
An Advice Mechanism for Non-local Flow Control

Hidehiko Masuhara Kenta Fujita Tomoyuki Aotani
Department of Mathematical and Computing Sciences

Tokyo Institute of Technology, Japan
masuhara@acm.org fujita.k.ak@m.titech.ac.jp aotani@is.titech.ac.jp

Abstract
We propose an advice mechanism called Chop&Graft for non-local
flow control. It offers a novel chop pointcut that lets a piece of ad-
vice terminate the current execution, and graft and retry oper-
ators that resume and restart the terminated executions. By using
pointcuts for specifying the region of termination, the mechanism
is more robust and more concise than the traditional exception han-
dling mechanisms that rely on names or exception classes. The pa-
per presents the design of the mechanism along with the sketches of
two implementations using delimited continuations or threads and
exceptions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages, Design

Keywords Aspect-oriented programming, exception handling,
delimited continuations

1. Introduction
Non-local flow control is a transition of program execution from a
point to another lexically isolated point. Examples are the termina-
tion of a task and backtracking. While modern programming lan-
guages offer the mechanisms for such flow control, including the
exception handlers and continuations, the programs with non-local
flow control are often complicated (Lee and Anderson 1990).

Aspect-oriented programming (AOP) enables implementations
of non-local flow control to be separated from the core program
logic. Previous studies have shown that aspects can implement
exception handlers for real-world applications (Lippert and Lopes
2000; Colyer and Clement 2004; Filho et al. 2006; Taveira et al.
2009) as well as contract checkers that raise exceptions (Rebêlo
et al. 2010).

Those AOP-based implementations cannot, however, directly
realize the control flow that the programmer wants to express.
Assume we want to restart a task in the middle of its execution.
Even with AOP, we have to encode the flow control by defining
two pieces of advice with a loop construct, an exception handler,
and code to throw an exception. Since the implementation consists
of two pieces of code, it has to pass information from the one to the
other by explicitly using the fields of an exception object. Since the

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 20yy held by Owner/Author. Publication Rights Licensed to ACM.

CONF ’yy Month d–d, 20yy, City, ST, Country
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00
DOI: http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

implementation relies on the exception handling mechanism in the
underlying language, it requires very careful programming in order
to avoid the problem of accidental capturing.

We propose a novel advice mechanism for AOP languages,
called Chop&Graft, that can express non-local flow control in a
more direct way. The key idea is to extend pointcuts so that a single
piece of advice can directly express transfer of control from two
execution points in a program.

In the following sections, we first present several types of non-
local flow control and their AOP implementations (Section 2), fol-
lowed by the problems of those implementations (Section 3). We
then present the Chop&Graft mechanism and how it can solve
the aforementioned problems (Section 4). We investigated two im-
plementations, namely a prototype implementation using delim-
ited continuations on top of AspectScheme, and an implementa-
tion strategy using threads and exceptions on top of AspectJ with
limited capabilities (Section 5). After discussing related work (Sec-
tion 6), we conclude the paper (Section 7).

2. Traditional Aspects for Non-Local Flow
Control

We show four types of non-local flow control, namely simple task
termination, task termination with recovery, retry, and backtrack-
ing. We first give an example program that represents the core pro-
gram logic, and then illustrate four types of non-local flow control
along with implementations in AspectJ where they are possible.

2.1 Core Program Logic: Plugin Loading
Listing 1 is a fragment of a program that initializes plugin modules
of an application. Figure 1 is its execution sequence. Since the
paper focuses on the control flow, we simplified the example by
putting important methods in one class, which is not shown in the
listing.

main

readFile read

readConfig downLoad buildPlugin

loadPlugin processData

re
try

ba
ck

tra
ck

termination

Figure 1. Execution Sequence of the Example Program. (Execu-
tion goes from left to right. Rectangles are method executions.
Dashed arrows are non-local flow control.)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MODULARITY Companion’16, March 14–17, 2016, Málaga, Spain
c© 2016 ACM. 978-1-4503-4033-5/16/03...$15.00

http://dx.doi.org/10.1145/2892664.2892674

73

The program first reads the location of a plugin module from
a configuration file. It then downloads the plugin definition (we
assume the application can have at most one plugin), constructs
a plugin object, and finally executes the body of the application.

