the constructor
look differently inside and outside of the aspect:

• Inside the same aspect, the constructor has the ex-
tended type. Therefore, I ("x",1) is a correct ex-
pression in the aspect.

• Outside the aspect, the constructor retains the original
type, and yields a value that has the values of default
expressions in the extended fields. Therefore, I "x" is
a correct expression outside the aspect, which yield a
value that has "x" and 0 in its string and integer fields,
respectively.

3. IMPLEMENTATION
We implemented a compiler, or a weaver of Aspectual Caml
as a translator to Objective Caml. Many parts of the com-
piler are implemented by modifying internal data structures
and functions in an Objective Caml compiler as the AOP
features deeply involve with the type system.

The compiler first parses a given program to build a parse
tree. Then the next five steps process the parse tree:

1. infers types in the base function definitions;

2. infers types in the aspect definitions;

3. modifies variant type definitions in the base program
by processing type extensions;

4. simplify advice definitions; and

5. inserts applications to advice bodies into matching ex-
pressions.

Finally, it generates Objective Caml program by unparsing
the modified parse tree.

Below, those five steps are explained by using the example
in Section 2.2.

5

3.1 Type Inference for Base Functions
The types in the base function definitions are inferred by
using the internal functions in the original Objective Caml
compiler. After the type inference, all variables in the func-
tions are annotated with types (or type schemes):

type id = I of string

let (get_name:id->string) = fun (I(s:string)) -> s

type t = (* omitted *)

let extend = (* ibid. *)

let lookup = (* ibid. *)

let empty_env = (* ibid. *)

let rec (eval:env->t->int) =

fun (env:env) -> fun (t:t) -> match t with

| Num(n:int) -> n

| Var(id:id) -> lookup id env

| Add((t1:t), (t2:t)) ->

let (e:t)->int = eval env in (e t1) + (e t2)

| Let((id:id), (t1:t), (t2:t)) ->

eval (extend env id (eval env t1)) t2

3.2 Type Inference for Aspects
The types in aspect definitions are inferred in a similar man-
ner to the type inference for the base functions. Notable
points are the treatments of polymorphic/monomorphic point-
cuts, and scope of the variables.

The type of a pointcut is a type of join points that can
match the pointcut and a type environment for the vari-
ables in the pointcut. The type of matching join points is
decided by the shapes of primitive pointcuts in the point-
cut and the types of the variables. The variables bound by
the pointcuts have unique type variables otherwise explicitly
specified. For polymorphic pointcuts, those type variables
are quantified with universal quantifiers that can be instan-
tiated at the advice definitions. Monomorphic pointcuts use
the special type variables that can not be instantiated in the
later processes.

For example, evaluation pointcut in Figure 1 has, type of
∀αβγ.α → β → γ for the matching join points, and [env :
β, t : γ] for variables.

Note that the type inference of pointcuts does not use the
types of function names; e.g., the type of eval in the base
program. This is because the function names in pointcuts
do not necessarily refer to specific functions in the base pro-
gram, but they rather refer to any function that have match-
ing name.

The type inference of an advice definition is basically similar
to the type inference of a function definition, but it takes
types of parameters from the types of the pointcut, and
gives a type to proceed variable that is implicitly available
in the advice body. Given an advice definition advice a =

[around call p] e where p is a pointcut of join point type
α1 → · · · → αn → β and variable type ρ, the type of e is
inferred under the global type environment extended with ρ
and [proceed : αn → β].

For example, type inference of eval_sub advice uses a global
type environment extended with [proceed : β → γ, env :
α, t : β], and assigns types as follows:

advice eval_sub

= [around evaluation (env:env) (t:t)]

(* let proceed:t->int *)

match t with

Sub((t1:t), (t2:t)) ->

(eval env t1) - (eval env t2)

| _ -> proceed t

Note that the types of eval and Sub are taken from the
global type environment, which eventually instantiates the
types of other variables including those in the pointcut.

