
1

Aspectual Caml
an Aspect-Oriented Functional Language

Hidehiko Masuhara
Hideaki Tatsuzawa
Akinori Yonezawa

University of Tokyo

2

Background:
Aspect-Oriented Programming

• for separation of crosscutting concerns
– complements existing modularization

mechanisms like OOP, FP, etc.
– proven to be useful (e.g., logging & exception

handling in middleware [Colyer04],
optimizations in OS [Coady01])

• mainly developed/used in OOP context
– AspectJ, AspectWerkz, JBoss AOP, Spring

AOP, AspectC++, AspectS, …

3

AOP will also be useful to
functional programming!

• FPs also have crosscutting concerns
– aren’t you bothered by logging code?

• Advanced FP features are great,
but not always help

– e.g., polymorphic variants + open recursion
• great for type safe extension of data structures
• but not all programs are in that style

4

• pointcut
and advice

• intertype
declarations

Proposal: Aspectual Caml (A’Caml)

= (Objective) Caml + (AspectJ – Java)

• Approach:
– design & implement first (formalize later)
– see interactions of features
– assume compilable implementation

• type inference
• polymorphic types
• first class functions
• variant types
• objects
• module system

5

Example: simple calculator (base)
+ tracing (aspect)

let rec eval env exp =
match exp with
| Num v → v
| Var x → lookup env x
| Add(t1,t2) → let e = eval env in

(e t1) + (e t2)
| Let(x,t1,t2) → let v = eval env t1 in

eval (extend env x v) t2

let rec eval env exp =
match exp with
| Num v → v
| Var x → lookup env x
| Add(t1,t2) → let e = eval env in

(e t1) + (e t2)
| Let(x,t1,t2) → let v = eval env t1 in

eval (extend env x v) t2

eval empty (parse “let x=1+2 in x+x”) ;;
- : int = 6
eval empty (parse “let x=1+2 in x+x”) ;;
- : int = 6

type term =
| Num of int
| Var of string
| Add of term * term
| Let of string * term * term

type term =
| Num of int
| Var of string
| Add of term * term
| Let of string * term * term

evaluator variant type variant type
of AST nodesof AST nodes

parserparser

6

Example: simple calculator (base)
+ tracing (aspect)

in “trace(…)”, print exp
at each step

• pointcut: let applications
to “eval” be “evaluation”

• advice: prints exp.
before evaluation

• type extension: adds
Trace node to AST

• advice: evaluates
Trace nodes

aspect Tracing

pointcut evaluation env exp =
call eval env; exp

let active = ref false

advice trace =
[before evaluation env exp]

if !active then print_exp exp
else ()

type+ term = …|Trace of term
(* omitted extension to the parser *)
advice start_tracing =

[around evaluation env exp]
match exp with

| Trace(t) → active:=true;

eval env t; active:=false
| _ → proceed exp

end

aspect Tracing

pointcut evaluation env exp =
call eval env; exp

let active = ref false

advice trace =
[before evaluation env exp]

if !active then print_exp exp
else ()

type+ term = …|Trace of term
(* omitted extension to the parser *)
advice start_tracing =

[around evaluation env exp]
match exp with

| Trace(t) → active:=true;

eval env t; active:=false
| _ → proceed exp

end

7

Execution model of
a program with aspects

• Before exec.:
– extends variant types

• During exec.:
– generates join point at

function application, etc.
– tests each join point

aginst pointcuts
– runs bodies of

matching advice decls.

type term =
| Num of int
| Var of string
| Add of term * term
| Let of string * term * term

let rec eval env exp =
match exp with
| Num v → v
| Var x → lookup env x
| Add(t1,t2) → let e = eval env in

(e t1) + (e t2)
| Let(x,t1,t2) → let v = eval env t1 in

eval (extend env x v) t2

type term =
| Num of int
| Var of string
| Add of term * term
| Let of string * term * term

let rec eval env exp =
match exp with
| Num v → v
| Var x → lookup env x
| Add(t1,t2) → let e = eval env in

