
Context Holders: Realizing Multiple Layer Activation
Mechanisms in a Single Context-Oriented Language

Tomoyuki Aotani
Tokyo Institute of Technology

aotani@is.titech.ac.jp

Testuo Kamina
University of Tokyo
kamina@acm.org

Hidehiko Masuhara
Tokyo Institute of Technology
masuhara@is.titech.ac.jp

Abstract
We propose LamFJ, a calculus for expressing various layer ac-
tivation mechanisms in context-oriented programming languages.
LamFJ extends FeatherweightJava with context holders, which are
the abstraction of dynamic layer activation. By encoding programs
with different layer activation mechanisms into a program ma-
nipulating context holders, LamFJ serves as a foundation to rea-
son about interactions between different mechanisms. This paper
presents a sketch of the context holders and encodings of existing
layer activation mechanisms.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Context-oriented programming, layer activation mech-
anisms

1. Introduction
Context-oriented programming (COP) [4] is an approach to mod-
ularize behavioral variations of a program from the viewpoint of
the context that changes during execution of a program. Changing
behavior with respect to changes of the context is achieved by (1)
changing the compositions of behavioral variations when the con-
text changes and (2) finding a composition of behavioral variations
and selecting a method body with respect to not only the dynamic
type of the receiver object but also the composition when a method
is called.

COP languages provide partial methods and layers to mod-
ularize behavioral variations and layer activation mechanisms to
change the behavior of the program. A partial method in a layer
describes a behavioral variation of a method. A layer activation
mechanism specify how and when compositions of behavioral vari-
ations change.

Different layer activation mechanisms use different rules for
finding a composition of behavioral variations, which can be
explained as an analogy to scoping of variable bindings. Con-
textJ [9], JCop [1], and PyContext [11] employ dynamic scoping;
EventCJ [7] and ContextErlang [10] employ per-object activation;
and Subjective-C[3] employs imperative activation. In Contex-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FOAL ’14, April 22, 2014, Lugano, Switzerland.
Copyright c© 2014 ACM 978-1-4503-2798-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/2588548.2588552

1 class C{
2 void m(){}
3 layer L{ void m(){new C().m();} }
4 }

Figure 1. Example of a class with a layer and a partial method

1 C c=new C();
2 activate(L);
3 c.m();

4 deactivate(L);
5 c.m();

Figure 2. Example using imperative activation

tJS [8], one can implement his or her own layer activation mecha-
nism through meta programming in JavaScript.

In this study, we propose LamFJ, a calculus for expressing vari-
ous layer activation mechanisms. It extends FeatherweightJava [6]
with layers, partial methods, context holders, contextual method
invocation, and let-binding. Using context holders enables us to
not only realize each layer activation mechanism separately but
also use several mechanisms in one programming language. In this
sense, LamFJ serves as an intermediate language for COP lan-
guages and foundation to reason about interactions between dif-
ferent mechanisms.

In this paper, we sketch LamFJ and the context holders, and
show how we can realize each layer activation mechanism and use
several mechanisms by using them.

2. Activation Mechanisms
This section gives a brief overview of the three layer activation
mechanisms in COP languages, namely imperative activation, per-
object activation, and syntactic activation.

Figure 1 shows class C that is commonly used to explain each
mechanism. Class C has base method m and layer L, which defines
a partial method to m in class C. When method m is invoked on
an object of C, the program goes to line 3 if layer L is active and
to line 2 otherwise. The active layers are usually managed as a
sequence L1, L2, · · · , Ln. Partial methods in Li precede the ones
in Lj if i < j, and Li is activated more recently than Lj in most
COP languages.

