Aspectual Caml

an Aspect-Oriented Functional Language

Hidehiko Masuhara
Hideakl Tatsuzawa

Akinori Yonezawa
University of Tokyo

Background:
Aspect-Oriented Programming

 for separation of crosscutting concerns

— complements existing modularization
mechanisms like OOP, FP, etc.

— proven to be useful (e.g., logging & exception
handling in middleware [olyero4]
optimizations in OS [Coadyoll)

e mainly developed/used in OOP context

— AspectJ, AspectWerkz, JBoss AOP, Spring
AOP, AspectC++, Aspects, ...

AOP will also be useful to
functional programming!

 FPs also have crosscutting concerns
— aren’t you bothered by logging code?
 Advanced FP features are great,
but not always help

— e.g., polymorphic variants + open recursion
 great for type safe extension of data structures
 but not all programs are in that style

Proposal: Aspectual Caml (A'Caml)

= (Objectivi)@\ml + (AspectJR— NEVEY

o type inference e pointcut
 polymorphic types and advice
o first class functions | | ¢ intertype

e variant types declarations

o Approach: |e.smedulesystem
— design & implement first (formalize later)
— see interactions of features

— assume compilable implementation

Example: simple calculator (base)

+ tracing (aspect)

[# eval empty (parse “let x=1+2 in x+x") ;;]

-:Int=6
evaluator

type term =
Num of int

let rec eval env exp = Var of string

variant tl/pe
of AST npdes

match exp with Add of term * term

Numv — v Let of string * term * term

Var x — lookup env x

Add(tl,t2) > lete = eval envin
(etl) + (e t2)

| Let(x,t1,t2) —» letv = eval env tl in

eval (extend env x v) t2

——— parser

Example: simple

calculator (base)
racing (aspect)

aspect Tracing
. pointcut evaluation env exp = :
call eval env; exp

let active = ref false
‘advice trace =
. [before evaluation env exp]:.

if 1active then PrINL_exp exp

(*.omitted. extension.t0.the. AISer.).,
Fadvice start_tracing =
: [around evaluation env exp]

match exp with

| Trace(t) —> active:=true; :
eval env {: active:=false

In “trace(...)”, print exp

. at each step

s pointcut: let applications
to “eval” be “evaluation”

| s advice: prints exp.

before evaluation
“s type extension: adds
Trace node to AST

s advice: evaluates
Trace nodes

Execution model of
a program with aspects

type term = base o

| Num of int

| Var of string prog Fam

| Add of term * term
| Let of string * term * term

et rec cvaidyp - * During exec.:

Before exec.:
— extends variant types

m exp witl as peCt

| { —> V

| var @, gokup | — generates join point at

| Add(t1, (9> le

B i . : function application, etc.

| Let J.,t2) — ¢

eval (extend — teStS eaCh JO|n p0|nt
aginst pointcuts
type+ terye | Trace of term

(* omitted eNgension to the parser *) — uns bOdieS Of

advice start ¥ggcing =]]
[around evaluation env exp] matching advice decls.
match exp with
| Trace(t) — active:=true;
eval env t; active:=false
| _ — proceed exp

How Aspectual Caml adapts
AOP features

e Advising curried functions
— Curried pointcuts
« Type inference In pointcut & advice

— Type inference before selecting join points

— Polymorphic / monomorphic pointcuts
 Mechanisms to extend data structure

— Type extension

Curried pointcuts: a problem to
advise curried functions

e Curried functions are common in FP

eval: env — exp — int (eval@env)@tl
...eval env tl.-
.lete=evalenvin (etl) + (e t2)...

o AspectJ’s pointcuts capture
only first application

advice tr = [before call eval 1] ...

o Solution in Aspectual Caml: curried pointcut

Curried pointcuts:
solution in Aspectual Caml

e Syntax:

advice tr = [before call eval r e] ...

 Meaning: “applications to the functions that
are returned by the 1st application”

eval: env —» — Int
...(eval@env 1% \Féﬁ%
...lete =evalenvin (é1l) + (é12)...

