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ABSTRACT

Mobile applications regularly interact with their noisy and ever-
changing physical environment. The fundamentally uncertain na-
ture of such interactions leads to significant challenges in energy

optimization, a crucial goal of software engineering on mobile de-
vices. This paper presents Aeneas, a novel energy optimization
framework for Android in the presence of uncertainty. Aeneas pro-
vides a minimalistic programmingmodel where acceptable program
behavioral settings are abstracted as knobs and application-specific
optimization goals — such as meeting an energy budget — are crys-
tallized as rewards, both of which are directly programmable. At its
heart, Aeneas is endowed with a stochastic optimizer to adaptively
and intelligently select the reward-optimal knob setting through
a form of reinforcement learning. We evaluate Aeneas on mobile
GPS applications built over Google LocationService API. Through
an in-field case study that covers approximately 6500 miles and
150 hours of driving as well as 20 hours of biking and hiking, we
find that Aeneas can effectively and resiliently meet programmer-
specified energy budgets in uncertain physical environments where
individual GPS readings undergo significant fluctuation. Compared
with non-stochastic approaches such as profile-guided optimization,
Aeneas produces significantly more stable results across runs.
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1 INTRODUCTION

Energy efficiency is a critical goal of mobile software ecosystem de-
sign. Effective energy optimization requires a precise understanding
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Figure 1: The Energy Fluctuation of a GPS Application. The

two traces are collected when a mapping app, MAPS.ME, nav-
igates in a moving vehicle. Each data point represents the

energy consumption in the preceding time unit.

of the in-situ energy behavior of the application and its underlying
systems. The very nature of mobile systems, however, poses a fun-
damental challenge against meeting this requirement: a mobile ap-
plication may frequently interact with the noisy and ever-changing
physical environment, leading to significant uncertainty in energy
behavior.

Take the energy behavior of a GPS-based mapping application
for example. Figure 1 illustrates two traces of its energy consump-
tion, with GPS update intervals set at 1 second and 500 milliseconds
respectively through Google LocationServices [2]. Some observa-
tions may surprise an energy optimization designer who expects
more “predictable” results. First, within each trace, there is signifi-
cant variation in energy consumption — e.g., ranging from 65 joules
to 95 joules in the 1s trace — despite that the GPS update interval
does not change within each trace. Second, the variation is often
time-dependent — e.g., for the 1s trace, energy consumption ranges
65-90 joules during elapsed time units 15-20 while later it remains
within 65-70 joules during elapsed time units 35-45 — possibly due
to physical environment change. Third, when we consider multiple
traces, the seemingly “obvious” task of deciding between 1s and
500ms as the desirable GPS interval to minimize energy consump-
tion — a common decision in application-level energy optimization
—may not be obvious at all.

Aeneas Design. In this paper, we describe Aeneas1, a novel
energy optimization framework for Android applications where
uncertainty is treated as the rule — not the exception — in mobile

application energy optimization.
Aeneas provides a simple programming interface where knobs,

i.e., application-specific semantic elements that may have different

1Aeneas is the hero in Virgil’s epic Aeneid. Despite many uncertainties on land and at
sea, he finally reached Latium.
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energy impacts, can be defined by programmers. In addition, pro-
grammers may provide their application-specific goal for optimiza-
tion, such as Quality-of-Service (QoS) or energy budget, through
programmable rewards. The maintenance tasks of the knobs and
rewards are left to the stochastic run-time optimizer, such as de-
ciding which knob setting should be selected, when it should be
selected, and how to meet the reward. Unlike traditional approaches
based on testing or profiling, our optimization is fundamentally in

vivo: the process of observing the uncertain vicissitudes of energy
behavior and that of performing stochastic optimization are unified
as one. Within the landscape of energy optimizations where un-
certainty is either “smoothed out” through heuristics, or mitigated
through fault tolerance, or worse, treated as an experimental after-
thought, Aeneas represents a distinct point in the design space
where uncertainty is captured by design.

Philosophically,Aeneas can be viewed as an interesting instance
of human-machine co-optimization. The two components of Ae-
neas — a simple programming interface and a sophisticated run-
time design — bring the programmer and the automated algorithm
together for cooperative energy optimization. This two-pronged
design leads to three noteworthy features representing different
work distributions between the programmer and the automated
algorithm. First, we allow programmers to fully provide alternative
settings of a knob — such as a GPS update interval can be either 1s
or 500ms — a feature we call the declared discrete knob. The goal
of the stochastic optimizer for this feature is to adaptively select
the reward-optimal one among the alternatives. Second, when the
programmer does not fully specify what the alternatives for a nu-
meric knob should be, we allow programmers to simply provide a
range, a feature we call the inferred knob. To support this feature,
the stochastic optimizer is endowed with an iterative refinement al-
gorithm. Third, our stochastic algorithm itself comes with inherent
parameters. Instead of asking programmers or deployers to provide
hard-code values, Aeneas can function as a self-optimizer, where
the optimal parameter setting is stochastically selected.

Our concrete stochastic algorithm design is based on Multi-
Armed Bandits (MAB), a family of reinforcement learning algo-
rithms with solid theoretical underpinnings on optimality [16, 18,
28]. Our framework bridges program-level elements of knobs and
rewards to two fundamental concepts in MAB: slots and rewards. In
this view, Aeneas is a unique systematic study in streamlining the
programming interface between the application and the runtime
for reinforcement learning. In Aeneas, stochastic optimization is
no longer a pure system-level feature invisible to programmers, but
a “service” that applications may choose to resort to for cooperative
energy optimization.

Aeneas for GPS Applications. Our experience withAeneas repre-
sents a significant effort of evaluating the idea of stochastic energy
optimization in the real world. Aeneas is built on top of Android,
and we use it to guide an open-source GPS mapping app, MAPS.ME.
The evaluation was conducted through driving for 150 hours cov-
ering approximately 6500 miles, as well as 20 hours of biking and
hiking. To the best of our knowledge, our in-field evaluation is the
most extensive study of applying MAB algorithms to mobile/trans-
portation systems. These use scenarios are impactful in the real
world for a number of reasons. First, GPS apps are prevalently used.