3.3 Reflect Type Modifications in Base Pro-
grams

In this phase, type extensions are reflected in the base pro-
grams. The definition of types are changed according to
the aspects. Additionally, the default values are added to
expressions whose fields are extended by the aspects.

3.4 Simplify Advice Definitions
The next step is to transform the advice definitions into sim-
pler ones in order to make the later weaving process easier.

First, it transforms every before and after advice definition
into around advice, by simply inserting an application to
proceed at the beginning or end of the advice body.

Second, it transforms an advice declaration that uses curried
pointcuts so that all call or exec pointcuts takes exactly
one parameter. The next is a translated advice definition
from eval_sub (inferred types are omitted for readability):

advice eval_sub = [around call eval env]

let proceed = proceed env in

fun t -> match t with

Sub(t1, t2) -> (eval env t1) - (eval env t2)

| _ -> proceed t

When an environment is applied to eval, the transformed
advice runs and returns a function that runs the body of the
original advice when it takes a term. In other words, eval
is advised to return a function that runs the original advice
body.

Generally, it transforms an advice definition with a curried
pointcut by iteratively removing the last parameter in the
curried pointcut by using the following rule that transforms
an advice definition:

advice a = [around call f v1; · · · ; vn]

e

into the next one:

advice a = [around call f v1; · · · ; vn−1]

let proceed = proceed vn−1 in

fun vn -> e

There is a subtle problem with this approach when curried
pointcuts are used with a disjunctive (or) operator, which
is left for future research.

6

3.5 Weave Advice Definitions
The last step is to insert expressions that runs advice bodies
at appropriate times in the base functions. It first trans-
forms each advice definition into a function definition. It
then walks through all expressions (i.e., join point shadows)
in the function definitions, and inserts an application to an
advice function when it matches the pointcut of the advice.

Given an advice definition, the first step is to simply gener-
ate a recursive function that takes proceed parameter fol-
lowed by the parameters to the advice. For example, it
generates the following function for eval_sub advice (again,
types are omitted for readability):

let rec eval_sub proceed env =

let proceed = proceed env in

fun t -> match t with

Sub(t1, t2) -> (eval env t1) - (eval env t2)

| _ -> proceed t

The second step is to rewrite the bodies of the base func-
tions3 so that they call advice functions at appropriate places.
By traversing the expressions in the given program, for each
expression type of function application, lambda abstraction,
constructor application, or pattern matching for structured
values, it looks for advice definitions that have the respec-
tive kind of primitive pointcuts. When the name pattern of
the pointcut matches the name in the expression, and the
type of the pointcut is more general than the type of the
expression, it replaces the expression with an application to
the advice function.

For example, eval function in the base program has a sub-
expression (eval env) where eval:env->t->int and env:env.
This application sub-expression matches the call pointcut
in eval_sub as the types of the join point and the pointcut
are the same. In this case, it replaces the expression with
(〈eval_sub〉 eval env) where (〈eval_sub〉 is an expression
that references the advice function (explained below).

It is a little tricky to define and reference advice functions
due to recursiveness introduced by advice. An advice def-
inition has a global scope; it can advise any execution in
any module and it also can use global functions defined in
any module. Consequently, advice definitions can introduce
recursion into non-recursive functions in the original pro-
gram. For example, the following code fragment recursively
computes factorial numbers by advising the non-recursive
function fact[1]:

let fact n = 1

aspect Fact

advice realize = [around exec fact n]

if n=0 then proceed n else n*(fact (n-1))

end

In order to allow advice to introduce recursion, we proposed
two solutions:

• Define advice functions in a recursive module[17] in
Objective Caml. As recursive modules allow mutual

3Precisely, the base functions also include the advice bod-
ies. This enables to advise execution of advice as well as
execution of function.

recursion between functions across modules, this would
directly solve the problem.

• Reference advice functions via mutable cells. In this
solution, the translated program begins with defini-
tions of mutable cells that hold advice functions. The
subsequent function definitions run advice functions
by dereferencing from those mutable cells. Finally, af-
ter defined advice functions, the program stores the
advice functions into the mutable cells.