2.1 Imperative activation
In the imperative activation mechanism, there is exactly one se-
quence of active layers and its change affects every method dis-
patch process in the program. Figure 2 shows a simple example
that uses imperative activation. Layer L is activated and deactivated
in lines 2 and 4, respectively. The method invocation in line 3 and
the subsequent method invocations execute partial method m in L

3

1 C c1=new C();
2 C c2=new C();
3 activate(L,c1);

4 c1.m();
5 c2.m();

Figure 3. Example using per-object activation

1 C c=new C(); 2 with(L){ c.m(); }

Figure 4. Example using dynamic scope activation

Signatures Behavior
CH newCH() creates an empty context holder

CH activate(Layer,CH) activates the layer
CH deactivate(Layer,CH) deactivates the layer

CH clone(CH) clones the context holder
CH merge(CH,CH) merges the two context holders

Obj dispatch(m,CH,Obj) executes a partial or base method

Table 1. Operations on CH

(line 3 in Figure 2) because they appear after the layer activation
of L. On the other hand, the method invocation in line 5 executes
base method m (line 2 in Figure 1) because it appears after the layer
deactivation of L.

2.2 Per-object activation
In the per-object activation mechanism, layers are activated on each
object. To activate a layer, the programmer specifies the object
along with the name of the layer. Figure 3 shows a simple example
that uses per-object activation. Layer L is activated on object c1 in
line 3. The method invocation in line 4 executes the partial method
m in layer L (line 3 in Figure 1) because L is active on object c1.
The subsequent method invocation in partial method L.m (line 3 in
Figure 1) executes base method m because L is not activated on the
receiver objects. Similarly, the method invocation in line 5 executes
m.

2.3 Dynamic scoping
In the dynamic scoping activation mechanism, layers are activated
using a block structure, namely the with-block, and the layers are
active during the execution of the body of the block. Figure 4 shows
a simple example that uses dynamic scoping activation. Line 2
activates the layer L by using the with-block, and the method
invocation in the body executes partial method L.m. Subsequent
method invocations also execute the partial method, because they
are evaluated during the execution of the body of the with-block.

3. Context Holders
In this section, we informally explain context holders and contex-
tual method invocation, and how we can realize in LamFJ the layer
activation mechanisms described in Section 2.

Context holders are instances of the abstract data type CH de-
fined as a collection of pairs of an activation event ε and time t and
six operations, namely newCH, activate, deactivate, clone,
merge, and dispatch, which are summarized in Table 1. An ac-
tivation event is either αL, denoting that layer L is activated, or
δL, denoting that L is deactivated. newCH() creates an empty con-
text holder. activate(L,h) and deactivate(L,h) evaluated at
t take a layer name L and context holder h and add a pair (αL,t)
and (δL,t) to h, respectively. clone(h) takes a context holder
h and returns a deep clone of h. merge(h,h’) takes two context
holders h and h’ and returns a new context holder that has every
pair (ε,t) in h or h’. dispatch(m,h,o) takes a method name m,
context holder h, and objects o1, · · · , on, and executes a base or
partial method on o1 with respect to the sequence of active layers

1 class C{
2 Obj m(CH h){...}
3 layer L{
4 Obj m(CH h){
5 new C().m〈h〉();
6 }
7 }}
8 Obj main(){

9 let h=newCH() in
10 let c=new C() in
11 activate(L,h);
12 c.m〈h〉(h);
13 deactivate(L,h);
14 c.m〈h〉(h)
15 }

Figure 5. Imperative activation using context holders

1 class C{
2 CH h=newCH();
3 Obj m(){...}
4 layer L{
5 Obj m(){
6 let c=new C() in
7 c.m〈c.h〉()
8 }

9 }}
10 Obj main(){
11 let c1=new C() in
12 let c2=new C() in
13 activate(L,c1.h);
14 c1.n〈c1.h〉();
15 c2.n〈c2.h〉()
16 }

Figure 6. Per-instance activation using context holders

computed from h as follows. Let εL and tL be the latest activation
event on L and its time in h, respectively. Then in the resulting se-
quence of active layers, (1) every L such that εL = αL appears and
(2) L appears in front of L’ if tL ≥ tL′ .