Second, they continuously interact with the surrounding environ-
ment regardless of being in the foreground or background; the need
for turn-by-turn directions implies they may be used for a long
duration. Third, for use scenarios where driving is involved, plug-
ging mobile devices to car chargers is known to be environmentally
unfriendly—it may cost 33 times more energy than charging from
wall sockets [1]. Fourth, for more environmentally friendly use
scenarios such as biking, hiking, and riding in public transporta-
tion, the energy optimization of GPS applications critically links to
mobile device usability.

Our evaluation shows that Aeneas is highly effective in energy
optimization in the presence of uncertainty inherent in GPS data.
Through a comprehensive design space exploration —with declared
discrete knobs vs. inferred knobs, varying energy budgets as re-
wards, varying numbers and settings of knobs, and varying modes
of transportation — we find Aeneas consistently converges toward
the knob settings to maximize the programmer-specified reward,
such as a particular battery drain rate. When compared with non-
stochastic approaches, we also find Aeneas remarkably resilient:
occasional noise or physical environment change has little impact
on the effectiveness of optimization. In contrast, profiling-based
approaches are significantly more sensitive to how representative
the profile data are.

Contributions. This paper makes the following contributions:
• A simple and intuitive programmingmodel andAPI to stream-
line application-level energy management with run-time
level stochastic optimization
• A novel stochastic optimizer based on MAB with 3 vari-
ants: an optimizer for declared discrete knobs, an iterative
refinement optimizer for inferred knobs, and a self optimizer
• A significant in-field evaluation with a comprehensive de-
sign space exploration and extensive driving/biking/hiking
experiments

Aeneas is an open-source project. Details can be found at our
website with URL https://github.com/pl-aeneas/aeneas.

2 BACKGROUND

MAB is a classic problem in stochastic optimization. The real-world
inspiration comes from slot machines. A gambler wishes to optimize
the accumulated reward by pulling a set of slot machines, each with
a distinct but unknown distribution of rewards. The gambler may
choose to interact with the slot machine by either pulling a lever
to “try it out,” a step known as exploration in MAB, or pulling one
known to produce a good reward, a step known as exploitation
in MAB. Most MAB solutions focus on balancing the trade-off
between exploration and exploitation, a common theme within
reinforcement learning.

Mathematically, the MAB problem can be viewed as follows.
Given a set of configurations C, let us assume each configura-
tion c ∈ C when interacted at its t th time has reward ρt (c ). The
MAB algorithm attempts to construct an interaction sequence I =
[i1, i2 . . . iq ] where i j ∈ C for any j, with the goal of maximizing
q∑

k=1
ρL ([i1, ...ik ],ik ) (ik ) where L (I , c ) is a local counting function

defined as the number of times c appears in I . The algorithm is
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online in nature, in that the selection of i j may be influenced by
the rewards associated with configuration choices i1 . . . i j−1.

Many solutions exist for solving the MAB problem [17]. For ex-
ample, the one algorithm that will be extensively used by Aeneas is
Value-Difference Based Exploration (VDBE) [32]. In the interaction
sequence, the average reward for each configuration c is maintained
separately through the simple Q function below.

Qt (c ) =
1
t
(ρ1 (c ) + ρ2 (c ) + · · · + ρt (c ))

As the algorithm is online in nature, the same definition can be
written a more friendly recurrence form:

Qt+1 (c ) = Qt (c ) +
1

t + 1
(ρt+1 (c ) −Qt (c ))

The essence of VDBE is to choose between exploration and
exploitation at each interaction. For an interaction sequence so far
as I = [i1, . . . , it−1], the next interaction should chose it as:
• exploration: random c ∈ C.
• exploitation: ci whereQL (I,ci ) (ci ) is the maximum among
QL (I,c1 ) (c1) . . .QL (I,cp ) (cp ) where C = {c1, c2, . . . cp }.

The choice is decided by a simple comparison between a random
number ξ at interaction t and a computed value

ϵt = δ ×
1 − eDt−1

1 + eDt−1
+ (1 − δ ) × ϵt−1

where D is defined as:

Dt =
−|QL (I,c ) (c ) −QL (I,c )−1 (c ) |

σ
with c = it , and δ and σ are constants inherent to VDBE design.
Despite the sophisticated formula here, the D function reveals the
simple philosophy behind VDBE. It utilizes the difference of Q of
the last two rounds of results to guide the MAB to make decisions.

Classic MAB solutions are known to enjoy strong guarantees on
optimality known as asymptotic effectiveness [16, 18, 28]. VDBE is
a widely used practical variant of MAB for balancing exploration
and exploitation.

3 AENEAS DESIGN

Aeneas is an application-runtime co-design which consists of a
programming model (Section 3.1) and runtime stochastic support
(Sections 3.2, 3.3, 3.4).

3.1 Aeneas Programming Model

Aeneas provides a simple and flexible programming model to
help programmers customize their applications and the underlying
stochastic energy optimizer. To streamline our support for An-
droid, the Aeneas programming model is crystallized as a form of
Java APIs. As seen in Listing 1, a simple example using the APIs
shows a LocationProvider dynamically adjusts its accuracy pri-
ority (gpsPrio) and update interval (gpsUpdate) in the presence
of uncertainty of GPS to meet a Service Level Agreement (SLA) of
20% per hour battery drain rate.

Three programming abstractions central toAeneas are knobs, re-
wards, and machines. The three concepts are supported by 3 library
classes Knob, Reward, and AeneasMachine respectively.