2.2 Task Termination
When a task cannot continue in the middle of its execution, a simple
resolution is to terminate the task and resume the program just after
the task. For example, when there is no configuration file during the
plugin loading, we terminate the entire plugin initialization task and
start the body of the application without plugins.

In AspectJ, we can terminate a task by defining a pair of advice
(Listing 2): a piece of advice that wraps the join point that starts the
task with a try-catch form (catching advice), and another piece of
advice that throws an exception at the join point where the task can
no longer continue (throwing advice). This implementation also
defines a subclass of Error for throwing and catching.

2.3 Task Termination with Recovery
When we terminate a task, we also want to execute a recovery
task as compensation. For example, when we terminate the plugin
loading task, we might want to create a default plugin object.

In AspectJ, the recovery task can be executed in the catching
advice (Listing 3). However, if the recovery task needs informa-
tion at the join point of throwing, it has to pass the information
through fields in the exception object, like the file field of the
NoConfigError class in the example.

2.4 Retry
Sometimes, we want to retry, i.e., to run the original task (possibly
with different parameters) as a recovery task. For example, when
a plugin loading task fails, we want to start the task over with a
configuration file at a different location (e.g., the home directory).

In AspectJ, we can implement this by wrapping the task execu-
tion join point (i.e., proceed in the catching advice) with a try-
catch form in a loop (Listing 4). When the task succeeds, it merely
returns from the advice by exiting the loop. When the task fails, the
catch clause updates the parameters for the next try.

2.5 Backtracking
Backtracking is non-local flow control in an opposite way, where
we want to start a task over from the middle of its execution.
For example, when a constructed plugin object turns out to be
incompatible with the execution platform, we want to restart the

void main() {
Plugin d = loadPlugin(Directory.getCwd());
bodyOfApplication(d);

}

Plugin loadPlugin(File configDir) {
URL loc = readConfig(configDir);
byte[] rawData = download(loc);
return buildPlugin(rawData);

}

URL readConfig(File dir) {
File f = new File(dir,"plugin.cnf");
return new URL(readFile(f));

}

byte[] download(URL url) {
InputStream s = new InputStream(url.append(SUFFIX));
return s.read();

}

Listing 1. Initialization of a Plugin Module.

aspect TerminateLoading {
static class NoConfigError extends Error {}

//catching advice
Plugin around(): call(* *.loadPlugin(File)) {
try { return proceed(); }
catch (NoConfigError e) { return null; }

}

//throwing advice
before(File f) : call(* *.readFile(File)) && args(f)

&& if(!f.exists()) {
throw new NoConfigError();

} }

Listing 2. Task Termination Aspect

aspect UseDefaultPlugin {
static class NoConfigError extends Error {
File file; //initializing constructor omitted

}

Plugin around(): call(* *.loadPlugin(File)) {
try {
return proceed();

} catch (NoConfigError e) {
File f = e.file; //receive information
return new DefaultPlugin(f.getName()); //recovery

} }

before(File f) : call(* *.readFile(File)) && args(f)
&& if(!f.exists()) {

throw new NoConfigError(f); //pass information
} }

Listing 3. Task Termination with Recovery Aspect

task from the join point that downloads the plugin definition by
appending a different suffix to the location.

Listing 5 is a core logic rewritten for this flow control. Since it
requires to rewind the program control to a point inside of a method
call after returning from the method call, AOP implementation is
not possible without a special mechanism in the underlying lan-
guage. The underlined parts are additional to the original applica-
tion code. Note that the added behavior is to revert to the construc-
tion of InputStream, after executing buildPlugin.

3. Problems of the Existing AOP Mechanisms
The implementations of non-local concerns in the previous section
are indirect as they express flow control by means of the excepting
handling mechanism, and have the following problems.

3.1 Two Pieces for One Control
As we can see in the previous section, each implementation of non-
local control with the existing AOP mechanisms is separated into
two pieces, namely throwing and catching advice. This is because
the implementations rely on the exception mechanism to change
the control flow of a program.

This separation makes the program more complicated and hard
to understand. It becomes more problematic when the recovery
task performed at the catching point requires information from
the point of throwing. For example, the aspect implementations in
Sections 2.3 and 2.4 had to define a field in the exception class for
passing information from the throwing point to the catching point.