Although the latter solution is trickier, our current imple-
mentation uses it since the recursive modules are not avail-
able in official Objective Caml implementations as far as the
authors know.

After finished above processes, the compiler generates the
following translated code for the example program:

(* define mutable cells for advice functions *)

let eval_sub_ref = ref (fun _ -> failwith "")

(* definitions for id, t and env are omitted *)

let rec eval env t = match t with

| Num(n) -> n

| Var(id) -> lookup id env

| Add(t1, t2) ->

let e = !eval_sub_ref eval env in

(e t1) + (e t2)

| Let(id, t1, t2) ->

!eval_sub_ref

eval

(extend env id (!eval_sub_ref eval env t1))

t2

(* advice function *)

let rec eval_sub proceed env =

let proceed = proceed env in

fun t -> match t with

Sub(t1, t2) ->

(!eval_sub_ref eval env t1) -

(!eval_sub_ref eval env t2)

| _ -> proceed t

(* store advice function into mutable cell *)

let _ = eval_sub_ref := eval_sub

Note that all applications to eval function, including those
in the advice body, are replaced with applications to !eval_-

sub_ref eval. The eval_sub_ref is defined at the begin-
ning of the program with a dummy value, and assigned
eval_sub function at the end of the program.

3.6 Implementation Status
Thus far, we developed a prototype implementation4 of As-
pectual Caml. Although some of the features discussed in
the paper are not available yet, it supports essential fea-
tures for validating our concept, including the type exten-
sion, around advice, and most kinds of primitive pointcuts
except for wildcarding. In fact, the next section introduces
an example that can be compiled by our prototype imple-
mentation.

The current implementation has approximately 24000 lines
of Objective Caml program, including the parser and type

4Available at http://www.yl.is.s.u-tokyo.ac.jp/~
hideaki/acaml/ .

7

inference system that are modified from the ones in the orig-
inal Objective Caml compiler. Although it would be theo-
retically possible to directly pass the translated parse tree to
the back-end Objective Caml compiler, our compiler gener-
ates source-level program by unparsing the parse tree. This
is mainly for the ease of development and for debugging.

4. APPLICATION PROGRAMS
Among several small application programs that we have
written in Aspectual Caml, we briefly sketch two of them.

The one is, as we have seen thought the paper, to augment
an interpreter of a simple language with additional kinds
of terms, such as subtraction. Although it is a very small
program, the aspect illustrates its usefulness for pluggable
extension; since the aspect does not require to change the
original interpreter definitions, we can easily fall back to the
original language.

The second application program is larger. It extends a com-
piler of an untyped language to support static type system.
The base part of the program define types for the parse trees
of the source and intermediate languages and functions that
translate the parse tree in the source language into the in-
termediate language called K-normal forms. The aspects
extend the type of the source parse tree with type informa-
tion, and modifies the transformation functions to carry out
type inference during the transformation.

The aspects in the program can improve comprehensibil-
ity of the compiler implementation in particular educational
purposes. Since the translation rules in the original can be
complicated by the types, separating the compiler into the
one for untyped language and the extension for types would
clarify both the core translation rules and the interaction
between translations and type system.

The second program, which consists of approximately 100
lines of base program and 100 lines of aspect definitions, is
shown in Appendix A.

5. RELATED WORK
AspectJ[14, 15] is the first AOP language that offers both
the pointcut and advice and inter-type declaration mecha-
nisms. Aspectual Caml is principally designed by following
those mechanisms. However, we see AspectJ-family of lan-
guages might be too complicated to theoretically study the
AOP features as they primarily aim practical languages. For
example, AspectJ 1.2 compiler type checks the following ad-
vice declaration:

Object around() : call(Integer *.*(..))

{ return new Float(0); }

even though it could cause a runtime error if applied to an
expression like Integer.decode("0").intValue(). A sim-
pler language that yet has a notion of polymorphism would
help to reason about such a situation.