Knobs represent program elements where alternative values are
allowed, a recurring theme in application-level energy-aware and

1 class LocationProvider implements Interactor {
2 AeneasMachine aeneas;
3 Knob gpsPrio = new DiscreteKnob(
4 new Integer[]{
5 ANDROID.PRIORITY_LOW_POWER, ANDROID.PRIORITY_HIGH_ACCURACY});
6 Knob gpsUpdate =
7 new InferredKnob(10000, 500, new Integer[]{1000, 5000});
8 LocationProvider() {
9 aeneas = new AeneasMachine(
10 new VBDE(), new Knob[]{gpsUpdate, gpsPrio},
11 new BRateReward(20), this);
12 }
13 void onInteract() {
14 LocationRequest req = new LocationRequest();
15 req.setUpdate(gpsUpdate.read());
16 req.setPriority(gpsPrio.read());
17 requestLocationUpdates(req);
18 }
19 void start() {aeneas.start(); }
20 void stop() {aeneas.stop(); }
21 void resume() {aeneas.resume(); }
22 }
23 class BRateReward extends Reward {
24 float brate;
25 EnergyReward() {this.brate = brate; }
26 float valuate() {
27 float e = this.perInteractionEnergy();
28 return this.batteryRate(e);
29 }
30 float SLA() { return brate; } }

Listing 1: An Aeneas Programming Example

approximate computing (e.g., [5, 12]). In Aeneas, knobs may ei-
ther be a declared discrete knob or an inferred knob. The former
indicates a small set of choices given by the programmer. For ex-
ample, at Line 7, two Android built-in values for GPS accuracy,
PRIORITY_LOW_POWER and PRIORITY_HIGH_ACCURACY, are consid-
ered by the programmer as acceptable during the online optimiza-
tion. The DiscreteKnob class, a subclass of Knob, captures this
notion. The latter, an inferred knob, is used in scenarios when the
programmer does not have a clear notion on the optimal setting,
leaving it to be decided by the runtime optimizer — a case of in-
ference. Inferred knobs are supported by another subclass of Knob,
InferredKnob. For example, at Line 5, the programmer indicates
the gpsUpdate field may be set at any value between 10000 (ms)
and 500 (ms), and be optionally provided with “seed” values — such
as 1000 ms and 5000 ms — for the underlying stochastic optimizer
to start the search. An InferredKnob object consists of values of
numerical type. Knob objects have a read method which returns a
value determined by the stochastic optimizer, as seen in Lines 15-16.

Rewards can be viewed as programmer-definable Quality of Ser-
vice (QoS) specifications, which is in turn used by the underlying
runtime to determine the desirable knob setting in stochastic op-
timization. Among its methods, a subclass of Reward class can
override a method valuate to define how reward should be com-
puted, and a SLA method on what the goal of the optimal reward
should be. When both methods are provided, the underlying opti-
mizer attempts to operate the application so that the reward is as
close to the defined SLA as possible. When the SLA is not overrid-
den, Aeneas simply maximizes the reward. The Reward base class
provides a default implementation that is equivalent as minimiz-
ing energy consumption. As energy is a commonly used metric
to define QoS, the Reward also includes a utility method called
perInteractionEnergy to compute the energy consumption be-
tween two latest valuatemethod invocations, and a utility method
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Algorithm 1 Aeneas Discrete

1 struct Config {
2 ρ : Float[] // reward
3 ν : Int // local counter
4 }
5 R : () → Float // reward function
6 T : Float // SLA target
7 MIN : Int // min interactions
8 MAX : Int // max interactions
9 CT : Float // converge threshold
10 RATE : Float // interaction rate
11 function MainDiscrete(K : T[])
12 C ← Init(K )
13 N ← |C |

14 while N ≤ MAX do

15 i ← MAB(C)
16 Interact(C, i, K )
17 N ← N + 1
18 if (N ≥ MIN) && Convg(C, N ) break

19 return C

20 function Init( K : T[])
21 for i in 0.. |K | − 1 do
22 C[i]← Config([], 0)
23 Interact(C, i, K )

24 return C

25 function Interact(c : Config, i : Int, K : T[])
26 Set(K , i )
27 OnInteract()
28 TimeElapsed(RATE) {update(c ) }
29 function update(c : Config)
30 c .ρ[c .ν ]← T − R ()
31 c .ν ← c .ν + 1
32 function Convg(C : Config[], N : Int)
33 for all c in C do

34 return true if
c .ν
N
≥ CT

35 return false

Algorithm 2 VDBE

1 δ : Float← 1.0/KS //recommended by VDBE
2 σ : Float // inverse sensitivity
3 ϵ : Float← 1.0 // latest epsilon
4 function MAB(C : Config)
5 if RandomFloat(0, 1) < ϵ then

6 i ← RandomInt(0, |C | − 1)
7 else

8 i, q ← Best(C)

9 D ←
−|q −Ql (C[i].ρ ) |

σ

10 ϵ ← δ ∗
1 − eD

1 + eD
+ (1 − δ ) ∗ ϵ

11 return i
12 function Best(C : Config)
13 i ← argminj∈0. . |C|−1 |Q (C[j].ρ ) |
14 return i, Q (C[i].ρ )
15 functionQ (r : Float[])

16 return

r [0] + ...r [ |r | − 1]
|r |

17 functionQl (r : Float[])

18 return

r [0] + ...r [ |r | − 2]
|r | − 1

Algorithm 3 Aeneas Inferred

1 struct Frame {
2 κ : T[] // knobs
3 θ : Float // best Q value
4 ψ : T // best knob setting
5 }
6 IT : Int← 4 // interpolation density
7 K0 : T[KS] // initial inferred knob
8 S : Stack[Frame] // Stack
9 functionMainInferred
10 K ← K0
11 while true do
12 C ← MainDiscrete(K )
13 i, q ← Best(C)
14 if q ,T 0 then
15 K ← Next(Frame(K , q, K [i]))
16 function Next(f : Frame)
17 f ′ ← top(S)
18 case f .θ × f ′ .θ < 0 // boundary cross
19 Push(S, f )
20 K ← Interp(f .ψ , f ′ .ψ ))
21 case ( |f ′ .θ | − |f .θ |) >T 0 // tighten
22 Push(S, f )

23 i ← Last(f .κ )−First(f .κ )
2

24 K ← Interp(f .ψ − i
2 , f .ψ +

i
2 )

25 otherwise // widen
26 f ← Pop(S)
27 K ← f .κ
28 return K

29 function Interp(i, j : T)
30 i ← max(min(i, j ), First(K0 ))
31 j ← min(max(i, j ), Last(K0 ))
32 k ← j−i

IT
33 return [i, i + k, i + 2 × k, . . . , j]

Figure 2: Aeneas Algorithm Specification

batteryRate to convert energy to battery life in the unit of percent-
age/hour. These base implementations rely on querying low-level
Android battery management APIs (more details in Section 4). The
Reward design reflects the flexible extensibility and portability of
Aeneas API: not only an end-programmer may define customized
QoS/energy metrics, but also a framework-level programmer may
customize how battery should be accounted for — when low-level
battery management solutions evolve from one smartphone to an-
other — by overriding methods such as perInteractionEnergy.
Either way, the underlying stochastic optimizer remains unchanged.