74

aspect Retry {
static class NoConfigError extends Error {}

Plugin around(File dir)
: call(* *.loadPlugin(File)) && args(dir) {
while (true) { //retry loop
try { return proceed(dir); }
catch (NoConfigError e) {
dir = nextSearchPath(dir); //for the next trial

} } }

before(File f) : call(* *.readFile(File)) && args(f)
&& if(!f.exists()) {

throw new NoConfigError();
} }

Listing 4. Retry Aspect (For simplicity, we omit the case when no
configuration file is found in any search path.)

Plugin loadPlugin(File dir) {
URL loc = readConfig(dir);
for (String s: SUFFIXES) { //insert a loop

byte[] rawData = download(loc, s); //add parameter
Plugin p = buildPlugin(rawData);
if (Platform.isCompatible(p)) //check the result
return p;

}
return null;

}

private byte[] download(URL url, String suf) {

InputStream s = new InputStream(url.append(suf));
return s.read();

}

Listing 5. Core Logic Rewritten for Backtracking (changes are
underlined)

3.2 Accidental Capturing
Though we could define reusable implementations of non-local
control concerns, a solid implementation would become further
complicated in order to avoid the accidental capturing problem.

First, let us look at a naive reusable aspect with two abstract
pointcuts and one abstract method in Listing 6, and a concrete
aspect in Listing 7, which implements the same behavior as the
one performed by the aspect in Section 2.3.

This implementation is not correct when there is another con-
crete aspect of GenericTermination that has an overlapping
control-flow between the throwing and catching points. This is
because they use the same exception class, namely TaskExit,
for all concrete aspects. As a result, an exception thrown by
CreateDefaultPlugin might be caught by another concrete as-
pect, or vice versa. We call this the accidental capturing problem.1

One of the robust implementations would store the concrete as-
pect instance in an exception object at the throwing point and re-
throw the exception if the caught exception object is not thrown
by the catching aspect. Concrete aspects can be stored and com-
pared by obtaining a class object through a reflection method,
getClass().

4. Chop and Graft
We propose an extended advice mechanism called Chop&Graft,
which consists of the chop pointcut and the graft operator.

1 The accidental capturing problem can arise in any program that uses
one exception class for more than one overlapping execution points. Our
emphasis here is that, an AOP implementation can make the problem more
difficult to predict by hiding the use of exceptions from aspect users.

abstract aspect GenericTermination {
abstract pointcut terminate(Object data);
abstract pointcut taskBegin(); abstract
Object recover(Object data);

class TaskExit extends Error {
Object data; //constructor omitted

}

Object around(): taskBegin() {
try { return proceed(); }
catch(TaskExit e) { return recover(e.data); }

}

before(Object data): terminate(data) {
throw new TaskExit(data);

} }

Listing 6. Generic (yet Dangerous) Termination Aspect

aspect CreateDefaultPlugin extends GenericTermination {
pointcut terminate(Object f): call(* *.readFile(File))

&& args(f) && if(!((File)f).exists());

pointcut taskBegin(): call(* *.loadPlugin(File));

Object recover(Object data) {
File f = (File)data;
return new DefaultPlugin(f.getName());

} }

Listing 7. A Use of the Generic Termination Aspect

4.1 The chop Pointcut
The chop(p) pointcut serves as a modifier to an advice declaration
that terminates the current computation up to the join point in the
call stack matching p. It takes a sub-pointcut p as an argument,
and matches the current join point when there is a join point in the
call stack that matches p (similar to cflowbelow(p)). Before the
advice runs, the current computation is terminated up to the join
point matching p. When the execution of the advice is finished, the
computation resumes from the join point matching p.

With a chop pointcut, the termination aspect in Section 2.3 can
be rewritten as follows.
Plugin around(File f): chop(call(* *.loadPlugin(File)))

&& call(* *.readFile(File)) && args(f)
&& if(!f.exists()) {

return null;
}

When readConfig calls readFile, the advice terminates the exe-
cution of readConfig and loadPlugin, and runs the body of the
advice, which merely returns null to the caller of loadPlugin.

Compared to the initial aspect definition, a chop pointcut makes
it possible to define the termination with one piece of advice.