* Implementation: adivce transformation

Curried pointcuts: implementation
by advice transformation

Adivce decl. with a curried pointcut:

“replace the result of
1st application with
a function that
runs advice body”

e useful in many situations

Type inference
INn pointcut and advice

 FP: do type inference in pointcuts & advice
* AO: use pointcut types to select join points

pointcut evaluation env exp = \J appl. to “eval” of type
call eval env; (exp:term) a—term—f3

 Dependence among three:

select join points

by using types

@dvic—5rhe type safe

Type Iinference In pointcut and
advice: before selection approach

Design decision in Aspectual Cami:

— perform type inference in pointcut & advice
pefore selecting join points

e Advantages:

— type checking of advice decls.
without base program

— filtering anonymous functions by types
e.g., “appl to functions of type a — term — (3’

Type Iinference In pointcut and
advice: Implementatio

this Is just

1. Infer types in advice and pointcut with
— type variables to join point values
— the global type environment

2. Select join points that have more spegif

pointcut evaluation env exp = call eval env; exp
advice tr_results env exp = [around evaluation env exp]

(Iewoceed ?‘gint_int V; V) (1

—>int Int>univ) | .. (eval:env—term—int. o
...(eval:(a — B)—int—>iny,32...
...(eval:iint—int—string) 2 3...

14

Polymorphic / monomorphic
pointcuts

e Advice declarations can share one pointcut
 Type inference refines types in pointcuts

e But some advice decls. want to advise
the same set of join points

e Solution: polymorphic / monomorphic pointcuts

Polymorphic / monomorphic
pointcuts: example

any application

e Polymorphic: pointcut logged x = call _ X && not(within(tracing))

(ct. let- advice trint x = [before logged-d— :
polymorphism | print int x only int—>a

in ML) advice trstr x = [before Iogged~<]§,
print_str x only str—a

« Monomorphic: |concrete pointcut logged x =
prohibits type call _ (x:int) && not(within(tracing))
Instantiation advice trbeg x = [before logged x]
—> guarantee print_str “begins with ”; print_int X
to match the | advice trend x = [after logged]
same points print_str “ends.”

trace beginning & end of an application
16

Type extension: AO mechanism
for data structure

* AspectJ offers two AO mechanisms
— I.e., pointcut & advice + intertype decls.

— for crosscutting concerns involving with
behavior + data structure
e.g., source-level tracing = printing expressions +
source code locations in AST nodes

 FP’s data structure = variant types

e Approach in Aspectual Caml: type extension
— extends variant types in two ways

Type extension: two ways to

extend variant types

of. adding J

e Extra fields to a constructor {fields to a class

— e.g., to associate annotation string to Var

— default

type+ term = Var of ... * string {*}-

— visible only in the defined aspect

value

 Extra constructors to a type

[cf. subclassing]

— e.g., to define a new syntax to the parse tree

type+ term = ... | Trace of term
— need to advise all pattern matchings

Implementation

e Prototype: a translator to O'Cam|
— for efficiency of executables
— for borrowing backends (e.g., compilers, tools)

Approach: to modify O’Caml compiler
— to extend the syntax

— 1o access type information

size: 2K LOC addition/modification

Implementation:
compilation process

4 N R .
typed typed unparsing
parse =»

tree+ext.

_ b

base
program

aspects

type S
ext. typed
e |advice

advice e parse

© &/ %xecutabl%

22

Related work

e AO typed FPLs: AML[Walker03]
PolyAM L[DantasOS]’ TinyAspect[A|dl’iCh03]
— minimalistic approach (pointcut and advice only)
— to study type soundness, polymorphism, module
systems, etc.
« Extensible data structures

— polymorphic variants [Garrguedg]
+ open recursion

— type safe update programming [Erwig03]

Related work: PolyAML [bantas+03]

Common to Aspectual Caml:
— polymorphism in advice:

advice runs at join points of different types
Different from Aspectual Cami:

— no polymorphism in let eval env 2=
pointcuts

— selecting join points by ..let evz:\l env eXp =
variables in current scope

— static types are used
for only checking

let advice before {ei';al}:(T,T) =

Conclusion

 Designed & implemented Aspectual Caml

 Interesting AOP features:
— Curried pointcuts
— Type inference before selecting join points
— Polymorphic / monomorphic pointcuts
— Type extension

e Future work

— Formalization, improved implementation,
more language features (cf. G’'Caml)