(e t1) + (e t2)
| Let(x,t1,t2) → let v = eval env t1 in

eval (extend env x v) t2

base
program

aspect Tracing
pointcut evaluation env exp =

call eval env; exp
let active = ref false
advice trace =

[before evaluation env exp]
if !active then print_exp exp
else ()

type+ term = …|Trace of term
(* omitted extension to the parser *)
advice start_tracing =

[around evaluation env exp]
match exp with
| Trace(t) → active:=true;

eval env t; active:=false
| _ → proceed exp

end

aspect Tracing
pointcut evaluation env exp =

call eval env; exp
let active = ref false
advice trace =

[before evaluation env exp]
if !active then print_exp exp
else ()

type+ term = …|Trace of term
(* omitted extension to the parser *)
advice start_tracing =

[around evaluation env exp]
match exp with
| Trace(t) → active:=true;

eval env t; active:=false
| _ → proceed exp

end

aspect

| Trace of term

matches

8

How Aspectual Caml adapts
AOP features

• Advising curried functions
– Curried pointcuts

• Type inference in pointcut & advice
– Type inference before selecting join points
– Polymorphic / monomorphic pointcuts

• Mechanisms to extend data structure
– Type extension

9

Curried pointcuts: a problem to
advise curried functions

• Curried functions are common in FP

• AspectJ’s pointcuts capture
only first application

• Solution in Aspectual Caml: curried pointcut

eval: env → exp → int
...eval env t1...
...let e = eval env in (e t1) + (e t2)...

eval: env → exp → int
...eval env t1...
...let e = eval env in (e t1) + (e t2)...

≡ (eval@env)@t1

advice tr = [before call eval r] ...advice tr = [before call eval r] ...

10

Curried pointcuts:
solution in Aspectual Caml

• Syntax:

• Meaning: “applications to the functions that
are returned by the 1st application”

• Implementation: adivce transformation

advice tr = [before call eval r e] ...advice tr = [before call eval r e] ...

eval: env → exp → int
...(eval@env) @ t1...
...let e = eval env in (e t1) + (e t2)...

eval: env → exp → int
...(eval@env) @ t1...
...let e = eval env in (e t1) + (e t2)...

11

Curried pointcuts: implementation
by advice transformation

Adivce decl. with a curried pointcut:

is translated to:

• useful in many situations

advice tr = [before call eval r e] print_exp eadvice tr = [before call eval r e] print_exp e

advice tr = [around call eval r]
let p=proceed r in

fun e → print_exp e; p e

advice tr = [around call eval r]
let p=proceed r in

fun e → print_exp e; p e
“replace the result of

1st application with
a function that
runs advice body”

12

Type inference
in pointcut and advice

• FP: do type inference in pointcuts & advice
• AO: use pointcut types to select join points

• Dependence among three:

pointcutpointcut

adviceadvice

join pointjoin point
join pointjoin point

join pointjoin point

join pointjoin pointmust be type safe

decide types

select join pointsselect join points
by using typesby using types

pointcut evaluation env exp =
call eval env; (exp:term)

pointcut evaluation env exp =
call eval env; (exp:term)

appl. to “eval” of type
α→term→β

13

Type inference in pointcut and
advice: before selection approach

Design decision in Aspectual Caml:
– perform type inference in pointcut & advice

before selecting join points
• Advantages:

– type checking of advice decls.
without base program

– filtering anonymous functions by types
e.g., “appl to functions of type α → term → β”

14

Type inference in pointcut and
advice: implementation

1. Infer types in advice and pointcut with
– type variables to join point values
– the global type environment

2. Select join points that have more specific types

pointcut evaluation env exp = call eval env; exp
advice tr_results env exp = [around evaluation env exp]

(let v = proceed exp in print_int v; v)

pointcut evaluation env exp = call eval env; exp
advice tr_results env exp = [around evaluation env exp]

(let v = proceed exp in print_int v; v)

α
β

β→γ int→unit

: γ

int

int

α→β→int

...(eval:env→term→int) env t1...
...(eval:(α → β)→int→int) f 2...
...(eval:int→int→string) 2 3...