Task termination with recovery is realized in a straightforward
way by executing the recovery task in the advice body:

Plugin around(File f): chop(call(* *.loadPlugin(File)))
&& call(* *.readFile(File)) && args(f)
&& if(!f.exists()) {

return new DefaultPlugin(f.getName());
}

With this implementation, the information at terminating (i.e., call
to readFile) and at exiting (i.e., call to loadPlugin) can be
accessed through advice arguments.

Unlike other kinds of pointcuts, chop is side-effecting. We nev-
ertheless designed it as a pointcut because it should be combined
with other pointcuts and it should be able to take information out
from the join point matching its sub-pointcut.

75

When there is more than one join point matching chop point-
cuts, the closest join point (i.e., the topmost on the call stack) is
selected for task termination. This behavior is consistent with the
cflow pointcut, which matches the closest join point when it is
taking out information from the matching join point.

4.2 The graft Operator
The graft(v) operator can be used in the body of advice with
chop and runs the computation terminated by the chop pointcut.
The parameter v to graft is used as a return value to the current
join point. When the execution of graft comes back to a join
point matching the chop pointcut with a return value v′, graft(v)
returns v′ to the caller.

For example, when we want to conditionally terminate the plu-
gin construction task, we write an if statement with a branch that
runs the graft operator (which does not terminate the plugin con-
struction) and that just returns with null (which terminates the con-
struction).

Plugin around(File f): chop(call(* *.loadPlugin(File)))
&& call(* *.readFile(File)) && args(f)
&& if(!f.exists()) {

if (DefaultConfig.available()) {
Plugin p = graft(DefaultConfig.readData());
p.setDescription("default");
return p;

} else return null;
}

Since the graft operator behaves just like a method call, advice
bodies can perform computation after the execution of graft.

4.3 The retry Operator
The retry operator can only be used in the body of chopping
advice and runs the computation at the chopped join point from
the beginning. For example, in the body of advice with pointcut
chop(call(* *.loadPlugin(File))), a retry operator calls
the loadPlugin with the same arguments.

The retry aspect in Section 2.4 can be rewritten with the retry
operator as follows.

Plugin around(File dir, File f):
chop(call(* *.loadPlugin(File)) && args(dir))
&& call(* *.readFile(File)) && args(f)
&& if(!f.exists()) {

return retry(nextSearchPath(dir), f);
}

It is also possible to explicitly call loadPlugin in the advice body.
However, retry makes advice more generic for more complicated
cases such as when chop selects more than one join point or when
we use an abstract pointcut for chop.

4.4 Discussion: Backtracking and Accidental Capturing
With Chop&Graft, we can implement the behavior by running the
graft operator inside a loop.

Plugin around(String _s): chop(call(* *.loadPlugin(File)))
&& call(* URL.append(String)) && args(_s) {

for (String s: SUFFIXES) {
Plugin p = graft(proceed(s));
if (p.isValid()) return p;

}
return null;

}

Since the Chop&Graft mechanism does rely on “names” for
transitioning controls, it is safe from accidental capturing. This con-
trasts with the throw-catch mechanism, which relies on exception
classes to distinguish different throw-catch pairs as we pointed out
in the previous section.

5. Implementations
We present two implementation approaches: one is to compile
with delimited continuations, and the other one is to compile
with exceptions and threads. The first one supports all the fea-
tures of the Chop&Graft mechanism, yet requires delimited con-
tinuations in the underlying language. We built an implementa-
tion on top of AspectScheme (Dutchyn et al. 2006). The sec-
ond one does not allow the running of a graft operator more
than once, i.e., it does not allow backtracking. Though limited,
it merely requires the underlying language to have the standard
throw-catch and multi-threading mechanisms. We show this ap-
proach by hand-compiling aspects with Chop&Graft into pure
AspectJ programs. The implementation of the first approach and
the hand-compiled code of the second approach are available at
https://bitbucket.org/nikeeshi/chop-graft.

5.1 Compiling with Delimited Continuations
Delimited continuations (Felleisen 1988; Danvy and Filinski 1990)
are a functional abstraction of non-local control. They consist of
the shift and reset operators. The shift operator terminates the
computation up to the corresponding reset operator and provides
the terminated computation as a function. Many implementations
of those operators are tagged so as to match shift and reset operators
without interference.