There are several proposals of theoretical models of AOP
features. As far as the authors know, most work merely on
the pointcut and advice mechanism. Aspect SandBox[22]
describes a semantics of an dynamically-typed procedural

language with a pointcut and advice mechanism. Tucker
and Krishnamurthi presented a pointcut and advice mech-
anism in dynamically-typed functional languages[19]. Mini-
AML is a core calculus for expressing the pointcut and ad-
vice mechanism in strongly-typed functional languages[21].
Such a calculus would be suitable to describe the language
design of Aspectual Caml, which is currently explained at
the source language level. AspectML is an AOP extension to
Standard ML with the pointcut and advice mechanism[21].
The semantics of AspectML is defined as a translation into
MiniAML. TinyAspect is a model of pointcut and advice
mechanism for strongly-typed languages with ML-like mod-
ules[1]. It proposes a module system for aspects so as to
protect join points in a module from aspects outside the
module.

There are several studies for adding fields or constructors
into existing types, but not in the context of aspect-oriented
programming. Type-safe update programming provides a
means of extending existing data types[8], which inspired
the type extension mechanism in Aspectual Caml. Poly-
morphic variants[10] allow to define functions that manipu-
late variant records without prior declaration of the variant
type. This can improve code re-usability of a program when
it uses polymorphic variants instead of ordinary variants[11].
Since there have been many programs that developed with
ordinary variants, we believe that the polymorphic variants
and our type extension mechanism would complement each
other.

6. CONCLUSION
This paper presented the design and implementation of As-
pectual Caml, an AOP functional language. The language
design aims at developing practical applications by adapting
many AOP features in existing AOP languages. In order
to fit for the programming styles in strongly-typed func-
tional languages, we reconsidered AOP features, including
type inference of aspects, polymorphism in pointcuts, and
type extension mechanisms. We believe that those features
would serve a good basis for further theoretical development
of AOP features such as type safety.

A compiler of an Aspectual Caml subset is implemented as a
translator to Objective Caml. It is capable to compile non-
trivial application programs in which base and aspect defi-
nitions deeply interact. Those application programs would
also demonstrate that AOP is as useful in functional pro-
gramming as in object-oriented programming.

We plan to work more on the design and implementation of
Aspectual Caml. In particular, a module system for aspects
that would nicely work with the ML module system would
be needed. We also consider further polymorphism in advice
bodies so as to easily define type universal aspects like trac-
ing. One idea is to integrate the language with G’Caml[9]
so that advice can use functions that can examine values in
different types.

7. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about

advice. In R. L. Curtis Clifton and G. T. Leavens,
editors, FOAL2004, Technical Report TR#04–04,

8

Department of Computer Science, Iowa State
University, Mar. 2004.

[2] T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
Conference record of Symposium on Principles of
Programming Languages, pages 1–3, 2002.

[3] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development—Coq’Art: The
Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 2004.

[4] J. Bonér. What are the key issues for commercial aop
use: how does aspectwerkz address them? In Proc. of
AOSD ’04, pages 5–6. ACM Press, 2004. Invited
Industry Paper.

[5] B. Burke and A. Brok. Aspect-oriented programming
and JBoss. Published on The O’Reilly Network, May
2003. http://www.oreillynet.com/pub/a/onjava/

2003/05/28/aop_jboss.html.

[6] B. de Alwis and G. Kiczales. Apostle: A simple
incremental weaver for a dynamic aspect language.
Technical Report TR-2003-16, Dept. of Computer
Science, University of British Columbia, 2003.

[7] T. Elrad, R. E. Filman, and A. Bader.
Aspect-oriented programming. Communications of the
ACM, 44(10):29–32, Oct. 2001.

[8] M. Erwig and D. Ren. Type-safe update
programming. In ESOP 2003, volume 2618 of LNCS,
pages 269–283, 2003.

[9] J. Furuse. Extensional Polymorphism: Theory and
Application. PhD thesis, Université Denis Diderot,
Paris, Dec. 2002.

[10] J. Garrigue. Programming with polymorphic variants.
In ML Workshop, 1998.