Finally, an AeneasMachine may be created, the programming
abstraction for the stochastic optimizer itself. Each AeneasMachine
may be customized by the MAB strategy, the available knobs, and
the reward. One such machine can be seen at Line 9. The last
argument of the AeneasMachine constructor is an object with
Interactor interface. This interface consists of one method called
onInteract, the callbackmethod for specifying application-specific
behavior each time an MAB interaction is initiated, as seen in
Line 13. In addition, our framework allows flexible lifecycle manage-
ment of the AeneasMachine, such as starting, stopping, restarting,
and resetting the optimizer (start, stop, resume, reset).

3.2 Declared Discrete Knob Runtime Support

The algorithm used by Aeneas for runtime optimization is spec-
ified by Algorithm 1. The key data structure maintained at run
time is Config, a configuration. Intuitively, each configuration in-
dicates a particular knob combination, such as setting gpsPrio

to ANDROID.PRIORITY_HIGH_ACCURACY and setting gpsUpdate to
5000. This combination is indicated by the ϕ field of the configura-
tion struct. At run time, each configuration is used for a number
of interactions, kept by counter ν . For each interaction on the con-
figuration, a reward is stored in the array ρ. For simplicity, the
algorithm shows only one knob K with KS number of settings. In
the presence of multiple knobs, the number of the configurations
is the cartesian product of all knob settings. Finally, the R is the
abstract representation of the valuate method defined by the user,
and T is the SLA provided by the programmer.

The optimizer operates in its own thread, and its algorithm is
conceptually simple. After a “warm-up” procedure to make sure
each configuration is at least attempted once (Init), the algorithm
henceforth alternates between inquiring the MAB to select a config-
uration (MAB), and performing an interaction based on the selected
configuration (Interact). Within each interaction, the runtime first
sets the knob settings according to the selected configuration (Set),
calls the programmer-defined callback method (OnInteract), and
updates the reward for the chosen configuration (Update). The
reward is computed as the difference between the latest reward
returned by R and the specified by SLA T . When SLA is not pro-
vided, T is defaulted at 0, so the reward used for the update is the
value computed by the R . We delay the discussion of TimeElapsed
until Section 3.4.

Since MAB algorithms are diverse, Algorithm 1 is abstract in
its MAB policy choice. We provide a concrete VDBE-based imple-
mentation of the MAB function in Algorithm 2. For clarity, we
choose the same metavariables for this algorithm specification as
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those in Section 2 when applicable, so the algorithm should be self-
explanatory. Note that Q values can be computed incrementally —
the choice of Aeneas — but we do not define it here for simplicity.

We will delay the explanation of MIN, MAX, CT, and the function
of ConvG until next section. As a standalone algorithm for declared
discrete knobs, MIN is set to be 0, MAX is set to be a largest constant,
CT is set to be 100%.

3.3 Inferred Knob Runtime Support

The algorithm used by Aeneas for inferred knob optimization is
specified by Algorithm 3. Conceptually, an inferred knob represents
a range of possible knob combinations, such as 10 seconds to 1
second for gpsUpdate. Concretely, an inferred knob exists as a
set of iteratively-updating discrete values within the user supplied
range. We represent an inferred knob’s current set of discrete values
with a Frame that keeps a collection of values κ, a reward SLA
associated with the frame θ and the best knob setting within the
values ψ . We maintain a stack S of inferred knob values. When
working with real values, we define a closeness relation ,T where
T is a user-defined threshold for an acceptable precision, analogous
to equate in the programmer API.

The process of stochastic optimization for inferred knobs con-
sists of a sequence of iterations. Each iteration is indeed a stochastic
optimization for declared discrete knobs, as indicated as the use
of MainDiscrete function in the algorithm. Unlike a bona fide

declared discrete knob optimization where the optimizer may con-
tinuously (and potentially infinitely) perform interactions, each
iteration in an inferred knob optimization must terminate so that
the next iteration may start. This explains why the MainDiscrete
function definition consists of the MIN and MAX constants to bound
the minimum and maximum number of interactions to try in each
iteration. In addition, the ConvG function computes a convergence
ratio, i.e., the percentage of interactions of a particular configuration
being used within the current iteration. If it exceeds a threshold CT,
the iteration can also terminate, intuitively indicating the stochastic
optimizer has converged toward a particular configuration.

On the high level, the algorithm connects iterations through
iterative refinement. After an iteration, the inference algorithm
selects the configuration closest to the SLA (Best). If it is not “close
enough” — algorithmically represented as the q value approximates
0 defined by the ,T relation — the optimizer starts a new iteration
(Next). It decides upon a new set of values by comparing the current
frame f with the previous frame f ′. Conceptually, there are three
cases:

• Boundary Crossing: f and f ′ carry “opposite” rewards – one
above the SLA and the other below the SLA—indicating the
optimal values exist somewhere between the best values of
the two frames. We perform interpolation (INTERP) between
the best knob settings represented by f and f ′.
• Tightening: the reward produced by f is closer to the SLA
than that of f ′, indicating f is the more desired choice. We
half the range of the inferred knob around the current setting
represented by f , interpolate a new set of settings within
the range, and lead to a new iteration exploring a “tighter”
range.

• Widening: the reward produced by f is further away to SLA
than f ′. In this case, we need to reverse the decision made
by the previous iteration, leading to a pop on the stack.

