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Abstract
In widely-used actor-based programming languages, such as
Erlang, sequential execution performance is as important as
scalability of concurrency. We are developing a virtual ma-
chine called Pyrlang for the Erlang BEAM bytecode with a
just-in-time (JIT) compiler. By using RPythons tracing JIT
compiler, our preliminary evaluation showed approximately
twice speedup over the standard Erlang interpreter. In this
poster, we overview the design of Pyrlang and the techniques
to apply RPythons tracing JIT compiler to BEAM bytecode
programs written in the Erlangs functional style of program-
ming.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Interpreters

Keywords Meta-tracing, JIT, Erlang, BEAM

1. Introduction
Erlang is a dynamically-typed, functional, and concurrent
programming language based on the actor model [1]. It is
widely used for practical applications that require high scal-
ability and availability.

Erlang has a compiler implementation called HiPE [3],
which is 1.8 to 3.5 times faster than the commonly-used in-
terpreter implementation called BEAM [2]. However, HiPE
is a ahead-of-time compiler, and is not as widely used as
BEAM.

We are developing a virtual machine called Pyrlang for
the BEAM bytecode with a just-in-time (JIT) compiler. By
using RPython’s tracing JIT compiler [4], Pyrlang’s perfor-
mance is comparable to HiPE according to our preliminary
evaluation.

2. Implementation Overview of Pyrlang
Pyrlang is a virtual machine compatible with BEAM written
in RPython, which is a subset of Python and originally used
in PyPy project.

In order to support functional programming features in
Erlang, we apply the PyPy virtualizable optimization to the
BEAM registers. We apply the RPython immutable annota-
tion to many datatypes BEAM, so that RPython meta-tracing
JIT can unbox the fields of built-in datatypes. We implement
a call-stack structure at the RPython level so that we can im-
plement an unlimited call-stack for non-tail calls.

Furthermore, we implement a scheduler to support the ac-
tor model. Currently, the scheduler supports multi-threading
on a single CPU core.

3. Optimization Techniques for a Tracing
JIT Compiler

3.1 Optimizing Memory Allocation
We carefully design runtime data structures so that the
RPython optimizer eliminates redundant memory alloca-
tions. Memory allocations for runtime data structures are
not automatically optimized by JIT optimizer because they
survive across multiple traces. Therefore, we manually opti-
mized by defining the following data structures so that they
have minimal allocations at runtime. The remaining re-
dundant memory allocations that RPython cannot optimize
out include literal data type loading, symbol table manage-
ment, and call-stack management. We therefore implement
the following mechanisms to eliminate redundant memory
allocations:

• A preprocess for building a literal data table and a con-
stant number table.

• A runtime symbol manager for manipulating the symbol
data type.

• A special data structure for the call stack. We use a pair of
fixed-sized RPython arrays to implement the call-stack,
one is for storing local variables, and the other is for
storing return addresses. A dedicated array for return
addresses is crucial to avoid extra object wrapping.
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Benchmark results in an Intel Xeon E5 3.5GHz 12MB cache and 16GB of RAM, OS X 10.10.4 machine with Erlang/OTP 17, RPython 07d8f21f1d7f (timestamped at 2015-03-31 11:09)
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Figure 1. The execution time of pure functional programs translated from Scheme benchmark suite and ErLLVM benchmark
suite, relative to those executed by BEAM.

3.2 Finer-grained Path Profiling
We proposed a new profiling policy called the pattern-
matching-trace at the bytecode level to avoid overheads
caused by shorter compiled traces detected in (non-tail) re-
cursive functions. The idea is to profile runtime code at a
finer granularity. In our experiment, the pattern-matching-
trace shows a faster and more stable performance with dif-
ferent execution conditions.

4. Preliminary Performance Evaluation
As a preliminary experiment, we compared performance
of BEAM, HiPE and Pyrlang by running a small bench-
mark. The selected benchmark programs are a subset of ErL-
LVM benchmark suites and a subset of the Scheme Larceny
benchmark suite which is translated to Erlang by the authors.

As we can see in Figure 1, both HiPE and Pyrlang show
better performance than BEAM for most benchmark pro-
gram. Note that Pyrlang is not yet good at allocating a large
amount of memory, such as closure generation in cpstak, and
list building in string.

5. Conclusion and Future Work
We proposed Pyrlang, a virtual machine for the BEAM
bytecode language with a tracing JIT compiler. In order to
achieve reasonable runtime performance, we need to care-
fully make several design decisions and to apply optimiza-
tion techniques, in particular for memory allocation and loop
detection in recursive functions. The resulted implementa-
tion exhibited 2.03 performance improvement over BEAM.

As mentioned above, our implementation leaves some of
the features to be implemented in future:

List Optimization. In our experiment, we observed that
Pyrlang is still slow at processing huge lists in a non-tail
recursion coding style. We want to optimize the list repre-
sentation using techniques such as cdr-coding [8] or list un-
rolling [9].

Compatibility Improvement. We will extend Pyrlang to
support all datatypes of BEAM, and implement more byte-
code instructions and built-in functions.

Multi-core Support. BEAM supports multiple CPU cores.
As for the implementation details, it requires multiple sched-
ulers at each conceptual CPU core.
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