A contextual method invocation is a method invocation that
takes one context holder h along with the receiver and argument ob-
jects, i.e., e0.m〈eh〉(e1,· · · ,en), where eh is an expression eval-
uated to a context holder and e0,· · · ,en are the arguments. The
semantics of contextual method invocation e1.m〈eh〉(e2,· · · ,en)
is given by dispatch(m,h,o) where oi is the value obtained by
evaluating ei for each i ∈ {1, · · · , n} and h is the value obtained
by evaluating eh.

The following subsections show how we can realize each layer
activation mechanism by using context holders in LamFJ.

3.1 Imperative activation
The imperative activation mechanism can be realized by creating
exactly one context holder at the beginning of the execution of
the program and using it for every method invocation and layer
activation. In Figure 5, we rewrite class C (Figure 1) and Figure 2
to use context holders in this manner. In the declaration of class C
(lines 1–7), the method invocation (line 5) in partial method L.m is
changed so that it specifies the context holder h. Line 9 creates the
context holder that are used by every layer activation and method
invocation in the program. Lines 10–14 correspond to the code in
Figure 2. To activate and deactivate layer L, the context holder h
is explicitly specified (lines 11 and 13). The method invocations in
lines 12 and 14 are also extended to specify the context holder h for
method dispatching.

3.2 Per-object activation
The per-object activation mechanism can be realized by having a
context holder for each object. In other words, we can get a program
that uses the context holders by translating each object to a pair
comprising the object and a context holder.

In Figure 6, we rewrite class C and Figure 3 to use context
holders. Instead of using the pairs, each object of C has its context
holder as a member (field h in line 2). Each method invocation to
an object of C then uses the context holder by accessing its field h
(lines 7, 14 and 15). Activating layer L on object c1 (line 13) is also
changed so that it specifies the context holder in c1 instead of the
object itself.

4

1 class C{
2 Obj m(CH h){...}
3 layer L{
4 Obj m(CH h){
5 new C().m〈h〉(h);
6 }
7 }}

8 Obj main(){
9 let h=newCH() in

10 let c=new C() in
11 let h’=clone(h) in
12 activate(L,h);
13 c.m〈h〉(h)
14 }

Figure 7. Dynamic scoping using context holders

1 C c=new C();
2 activate(L);

3 without(L){c.m();}
4 c.m();

Figure 8. Example using imperative activation and dyn. scoping

1 class C{
2 Obj m(CH gh,CH h){...}
3 layer L{
4 Obj m(CH gh,CH h){
5 let mh=
6 merge(gh,h) in
7 new C().m〈mh〉(gh,h);
8 }}}
9 Obj main(){

10 let gh=new CH() in

11 let h=new CH() in
12 let c=new C() in
13 activate(L,gh);
14 let h’=clone(h) in
15 deactivate(L,h);
16 let mh=merge() in
17 c.m〈mh〉(gh,h);
18 let mh=merge(gh,h’) in
19 c.m〈mh〉(gh,h’)
20 }

Figure 9. Imperative activation and dyn. scoping using context
holders

3.3 Dynamic scoping
The dynamic scoping activation mechanism can be realized by
creating a context holder for each dynamic scoping. clone plays an
important role to yield the same behavior as the with-block using
the context holders. Let h be a variable that is bound to a context
holder for the current dynamic scope. Then, with(L){o.m();} is
translated into the following code:

1 let h’=clone(h) in
2 activate(L,h);

3 o.m〈h〉();
4 let h=h’ in ...

Line 1 backs up the context holder h for latter use. Line 2 activates
layer L on h and line 3 invokes method m by using h so that layer L
affects the method dispatching. At the point where the with-block
closes, layer activation and deactivation on h are reverted by simply
binding h to the context holder h’ (line 4).