[11] J. Garrigue. Code reuse through polymorphic
variants. In Workshop on Foundations of Software
Engineering, Sasaguri, Japan, Nov. 2000.

[12] R. Hirschfeld. Aspects - AOP with squeak. In
Workshop on Advanced Separation of Concerns in
Object-Oriented Systems (OOPSLA 2001), Oct. 2001.

[13] J. Hughes. Why functional programming matters.
Computer Journal, 32(2):98–107, 1989.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. Getting started with
AspectJ. Communications of the ACM, 44(10):59–65,
Oct. 2001.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP 2001, pages 327–353, 2001.

[16] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, ECOOP ’97, number 1241 in
LNCS, pages 220–242, Jyväskylä, Finland, 1997.
Springer-Verlag.

[17] X. Leroy. A proposal for recursive modules in
Objective Caml. http://cristal.inria.fr/~

xleroy/publi/recursive-modules-note.pdf.

[18] O. Spinczyk, A. Gal, and W. Schroder-Preikschat.
AspectC++: An aspect-oriented extension to C++.
In Proc of TOOLS2002, pages 18–21, Sydney,
Australia, Feb. 2002.

[19] D. B. Tucker and S. Krishnamurthi. Pointcuts and
advice in higher-order languages. In Proc. of
AOSD2003, pages 158–167. ACM Press, 2003.

[20] P. Wadler. Functional programming: An angry
half-dozen. SIGPLAN Notices, 33(2):25–30, 1998.

[21] D. Walker, S. Zdancewic, and J. Ligatti. A theory of
aspects. In ICFP2003, 2003.

[22] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In R. Cytron and G. T. Leavens,
editors, FOAL2002, Technical Report TR#02–06,
Department of Computer Science, Iowa State
University, pages 1–8, Enschede, The Netherlands,
Apr. 2002.

APPENDIX
A. AN EXAMPLE OF COMPILER WRIT-

TEN IN ASPECTUAL CAML
A.1 Base Program: A Simple Compiler
(*type of identifiers*)
type ident = I of string
let ppI (I(x)) = x
(*type of immediate values*)
type imm =

| Int of int
| Float of float

(*type of terms*)
type syntax =

| S_Let of ident * syntax * syntax
| S_Var of ident
| S_LetRec of s_fundef list * syntax
| S_App of syntax * syntax list
| S_NegInt of syntax
| S_SubInt of syntax * syntax
| S_IfLEInt of syntax * syntax * syntax * syntax
| S_Imm of imm

(*mutually recursive functions*)
and s_fundef = { s_name : ident;
s_args : ident list;
s_body : syntax }

(*type of terms after K normalizing*)
type knormal =

| K_Let of ident * knormal * knormal
| K_Var of ident
| K_LetRec of k_fundef list * knormal
| K_App of ident * ident list
| K_NegInt of ident
| K_SubInt of ident * ident
| K_IfLEInt of ident * ident * knormal * knormal
| K_Imm of imm

and k_fundef = { k_name : ident;
k_args : ident list;
k_body : knormal }

(*return a fresh identifier*)
let fresh_knormal =

let r = ref 0 in
fun () -> (incr r;

9

I(("_knormal_" ^ (string_of_int !r))))
(*K normalizing for the constructor LetRec*)
let rec knormal_letrec fundef = match fundef with

[] -> []
| {s_name = ident;

s_args = ident_list;
s_body = exp}::tl ->
{k_name = ident;
k_args = ident_list;
k_body = (knormal exp)}::(knormal_letrec tl)

(*K normalizing for the constructor App*)
and knormal_app exp explist =
(*omitted for limited space*)
(*K normalizing*)
and knormal = function

S_Var(x) -> K_Var(x)
| S_NegInt(exp) ->

let f x = K_NegInt(x) in
insert_let (knormal exp) f

| S_SubInt(exp1, exp2) ->
insert_let (knormal exp1)

(fun x ->
insert_let (knormal exp2)