3.4 Parameter Selection and Self Optimization

An important design issue in Aeneas stochastic optimization is
the interaction rate, i.e., how frequent a new interaction should be
triggered. This is shown in Algorithm 1 as RATE, which determines
the delay associated with firing Update with TimeElapsed as seen
in the same algorithm. Intuitively, a higher interaction rate may
improve the adaptiveness of the optimization, whereas the lower in-
teraction rate may reduce overhead. In the case of GPS applications
on mobile devices, two additional thorny issues exist. First, there is
a delay effect in updating the GPS interval, i.e., setting a new GPS
interval on the Google API level does not imply GPS hardware will
immediately take a new sample based on the new interval. Second,
fuel gauge on Android devices (we will discuss in Section 4) has
its own rate for updates. Setting an interaction rate higher than
the fuel gauge update rate implies reading the same value as the
previous interaction. With these hardware/system-level limitations,
an excessively high interaction rate would lead to erroneous results
that the reward may not reflect the effect of the interaction it is
intended to. Manually setting the interaction rate is a challenge.

A key insight of Aeneas is that the interaction rate for our
GPS application can be determined by stochastic optimization itself.
The self-optimizer performs inferred stochastic optimization with
the interaction rate as the knob. The algorithm is identical to the
inferred knob algorithm we described in Section 3.3, with three
exceptions. (i) for each interaction, the self optimizer adjusts RATE
based on the inferred knob. (ii) the knob for the GPS update interval
is alternately set between the fastest interval and the slowest in-
terval. (iii) the reward is set as the power difference of the last two
interactions (in watts). The intuition here is that, if the delay effect
we described earlier does not occur, the design of (ii) above should
lead to significant power difference of the last two interactions.

Throughout our experiments we found the interaction rate is
the most sensitive parameter of algorithm design, which justifies
the automated approach of self optimization. For other parameters,
such as the VDBE’s δ , σ , and ϵ as in Algorithm 2, we rely on settings
recommended in existing literature. Note that our framework itself
is fully extensible: a programmer with a different parameter setting
of VDBE can provide an alternative VDBE (sub-)class.

4 AENEAS EVALUATION

In this section, we report our findings while experimenting Aeneas
“in field,” i.e., while being used in the real-world use scenarios of
driving, biking, and hiking. This is a significant effort. For driving
alone, we have covered roughly 2000 miles for early-stage testing
and exploratory data collection, and 4500 miles to collect data re-
ported in this section. In total, we have collected approximately 150
hours of driving data over the duration of the project, as well as 20
hours of biking and hiking.

4.1 System Setup

Experiments were performed on Google Nexus 5X Android phones
with Qualcomm Snapdragon 808 processor at 1.8 GHz, 2GB RAM,
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and Android Runtime (ART) 2.1.0 with Android 6.0 Marshmellow
OS. MAPS.ME (Release Build 7.1.3) utilizes Android’s GPS through
the LocationServices Google API. Accelerometer sensors and blue-
tooth are switched off, and the phones are set at the ‘Do Not Disturb”
mode. Since display system is known to be a signifiant contributor
to energy consumption in smartphones [7, 20], we choose to leave
them on with bright set to 100% and auto-adaptive brightness set to
off. This is a challenging base setting to start with. In the following
sections, we will show that even when the display system is set to
be fully in operation, GPS energy optimization remains relevant.

Energy samples were collected using the phones’ internal fuel-
gauge chips, whose battery voltage and current can be queried
programmably through BatteryManager API. Some experiments
uses drain rate — such as 20% per hour — as a form of reward
specified by programmers. To correlate drain rate with energy con-
sumption, we first start the phone at 100% battery and run MAPS.ME
until Android sends out a critical power warning—this is done
via the android.intent.action.BATTERY_LOW intent—triggered
at 15% battery life. We observed that between this range (100% -
15%), battery discharge is linear. Hence, the energy consumption
of a user-provided drain rate — such as 20% — can be computed
proportionally.

4.2 Experiment Design

We structure the evaluation of Aeneaswith 4 types of experiments.
First and second, we evaluate declared discrete knobs and inferred
interval knobs, an in-field validation of Algorithm 1 andAlgorithm 3
respectively, detailed in the immediately following subsections.
Third, we compare our stochastic optimizer with non-stochastic
profile-based optimization, with experiments detailed in Section 4.5.
Fourth, we report our results on self optimization in Section 4.6.
Finally, we present overhead analysis in Section 4.7.

We use a combination of three GPS parameters as knobs. GPS
Update Interval represents the frequency that updates are provided
to the application from the GPS hardware. GPS Priority represents
the power mode of the GPS hardware. GPS Maximum Wait Time

represents the maximum additional wait time the application can
tolerate once an update has been received. This parameter allows
for a form of “batching” where location updates are delayed beyond
the specified update interval and delivered in a batch, resulting in
“slower” updates.

Value-Difference Based Exploration is the default stochastic pol-
icy chosen for Aeneas. All experiments use 32.5 seconds as the
interaction rate. We justify this choice in Section 4.6. We set VDBE’s
inverse sensitivityσ to 5.0 for experiments with discrete knobs. This
causes less exploration and quicker convergence, ideal properties
when primarily using discrete knobs. When running experiments
with inferred knobs, we set σ to 1.0 which causes more exploration
throughout the run. For the inferred knob optimization, we set MIN,
MAX, and CT in the algorithm specification as 15, 30, and 60%.

For driving experiments, routes were selected that followed a
60MPH speed limit as much as possible, in a combination of urban
and rural environment.2 In all experiments of driving, biking, and
hiking, the MAPS.ME application actively displays updated location
information at all time.

2The details of the route information is available at our project site.

4.3 Energy Optimization with Declared

Discrete Knobs

We first evaluate how Aeneas targets a specified SLA in the pres-
ence of alternative settings for multiple knobs, based on the algo-
rithm specified in Algorithm 1. We define reward to be the instanta-
neous battery drain rate in percentage drain per hour. This was done
by overriding Aeneas default Reward class as shown in Section 3.
We perform the experiment targeting two SLAs, 20 and 30 percent
drain rate per hour (%/hr). We have 3 knobs—GPS Update Interval
with 10s,7.5s,5.5s,3.5s, and 1s, GPS Priority with LOW_POWER and
HIGH_ACCURACY, and GPS Wait Time with 5x and 1x—each with 5,
2, 2, settings respectively. In total, there are 5 × 2 × 2 = 20 config-
urations for the stochastic optimizer to choose from. This creates
a challenging and realistic case in that it may not be obvious to
a programmer which of the 20 configurations is the best. Indeed,
there may be multiple reasonable configurations that exhibit similar
energy behavior.