...(eval:env→term→int) env t1...
...(eval:(α → β)→int→int) f 2...
...(eval:int→int→string) 2 3...

this is just
a name

15

Polymorphic / monomorphic
pointcuts

• Advice declarations can share one pointcut
• Type inference refines types in pointcuts

• But some advice decls. want to advise
the same set of join points

• Solution: polymorphic / monomorphic pointcuts

pointcutpointcut

adviceadvice join pointjoin point

join pointjoin point

join pointjoin point

join pointjoin point

adviceadvice

pointcutpointcut

adviceadvice join pointjoin point

join pointjoin point

join pointjoin point

join pointjoin point

adviceadvice

16

Polymorphic / monomorphic
pointcuts: examples

• Polymorphic:
(cf. let-
polymorphism
in ML)

• Monomorphic:
prohibits type
instantiation
⇒ guarantee
to match the
same points

pointcut logged x = call _ x && not(within(tracing))
advice trint x = [before logged x]

print_int x
advice trstr x = [before logged x]

print_str x

pointcut logged x = call _ x && not(within(tracing))
advice trint x = [before logged x]

print_int x
advice trstr x = [before logged x]

print_str x
concrete pointcut logged x =

call _ (x:int) && not(within(tracing))
advice trbeg x = [before logged x]

print_str “begins with ”; print_int x
advice trend x = [after logged x]

print_str “ends.”

concrete pointcut logged x =
call _ (x:int) && not(within(tracing))

advice trbeg x = [before logged x]
print_str “begins with ”; print_int x

advice trend x = [after logged x]
print_str “ends.”

any application

only int→α

only str→α

trace beginning & end of an application

17

Type extension: AO mechanism
for data structure

• AspectJ offers two AO mechanisms
– i.e., pointcut & advice + intertype decls.
– for crosscutting concerns involving with

behavior + data structure
e.g., source-level tracing = printing expressions +

source code locations in AST nodes
• FP’s data structure = variant types
• Approach in Aspectual Caml: type extension

– extends variant types in two ways

18

Type extension: two ways to
extend variant types

• Extra fields to a constructor
– e.g., to associate annotation string to Var

– visible only in the defined aspect
• Extra constructors to a type

– e.g., to define a new syntax to the parse tree

– need to advise all pattern matchings

type+ term = Var of ... * string {“”}

type+ term = ... | Trace of term

default
value

cf. adding
fields to a class

cf. subclassing

21

Implementation

• Prototype: a translator to O’Caml
– for efficiency of executables
– for borrowing backends (e.g., compilers, tools)

• Approach: to modify O’Caml compiler
– to extend the syntax
– to access type information
size: 2K LOC addition/modification

22

Implementation:
compilation process

base
program

typed
parse
tree

aspects
type
ext.

advice

typed
parse

tree+ext.

typed
advice
parse
tree

woven
parse
tree woven

programtype

extension

type inference

of pointcuts

and adivce
wea

vin
g

with
 ty

pe
s

unparsing

executable

O
’C

am
l

co
m

pi
le

r

23

Related work

• AO typed FPLs: AML[Walker03],
PolyAML[Dantas05], TinyAspect[Aldrich03]

– minimalistic approach (pointcut and advice only)
– to study type soundness, polymorphism, module

systems, etc.
• Extensible data structures

– polymorphic variants [Garrigue98]

+ open recursion
– type safe update programming [Erwig03]

25

Related work: PolyAML [Dantas+05]

• Common to Aspectual Caml:
– polymorphism in advice:

advice runs at join points of different types
• Different from Aspectual Caml:

– no polymorphism in
pointcuts

– selecting join points by
variables in current scope

– static types are used
for only checking

let eval env exp = ...
let somefunc ... =

...let eval env exp = ...

let advice before {eval}:(T,T) =
...

let eval env exp = ...
let somefunc ... =

...let eval env exp = ...

let advice before {eval}:(T,T) =
...

26

Conclusion

• Designed & implemented Aspectual Caml
• Interesting AOP features:

– Curried pointcuts
– Type inference before selecting join points
– Polymorphic / monomorphic pointcuts
– Type extension

• Future work
– Formalization, improved implementation,

more language features (cf. G’Caml)