In Figure 7, we rewrite class C and Figure 4 in the above man-
ner. The base and partial methods in class C take one context holder
as the argument to propagate the context holder of the current dy-
namic scope. Line 9 creates the topmost context holder h by using
newCH. Lines 2–12 correspond to the beginning of the with-block
in Figure 4, and thus they create a backup context holder h’ by
using clone and activate layer L on h. The following method invo-
cation (line 13) uses the context holder h as a parameter of method
dispatching and the argument. Because L is active on h, it executes
partial method L.m. The subsequent method invocations also exe-
cute L.m infinitely because they use the same context holder.

3.4 Mixed activation
This section shows that context holders enable us to use several
activation mechanisms in one language thanks to merge.

Suppose we have a hypothetical COP language that employs
imperative activation and dynamic scoping. Figure 8 is an example
(see Figure 1 for the definitions of class C and layer L). It first
creates an object of C and then activates layer L by using imperative
activation (line 2). The without-block in line 3 deactivates layer
L within the block. Therefore L is not active when m is invoked in
line 3. On the other hand, L is active when m is invoked in line 4.

In Figure 9, we rewrite class C and the code in Figure 8 to
use context holders. Base and partial methods m and L.m take two
context holders, namely gh and h; gh records activation events
fired using imperative activation; and h records activation events
fired using dynamic scoping. In partial method L.m (lines 4–8), we
use merge to merge the sequences of layer activation events fired
using imperative activation and dynamic scoping. Line 7 specifies
the merged context holder mh to invoke m. Method main activates
layer L on gh (line 13) and deactivates L on h (line 15). After
line 15 is executed, gh, h, and h’ are {(αL, t)}, {(δL, t′)}, and
empty, respectively, where t < t′. The method invocation in
line 17 executes base method m because it depends on context
holder mh, which is {(αL, t), (δL, t

′)}. On the other hand, the
method invocation in line 19 executes L.m because the specified
context holder mh is {(αL, t)}.

4. Conclusions and Future Work
In this paper, we proposed LamFJ, a calculus for expressing vari-
ous layer activation mechanisms in context-oriented programming
languages. Context holders in LamFJ abstract dynamic layer acti-
vation and enable us to not only realize each layer activation mech-
anism separately but also use several mechanisms in one program-
ming language. There are several directions for future work. One
direction is to support implicit layer activation [2, 11]. Another di-
rection is to develop a verification technique for context-oriented
programs based on context holders. By considering context holders
as resources, we think resource usage analysis [5] is applicable.

References
[1] Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael

Haupt, and Kazunori Kawauchi. Event-specific software composition
in context-oriented programming. In SC ’10, pages 50–65, 2010.

[2] Engineer Bainomugisha, Jorge Vallejos, Coen De Roover, An-
doni Lombide Carreton, and Wolfgang De Meuter. Interruptible
context-dependent executions: A fresh look at programming context-
aware applications. In Onward! ’12, pages 67–84, 2012.

[3] Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz,
Jean-Christophe Libbrecht, and Julien Goffaux. Subjective-C: bring-
ing context to mobile platform programming. In SLE’10, pages 246–
265, 2011.

[4] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3):125–151,
2008.

[5] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis.
TOPLAS, 27(2):264–313, 2005.

[6] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. TOPLAS,
23(3):396–450, 2001.

[7] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. EventCJ:
a context-oriented programming language with declarative event-
based context transition. In AOSD ’11, pages 253–264, 2011.

[8] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer
composition in ContextJS. Science of Computer Programming,
76(12):1194–1209, December.

[9] Michael Haupt Malte Appeltauer, Robert Hirschfeld and Hidehiko
Masuhara. ContextJ: Context-oriented programming with java. Com-
puter Software, 28(1):272–292, 2011.

[10] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. ContextEr-
lang: Introducing context-oriented programming in the actor model.
In AOSD’12, pages 191–202, 2012.

[11] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-
oriented programming: Beyond layers. In ICDL ’07, pages 143–156,
2007.

5