Results from representative runs are presented in Figure 3. In all
experiments — with different drain rate SLAs and with different
modes of transportation — Aeneas demonstrates remarkable effec-
tiveness and stability in converging on configurations that make
best efforts to meet the specified SLA. In all figures, the blue line —
accumulated average drain rate— approaches the target drain rate
SLA as time proceeds. Observe that the “rolling average,” i.e., the
most recent drain rate of the last 10 interactions — indicated by
the green line — may often lie far from the target SLA in the be-
ginning stage of each run; however, as more and more interactions
are attempted, Aeneas intelligently selects configurations that “get
better and better”, resulting in the rolling average tending toward
the target SLA. Furthermore, despite the stable trend indicated by
the blue line and the green line, the red line continues to fluctuate.
This line indicates the per-sample drain rate. The fluctuation results
from two reasons. First, different configurations may be attempted
at different interactions, resulting in different instantaneous drain
rate. This is consistent with the stochastic design itself: even after
the initial warm-up stage (interactions 0-25), the system continues
to explore potentially sub-optimal configurations (but with less
likelihood). Second, uncertainty in instantaneous energy behavior
is inherent, so the drain rate may still fluctuate even in the presence
of the same configuration. This can be seen toward the end of each
trace (such as interactions 75-120) where sub-optimal explorations
are significantly reduced, yet the red line continues to fluctuate
significantly. As the blue/green lines indicate, Aeneas operates
successfully in this uncertain environment.

Comparatively, Figure 3a and Figure 3b show that 20%/hr exper-
iments converge faster than the 30%/hr experiments. This trend is
similar across the different transportation modes. This highlights
the limitation of stochastic optimization based on declared discrete
knobs fully provided by programmers. After inspecting the traces,
we found that few among the 20 configurations generated from
the supplied knobs have energy profiles near 30%/hr SLA, but the
optimizer must explore these configurations enough to find an ideal
configuration. This can be seen from observing the relatively low
battery drain rate during the initial warm-up phase of the 30%/hr
run (interactions 0-25), and also time for additional exploration
(interactions 25-50). Approaching the end of each trace, there re-
mains a 3%-5% gap between the accumulated average and the target
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(a) Drive 20 %/hr SLA
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(b) Drive 30 %/hr SLA
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(c) Bike 20 %/hr SLA
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(d) Bike 30 %/hr SLA
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(e) Hike 20 %/hr SLA
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(f) Hike 30 %/hr SLA

Figure 3: Traces with Declared Discrete Knobs. Each graph is a representative trace of a run lasting approximately 1 hour. The

X-Axis represents the elapsed interactions. The red line shows the instantaneous battery drain rate at each interaction; the

blue line shows the accumulated average battery drain rate of the run; the green line shows the 10-interaction rolling average

battery drain rate. The dotted horizontal line represents the target battery drain rate SLA.

SLA, as a consequence of early sub-optimal interactions. Here, the
rolling average line indicates in all 30%/hr experiments, the rolling
average of the drain rate is indeed converging toward the SLA from
around interaction 50 onward.

Taking these figures as a whole,Aeneas demonstrates consistent
effectiveness in different transportation modes and different target
SLAs. In addition to these representative runs, the left half of the
columns of Figure 4 details statistics on all runs. Observe that
the percentage of occurrences that the rolling average drain rate
falls within 3%/hr of the target SLA generally increases from the
first quarter of the experiment to the final quarter, reflecting the
intuition that the Aeneas learning algorithm incrementally finds
more optimal configurations as time goes on. We report traces from
other runs at the project website.

One challenging case is perhaps biking with SLA target of 30%/hr.
In our experience, we found it difficult to construct a one-hour
bike ride without frequent stops and interruptions, as opposed to
driving. In addition, biking does cover a relatively large area with
significant GPS signal variations, as opposed to hiking. In essence,
biking compounds the uncertainty from both driving and hiking.
This is evidenced by the relatively large variance between energy

readings, as seen in Figure 3d. In addition, the relatively low number
of discrete configurations that have energy profiles friendly for the
target 30%/hr SLA poses a challenge for our experiment. As we shall
see in Section 4.4, this last challenge is overcome when Aeneas
works with inferred knobs, leading to improved results for 30%/hr
biking.

4.4 Energy Optimization with Inferred Interval

Next we evaluate how Aeneas infers unknown knob settings that
target a programmer-defined SLA in the presence of uncertainty,
following the algorithm specified by Algorithm 3. We define an
inferred knob for GPS update interval with initial range of 10s to 1s
with 5 interpolation points, resulting in 10s, 7.5s, 5s, 3.5s, and 1s for
the initial set of intervals and fix GPS priority and GPS maximum
wait time to HIGH_ACCURACY and 1x respectively. Reward and SLA
are as defined in Section 4.3.