Our implementation with delimited continuations uses the shift
and reset operators for chopping and for performing the graft op-
erator, respectively. We illustrate our implementation strategy with
an example in an AspectJ-like hypothetical language with the shift
and reset operator.

Assume we have the following advice declaration.
T around(...): chop(P1) && P2 {
...graft(...)...

}

Then the compiler generates a pair of advice declarations. The first
one captures join points matching P1 and wraps the join points
with the reset operator, where TAG is a unique tag generated for
the original advice.
T around(...): P1 {
return reset(TAG, proceed());

}

The second advice captures the join point at P2. An additional con-
dition cflowbelow(P1) guarantees that the current join point is
surrounded by the reset operator. The body of the advice performs
the shift operator and binds the obtained continuation to graft.
(Note that (v) -> {...} is a syntax for lambda-expressions.)
T around(...): cflowbelow(P1) && P2 {
shift(TAG, (graft) -> {
...graft(...)...

});
}

For languages without delimited continuations, this approach
would still be possible by transforming a program to save and
restore the current call stack (Sekiguchi et al. 1999) or transforming
to a continuation-passing style (Rompf et al. 2009).

5.2 Compiling with Threads and Exceptions
The second implementation compiles Chop&Graft into an AOP
language with exceptions and threads, yet without using delimited
continuations. The basic idea is to execute the advice body in a
newly created thread and let the thread synchronize with the main
thread at the beginning and the end of the graft execution.

Listings 8 and 9 outline the compiled advice declarations at the
chopping join point and at the join point where the original advice
runs.

76

T1 around() : P1() { //at chopping point
SQ.push();
try {
ret = proceed();
while (!SQ.isEmpty()) {
<adv,main> = SQ.poll();
adv.send(GRAFT_END,ret);
switch (main.take()) {
case ADVICE_TERM: return ret;

} }
} catch (NoGraft ng) {
return ng.value();

} finally {
while (!SQ.isEmpty()) {
<adv,main> = SQ.poll();
adv.send(EXCEPTION);
main.take();

}
SQ.pop();

} }

Listing 8. Compiled Advice at Chopping Point

T2 around(...) : cflowbelow(P1()) && P2(...){
adv = new Buf();
main = new Buf();
SQ.add(adv,main);
new Thread() {
void run() {
try { main.send(ADVICE_TERM,body()); }
catch (Stop e) { main.send(ADVICE_TERM,null); }

}
T2 body() { ...graft(...)... }
T1 graft(v) {
main.send(GRAFT,v);
switch(adv.take()) {
case GRAFT_END: return adv.value();
case EXCEPTION: throw new Stop();

} } }.start();
switch(main.take()) {
case GRAFT: return main.value();
case ADVICE_TERM: throw new NoGraft(main.value());

} }

Listing 9. Compiled Advice at Original Advice Point

5.2.1 Stack of Queues for Passing Channels
For each advice declaration with a chop pointcut, we define a
global variable for storing a stack of queues. In the compiled code,
the variable is represented by SQ. The stack structure keeps track of

advice at P1
advice at P2 advice

thread
advice
Body
graft(v)

return v'
return v"

proceed
start/run

GRAFT_END(v')

ADVICE_TERM(v")

GRAFT(v)return vreturn v'

return v"

Figure 2. Execution Sequence When Graft is Called (Solid arrows
are method calls and returns. Dashed arrows are message sends.
Threads are suspended during the gray rectangles. The dashed oval
represents intermediate method calls between P1 and P2.)

advice at P1
advice at P2 advice

thread
advice
Body
return v

proceed
start/run

ADVICE_TERM(v)throw new NoGraft(v)
return v'

Figure 3. Execution Sequence When Graft is not Called

the topmost join point matching the chop pointcut. (Note that there
can be more than one join point that matches the chop pointcut.)
The push() and pop() methods of SQ respectively put and remove
a queue on top of the stack.

The top of SQ is used for sending communication buffers from
advice join points to the topmost chopping join point. Since more
than one advice join point can run before the control comes back
to the chopping join point, each element in SQ is a queue. The add,
poll, and isEmpty methods of SQ manipulate the queue on top of
SQ, which respectively adds/removes a pair of buffers to/from the
queue and checks the emptiness of the queue. We use a shorthand
<adv,main> = SQ.poll() for taking a pair out of the queue and
binding it to variables adv and main.