(fun y -> K_SubInt(x, y)))
| S_IfLEInt(exp1, exp2, exp3, exp4) ->

insert_let (knormal exp1)
(fun x ->

insert_let (knormal exp2)
(fun y ->
K_IfLEInt(x, y,

knormal exp3,
knormal exp4)))

| S_Let(ident, exp1, exp2) ->
K_Let(ident, knormal exp1, knormal exp2)

| S_LetRec(fl, exp) ->
K_LetRec(knormal_letrec fl, knormal exp)

| S_App(exp, explist) -> knormal_app exp explist
| S_Imm(i) -> K_Imm(i)

and insert_let e c = match e with
K_Var(x) -> c x

| exp -> let fresh = fresh_knormal () in
K_Let(fresh, exp, c fresh)

(*K normalizing main*)
let knormal_main s_exp = knormal s_exp

A.2 Aspect: Addition of Typing
aspect AddType
(*type of types for expressions*)
type typ =

Tint
| Tfloat
| Tvar of typ option ref
| Tfun of typ list * typ

(*type extension of identifiers for types*)
type+ ident = I of ... * typ{Tvar(ref None)}
(*returns fresh variables with types*)
let fresh_knormal_with_type =

let r = ref 0 in
fun typ -> (incr r;

I("_knormal_" ^ (string_of_int !r), typ))
(*find out concrete type to short cut constructors Tvar*)
let rec get_type = function

Tvar({contents = Some(t)}) -> get_type t
| Tfun(t_list, t) -> Tfun(List.map get_type t_list,

get_type t)
| t -> t

(* occur check *)
let rec occur r1 = function

Tint | Tfloat -> false
| Tfun(t2s, t2’) -> List.exists (occur r1) t2s

|| occur r1 t2’
| Tvar(r2) when r1 == r2 -> true
| Tvar({ contents = None }) -> false

| Tvar({ contents = Some(t2) }) -> occur r1 t2
exception Unify of typ * typ
(*unification of two types*)
let rec unify t1 t2 =
(*omitted for limited space*)
(*typing after K normalizing*)
let rec id_typing k_exp t_env = match k_exp with

K_Var(I(x, typ)) -> begin try
let typ1 = List.assoc x t_env in

unify typ typ1; typ
with Not_found ->

failwith ("unbound_variable: " ^ x) end
| K_NegInt(I(_, typ)) -> unify typ Tint; typ
| K_SubInt(I(_, typ1), I(_, typ2)) ->

unify typ1 Tint; unify typ2 Tint; Tint
| K_Let(I(name, typ), k_e1, k_e2) ->

let typ1 = id_typing k_e1 t_env in
unify typ1 typ;
id_typing k_e2 ((name, typ1)::t_env)

| K_LetRec(k_fundef_list, k_e) ->
let new_t_env =

id_typing_letrec k_fundef_list t_env in
id_typing k_e new_t_env

| K_App(id, id_list) ->
id_typing_app id id_list t_env

| K_IfLEInt(I(_, typ1), I(_, typ2), k_e1, k_e2) ->
unify typ1 Tint; unify typ2 Tint;
let ke1_typ = id_typing k_e1 t_env in
let ke2_typ = id_typing k_e2 t_env in

unify ke1_typ ke2_typ;
ke1_typ

| K_Imm (Int _) -> Tint
| K_Imm (Float _) -> Tfloat

(*typing after K normalizing
for the constructor LetRec *)

and id_typing_letrec k_fundef_list t_env =
(*omitted for limited space*)
(*typing after K normalizing for the constructor App*)
and id_typing_app fun_id arg_ids t_env =
(*omitted for limited space*)
(*a flag to judge if a call to knormal is recursive*)
let rec flag = ref false
(*adding typing expression after K normalizing*)
advice knormal_with_typing =

[around (call knormal s_exp)]
if not !flag
then
let _ = flag := true in
let k_exp = proceed s_exp in
let _ = id_typing k_exp [] in
let _ = flag := false in k_exp

else
let k_exp = proceed s_exp in k_exp

end

10