Results from representative runs are presented in Figure 5. For
all experiments, the accumulated average drain rate—the blue line—
tends toward the target SLA as Aeneas performs iterations of
inference. Each iteration ends with a set of more refined intervals.
Tightening and boundary crossing — which refine an inferred knob
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Declared Discrete Inferred

Accumulated σ Roll σ Q1 Q2 Q3 Q4 Accumulated σ Roll σ Q1 Q2 Q3 Q4
Drive-20 18.79 4.13% 18.78 17.19% 86.67% 90.83% 88.33% 96.77% 20.34 2.83% 19.92 16.75% 70.83% 95.0% 89.17% 83.06%
Bike-20 19.23 2.49% 18.47 13.01% 86.67% 90.83% 87.5% 94.35% 24.05 2.31% 21.37 13.45% 29.17% 65.0% 58.33% 78.23%
Hike-20 19.46 3.54% 17.88 10.08% 92.5% 92.5% 81.67% 85.48% 22.74 5.21% 22.64 12.05% 79.17% 74.17% 72.5% 72.58%
Drive-30 25.3 6.28% 31.14 13.07% 0.83% 31.67% 69.17% 83.87% 28.56 2.25% 30.75 2.62% 46.67% 86.67% 97.5% 100.0%
Bike-30 22.42 2.21% 22.67 14.84% 13.33% 15.83% 35.0% 20.16% 26.89 12.49% 24.31 15.57% 36.67% 43.33% 53.33% 44.35%
Hike-30 25.6 7.98% 31.23 10.33% 4.17% 45.0% 73.33% 70.16% 27.46 3.53% 29.13 7.07% 59.17% 59.17% 84.17% 86.29%

Figure 4: Declared Discrete and Inferred Interval Experiment Statistics: We show the mean and deviation of Accumulated and

Roll for all runs. In addition, we show the percentage of times that Roll was within 3%/hr of the target SLA for four quarters

of the experiment runtime (Q1-Q4).

(a) Drive 20 %/hr SLA (b) Drive 30 %/hr SLA

(c) Bike 20 %/hr SLA (d) Bike 30 %/hr SLA

(e) Hike 20 %/hr SLA (f) Hike 30 %/hr SLA

Figure 5: Traces with Inferred Knobs. The blue, green, red, and yellow labeled boxes indicate iterations where tightening,

widening, boundary crossing, and warmup were performed, respectively. All other legends are identical to those in Figure 3.

towards an often smaller andmore specific range of settings — occur
more frequently than widening. We can see the rolling average—the
green line—stabilizes throughout the iterations of inference. This is
good news for programmers who are unsure about the behavior
of their application; they can simply provide suggestions—in the
form of inferred knobs—and let the Aeneas inference algorithm
discover ideal settings.

Of particular interest is how the Aeneas inference algorithm
adapts to uncertainty. For example, when driving with 20%/hr SLA
(Figure 5a), instantaneous drain rate experiences significant fluc-
tuation, leading to sub-optimal results after the initial iteration of

tightening. Consequently, the optimizer widened in the next itera-
tion to reach a more stable state. The final iteration of tightening
leads to a more refined set of intervals, finishing with a running av-
erage of 19.87%/hr. Additionally, we can see a similar pattern when
biking targeting 30%/hr SLA (Figure 5d). Observe the initial shift in
rolling average after a boundary cross was performed. As the new
set of intervals stabilize, a final iteration of tightening brings the
average rate to 31.02%/hr. In both cases, Aeneas adaptively adjusts
to the environment and stabilizes around the desirable SLA.

The right half of the columns of Figure 4 details statistics on all
runs. We report traces from other runs at the project website.
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Figure 6: Stochastic vs Non-Stochastic Approaches: Each bar

represents a single drive that lasts for approximately 1 hour

(120 interactions). The Y-Axis shows the percent battery

drain rate per hour of the run. The dotted horizontal bar rep-

resents the targeted 30%/hr SLA.
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(a) Profile-1 Run-4
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(b) Profile-3 Run-1

Figure 7: Profile-Guided Optimization Traces. Figure (a) is

trace from the 4th run of Profile-1 in Figure 6. Figure (b)

is trace from the 1st run of Profile-3 in Figure 6. All other

legends are identical to Figure 3.

4.5 Stochastic vs. Non-Stochastic Approaches

In this section, we compare Aeneas stochastic optimizer with a
non-stochastic approach, profile-guided optimization. In this latter
approach, each configuration is chosen for a fixed number of times,
after which the execution commits to the configuration with the
best average reward. We use Profile-X to indicate a profile-guided
run where each configuration is chosen for X number of times. We
use the same knob and reward settings as done in Section 4.3.

Figure 6 shows the results of targeting an SLA of 30%/hr drain
rate. Our results show the main drawback of profile-guided opti-
mization is its instability. Its effectiveness is dependent on how
representative the profiled runs are. When the level of uncertainty
is high, profile-guided optimization can make a poor choice that
make a large impact for the rest of the run. In general, profile-
guided optimization becomes more stable as the number of samples
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Figure 8: Self Optimization.We show the last 10 interactions

after the convergence has been reached by the inferred knob

algorithm. Each point represents the observed power differ-

ence (reward) between 10s and 1s GPS update interval con-

figurations. Run are labeled with the interaction rate con-

verged on by the algorithm.

drawn increase. Profile-3 runs have a narrower range of differ-
ence (20.3%hr-24.8%hr) than Profile-1 (16.5%/hr-31.2%/hr). Due to
its shorter sampling period, when Profile-1 makes a poor choice,
as is the case for the 4th run for Profile-1, the penalty is severe.
While Profile-3 is more stable, there is an inherent cost of in-
creasing the sampling for profile-guided optimization: it samples
60 times, requiring 30 minutes, before making a choice.

In contrast, Aeneas only needs to sample each configuration
once in the warm-up stage — behaving like Profile-1 in the first 20
interactions – but then subsequently relies on stochastic exploration
to mitigate potentially unreliable samples in the warm-up stage. As
a result, VDBE-5.0 has the narrowest range (24.4%/hr - 25.7%/hr)
compared with all profile-guided runs, demonstrating stability.

To zero in on the detailed behavior of profile-guided optimization,
Figure 7 shows the traces of two representative runs: the fourth
run of Profile-1 and the first run of Profile-3. In the first case,
the run unfortunately picked a sub-optimal configuration after the
1-sample-per-configuration profiling, and can no longer recover
for the rest of the run. In the second case, the run did choose a
relatively reward-optimal configuration, but that only happened
after 60 interactions. The rest of the run does indeed have favorable
rolling average drain rate, but it may take a long time for the rest
of the run to compensate for the significant sub-optimal battery
drain during the profiling stage.

4.6 Aeneas Self Optimization

In Section 4.2 we mentioned that we set theAeneas interaction rate
to 32.5 seconds per interaction. This value is neither hard-coded nor
heuristics-based; instead, we computed it through our self optimizer
described in Section 3.4. In that experiment, we alternate between
10s and 1s as the slowest and fastest update interval respectively.