For synchronizing the execution of the advice body (which
is running in a separate thread) with the chopping join point,
we use a buffer, namely adv in the code. We use shorthands
adv.send(LABEL,val) to send a value with a label. adv.take()
waits for a message from the buffer and returns the received label.
adv.value() returns the received value.

For sending information from the advice execution to the chop-
ping join point, we also use a buffer, namely chop in the compiled
code.

5.2.2 Execution with/without Graft
The compiled code embodies two types of behaviors, depending
on whether graft is called inside of the advice body or not.
The outlines of those behaviors are illustrated as the interaction
diagrams in Figures 2 and 3.

When graft(v) is called (Figure 2), the advice thread sends v
to the advice join point and suspends its execution. Then the advice
returns to the caller (i.e., the chopped operation) with the return
value v. When the control reaches the chopping join point with a
return value v′, it sends v′ to the advice thread so that the advice
thread resumes with v′ as a return value from graft. When the
advice thread finishes its execution with a value v′′, it sends v′′

back the chopped join point.
When the advice thread finishes the execution of the advice

body with a return value v, yet without calling graft (Figure 3),
it sends v to the main thread. The main thread then throws an
exception with v towards the chopping join point. The chopping
join point returns v to its caller.

5.2.3 Further Details
The actual compile code handles other corner cases like when
graft is called more than once (which will produce a runtime
error) and when an exception is raised during the graft operation
(which needs to terminate the advice thread).

There are cases where obvious optimizations can be easily im-
plemented. For example, when all graft operations in an advice
body appear at tail positions (i.e., they only appear as return
graft(...);), we do not need to spawn an advice thread.

77

6. Related Work
EJFlow (Cacho et al. 2008) enables defining exception handlers
as pieces of advice. It offers a concept of exception channels so
that handlers can be specified for each pair of exception throwing
and catching points. While EJFlow also focuses on the pair of
two control points, it still assumes to throw exceptions explicitly.
Hence EJFlow does not support flow control beyond termination
and recovery and still suffers from an accidental capturing problem.

Loop join points (Harbulot and Gurd 2006), closure join points
(Bodden 2011), and region pointcuts (Akai et al. 2009) all extend
AOP mechanisms for flow control. These extensions provide ab-
straction of an execution of a specific region of code so that advice
can change additional control flow, such as parallelization. How-
ever, those extensions merely handle local flow control, i.e., execu-
tions of code inside a method.

In AspectJ and its extensions, there are advanced pointcuts,
including cflow, tracematch (Bodden et al. 2008), and dflow (Ma-
suhara and Kawauchi 2003). Those pointcuts resemble Chop&Graft
in the ability to express conditions on more than one join point.
However, those pointcuts merely serve as predicates, and have no
effect on the existing computation.

Delimited continuations are a powerful and flexible abstraction
of non-local control. In fact, one of our implementations uses de-
limited continuations. However, delimited continuations are sim-
ilar to exception handling mechanisms in that they require writ-
ing code at points of throwing and catching and also in that they
rely on unique identifiers (called tags) to avoid accidental captur-
ing. Put differently, Chop&Graft can be considered as an AOP-style
abstraction of the delimited continuations.

7. Conclusion
We proposed an extended advice mechanism called Chop&Graft
for aspect-oriented programming languages. The mechanism con-
sists of the chop pointcut and the graft and retry operators. The
chop pointcut terminates computation up to the execution point
specified by a sub-pointcut, which enables more robust and mod-
ularized descriptions of flow control. This is different from tra-
ditional mechanisms with exceptions and delimited continuations
with or without AOP, where one control concern should be de-
scribed as two separate descriptions that are paired by using iden-
tifiers. Together with the graft and retry operators, a piece of
advice with chop can express several kinds of control concerns,
such as terminating, retrying, and backtracking.

We implemented the proposed advice extensions on top of As-
pectScheme with delimited continuations. We also discussed an-
other implementation that only requires threads and exceptions by
showing hand-written compiled code in AspectJ. Though we have
not yet implemented a compiler of the latter, it gives an essential
insight into the implementation.