Results from representative runs are presented in Figure 8. The
self-optimizer converges on 32.5 seconds per interaction as the
interaction rate for R1, R2, and R3, and 35 seconds for R4. Among
all runs, nearly all converged on a value between 32.5 seconds and
35 seconds. We hence set the 32.5 seconds as the default setting for
interaction rate for the experiments.
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4.7 Aeneas Overhead

Overhead introduced fromAeneas comes from knob, configuration,
and MAB bookkeeping, i.e, the maintenance of metadata for each
configuration—accumulated reward and knob profiles—as well as
running the selected MAB algorithms, and Aeneas thread manage-
ment.Wemeasure the cost of runningAeneas in terms of additional
energy overhead by comparing against a baseline native MAPS.ME
with the 3 knobs relevant to our experiments—GPS Update Interval,
GPS Priority and GPS Wait Time—set to 500ms, HIGH_POWER and
1x. The Aeneas run performs all bookkeeping and stochastic opti-
mization, but is forced to select the same configuration as the native
MAPS.ME one after each interaction. We repeated the experiment 10
times. The mean energy consumption of the native runs is 5361 (J)
with a relative standard deviation of 6.97%, and the mean energy
consumption of the Aeneas runs is 5511 (J) with a relative standard
deviation of 9.25%. Aeneas incurs an average additional 150.22 (J),
representing 2.8% energy overhead.

5 RELATEDWORK

PowerDial [12] is a dynamic adaptation framework for power opti-
mization. Built with a control-theoretic core, PowerDial allows a
number of system knobs — Dynamic Voltage and Frequency Scaling
(DVFS) and server consolidation in particular — to be dynamically
adjusted to balance the trade-off between performance and Quality
of Service (QoS). JouleGuard [11] employs a two-tier optimization
approach, where system-level energy optimization such as through
DVFS can be maintained by MAB, with which the application-level
approximations can be coordinated through a PowerDial-like al-
gorithm. JouleGuard is interesting for its formal control-theoretic
guarantees, well suited for co-optimization problems where the
boundary between the application and the system is well-carved.
In our interested problem domain, GPS applications, it is a chal-
lenge to differentiate the two. For example, GPS update intervals
are set by programmers, and may be adjusted within the Google
LocationServices APIs. It is unclear whether this is an application
knob or system knob. From this perspective, Aeneas explores a
different — perhaps complementary — non-hierarchical path where
application knobs (and system knobs if any) are unified through
MAB. Desirable properties of energy optimization — such as adap-
tiveness, convergence, and stability — thus go hands in hands with
the MAB algorithm core. From a practical perspective, this unified
approach avoids the need for reconciling and tuning two adaptive
approaches — both MAB and control come with algorithm-level
parameters — significantly simplifies deployment.

A few application-level frameworks — especially in the form
of programming models — exist to support uncertainty. In Un-
certain<T> [4], programming abstractions are provided so that
program values may carry types that indicate data/results may be
uncertain, and the programming language provides a Bayesian net-
work semantics to ensure values of such types are correctly flown in
the program. Aeneasmay complement Uncertain<T> by providing
online adaptive support for modeling the level (e.g., distribution)
of uncertainty without prior knowledge before program execu-
tion, and the reasoning framework of Uncertain<T> may provide
feedback to Aeneas to correlate the knobs used by MAB. This com-
plementary relationship may also apply to Rely [6] and Chisel [23],
two programming languages where program types may include a

reliability specification, capturing how the values may be located
on underlying unreliable hardware.

There are a number of other programming and annotation frame-
works to support energy-aware programming, such as Eon [31],
Green [3], EnerJ [29], Energy Types [8], LAB [15], Eco [34], Ent [5],
and APE [24]. Most of these frameworks facilitate adaptive en-
ergy management. For example, Ent allows programmers to spec-
ify mode-alternative behavior through a programming abstrac-
tion called mode cases; an APE programmer may annotate pro-
grams with policies managed by timed automata. A large body
of work establishes the complex and dynamic nature of energy
behavior in modern applications [14, 19, 25–27]. None of these ap-
proaches directly address uncertainty, and Aeneas may serve as
an underlying framework for them to model uncertainty and guide
the semantics-driven program runtimes to make judicious choices
among programmer-defined alternatives.

MAB algorithms can be broadly viewed as a form of reinforce-
ment learning (RL). The dilemma between exploration and exploita-
tion is a classic problem in RL, and one of the most classic RL
algorithms — Q-learning — involves iterative value update of a
value function, a similar process as MAB algorithms. Indeed, we
presented the MAB model in Section 2 in a recurrent Q update
form to show this connection. RL has been used on the CPU-level
energy optimization for optimal DVFS voltage-frequency selec-
tion [13, 30]. A temporal difference learning method coupled with
Bayesian classification [33] is designed for balancing power and
latency in storage/network systems. RL has also recently been
used to guide resource consolidation in cloud computing [10] and
data center optimization [22]. None of these efforts is focused on
higher layers of the computing stack, such as how application-level
energy management should be supported, and how the interface
between the application and the runtime should be streamlined
in the presence of uncertainty. Aeneas is also distinctive in its
domain: a systematic study on energy optimization in the presence
of uncertainty in mobile/transportation systems.

GPS energy consumption has long been recognized as signifi-
cantly impacting battery life of mobile devices, with a large body of
solutions. For example, A-Loc [21] presents a Bayesian estimation
framework to model user location and sensing errors. Location
sensing requests may also be optimized, such as substituted or
suppressed [35]. GPS optimization may also take into account of
context information, such as space and temporal data [9].

6 CONCLUSION

Aeneas is an application-level energy optimization framework
with a simple programming model and a sophisticated stochastic
runtime optimizer. Aeneas has been extensively evaluated in the
context of GPS applications, through significant in-field validation
involving driving, biking, and hiking. Aeneas is an open-source
project. The source code of our framework, all raw data collected
for our experiments, and additional trace graphs omitted from the
paper, can be found at the project website.
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