There are topics left for future work. The first one is to build a
concrete compiler implementation by extending an AspectJ com-
piler and to rewrite existing programs with Chop&Graft. The sec-
ond one is to investigate the semantics in detail. As we have seen,
the compilation into threads and exceptions is fairly complicated.
It is not clear what kind of semantic properties hold (e.g., the be-
havior of a program where the advice with chop runs at the body
of the advice.) We believe that semantic frameworks developed for
delimited continuations would be useful in discussing those kinds
of properties. The third one is to study interaction with existing
mechanisms for non-local flow control. Since Chop&Graft can be
useful only when the programmer knows the both ends of a transi-
tion of control, we would use existing mechanisms like exception
handlers in other situations. It is an open question, whether a pro-
gram will behave “without surprises” when Chop&Graft and other

non-local flow control mechanisms are used together. Both detailed
investigation of formal semantics and user studies will be needed.

Acknowledgments
We would like to thank Izumi Asakura, Matthias Springer, Fer-
nando Castor, and the anonymous reviewers for their constructive
comments on the paper.

References
S. Akai, S. Chiba, and M. Nishizawa. Region pointcut for AspectJ. In

Proceedings of Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS’09), pages 43–48. 2009.

E. Bodden. Closure joinpoints: block joinpoints without surprises. In
Proceedings of International Conference on Aspect-Oriented Software
Development (AOSD’11), pages 117–128, 2011.

E. Bodden, R. Shaikh, and L. Hendren. Relational aspects as tracematches.
In Proceedings of International Conference on Aspect-Oriented Soft-
ware Development (AOSD’08), pages 84–95, 2008.

N. Cacho, F. C. Filho, A. Garcia, and E. Figueiredo. EJFlow: taming ex-
ceptional control flows in aspect-oriented programming. In Proceedings
of International Conference on Aspect-Oriented Software Development
(AOSD’08), pages 72–83, 2008.

A. Colyer and A. Clement. Large-scale AOSD for middleware. In Proceed-
ings of International Conference on Aspect-Oriented Software Develop-
ment (AOSD’04), pages 56–65, 2004.

O. Danvy and A. Filinski. Abstracting control. In Proceedings of Confer-
ence on LISP and Functional Programming (LFP’90), pages 151–160,
1990.

C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and scoping of
aspects in higher-order languages. Science of Computer Programming,
63(3):207–239, 2006.

M. Felleisen. The theory and practice of first-class prompts. In Proceedings
of Symposium on Principles of Programming Languages (POPL’88),
pages 180–190, 1988.

F. C. Filho, et al. Exceptions and aspects: the devil is in the details. In
Proceedings of International Symposium on Foundations of Software
Engineering (FSE-14),pages 152–156, 2006.

B. Harbulot and J. R. Gurd. A join point for loops in AspectJ. In
Proceedings of International Conference on Aspect-Oriented Software
Development (AOSD’06), pages 63–74, 2006.

P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice.
Springer-Verlag, 1990.

M. Lippert and C. V. Lopes. A study on exception detection and handling
using aspect-oriented programming. In Proceedings of International
Conference on Software Engineering (ICSE’00), pages 418–427, 2000.

H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented pro-
gramming. In Proceedings of Asian Symposium on Programming Lan-
guages and Systems (APLAS’03), pages 105–121, 2003.

H. M. Rebêlo, et al. The contract enforcement aspect pattern. In Proceed-
ings of Latin American Conference on Pattern Languages of Programs,
article no. 6, 2010.

T. Rompf, I. Maier, and M. Odersky. Implementing first-class polymorphic
delimited continuations by a type-directed selective CPS-transform. In
Proceedings of International Conference on Functional Programming
(ICFP ’09), pages 317–328, 2009.

T. Sekiguchi, H. Masuhara, and A. Yonezawa. A simple extension of Java
language for controllable transparent migration and its portable imple-
mentation. In Proceedings of International Conference on Coordination
Models and Languages (COORDINATION’99), pages 211–226, 1999.

J. C. Taveira, et al. Assessing intra-application exception handling reuse
with aspects. In Proceedings of Brazilian Symposium on Software
Engineering, pages 22–31, 2009.

78

