
Aspectual Caml: an Aspect-Oriented Functional Language ∗

Hidehiko Masuhara
Graduate School of Arts and Sciences,

University of Tokyo
masuhara@acm.org

Hideaki Tatsuzawa
Department of Computer Science,

University of Tokyo
hideaki@is.s.u-tokyo.ac.jp

Akinori Yonezawa
Department of Computer Science,

University of Tokyo
yonezawa@is.s.u-tokyo.ac.jp

Abstract
We propose an aspect-oriented programming (AOP) language
called Aspectual Caml based on a strongly-typed functional lan-
guage Objective Caml with two AOP mechanisms similar to those
in AspectJ language. This paper describes the design and imple-
mentation issues of those AOP mechanisms that give us insights
into the interaction between AOP features and common features in
strongly-typed functional languages such as type inference, poly-
morphic types and curried functions. We implemented a prototype
compiler of the language and used the language for separating
crosscutting concerns in application programs, including for sepa-
rating descriptions of a type system from compiler descriptions.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language Con-
structs and Features]: Data types and structures, Modules, pack-
ages, Polymorphism

General Terms Languages

Keywords Aspect-oriented programming, Objective Caml, point-
cut and advice.

1. Introduction
Aspect-Oriented Programming (AOP)[10, 19] is a programming
paradigm for modularizing crosscutting concerns, which can not
be well modularized with existing module mechanisms. Several
research and industrial projects have proven the usefulness of
AOP for modularizing crosscutting concerns such as enforcement
of error-handling, optimizations, and authentication in large-scale
software systems including operating systems and commercial ap-
plication servers[5, 6, 7]. Although AOP is claimed to be useful
to programming languages with module mechanisms, it has been
mostly studied in the contexts of object-oriented programming lan-
guages such as Java[3, 4, 17, 18], C++[24], and Smalltalk[9, 16].

In this paper, we propose an AOP language called Aspectual
Caml based on a functional language Objective Caml. The goal of
development of Aspectual Caml is twofold. First, we aim to assist
development of practical functional programs with AOP. Even with

∗ An earlier version of the paper was presented at Workshop on Foundations
of Aspect-Oriented Languages (FOAL’05), March, 2005.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

sophisticated module systems of functional languages, it would not
be easy to modularize concerns like debugging, logging, optimiza-
tions and security. We believe AOP mechanisms equally useful to
those kinds of concerns in functional languages. Second, we aim
to provide Aspectual Caml as a basis of further theoretical stud-
ies on AOP features. Strongly-typed functional languages, such as
ML and Haskell, offer many powerful language features based on
solid theoretical foundations. Aspectual Caml, which incorporates
existing AOP language features into a strongly-typed functional
language, would help theoretical examination of the features.

Aspectual Caml is an AOP extension to Objective Caml, a
dialect of ML functional language. We design its AOP features by
adapting the AOP features in AspectJ, including the pointcut and
advice mechanism and the inter-type declaration mechanism, for a
functional language with polymorphic types and type inference. We
also design the AOP features so that they would fit key properties of
strongly-typed functional programming including type safety, type
inference, and curried functions.

The language is implemented as a translator to Objective Caml
by extending the parser and type checker of the Objective Caml
compiler.

The rest of the paper is organized as follows. Section 2 intro-
duces the AOP features of Aspectual Caml. Section 3 presents our
current implementation. Section 4 shows case studies of modular-
ization of crosscutting concerns in some application programs with
Aspectual Caml. Section 5 discusses related work. Section 6 con-
cludes the paper.

2. AOP Mechanisms in Aspectual Caml
This section describes the language design of Aspectual Caml.
First we briefly introduce basic notions of AOP. We then overview
problems of introducing AOP features into functional languages
and solutions to those problems. Next, we present an example
of extending a small program (which is called a base program
in this paper) with an aspect. We then discuss the design of the
AOP features, namely the pointcut and advice mechanism and the
type extension mechanism with emphases on the differences from
AspectJ.

2.1 Static and Dynamic AOP Mechanisms

An AOP language has one or more language mechanisms for mod-
ularizing crosscutting concerns. Each mechanism can be explained
by using a join point model[19, 21], in which the join points are the
set of elements that can be treated by the mechanism.

A typical AOP language has two AOP mechanisms: one is for
dynamic program behavior, and the other is for static program
structure. For example, AspectJ has the pointcut and advice mecha-
nism and the inter-type declarations mechanism. The former mech-
anism employs points in program execution, such as method calls
and field accesses, as join points so that aspects can modify the

dynamic behavior. The latter mechanism employs elements of pro-
gram structure, such as classes, methods and fields, as join points
so that aspects can change class hierarchy.

Aspectual Caml also has two AOP mechanisms, namely the
pointcut and advice mechanism and the type extension mechanism.
This is because we found that the combinations of two AOP mech-
anisms are crucial in many practical AOP programs, and found no
reason to discard one in functional programming.

2.2 Design Issues

Although the AOP features of Aspectual Caml are similar to the
ones in AspectJ, designing those features was not a trivial task.
Unique features in the base language (i.e., Objective Caml), com-
pared from Java, such as higher-order functions, variant types (also
known as algebraic types), and polymorphic types, require recon-
sideration of most AOP features.

Below, we briefly discuss some of the notable issues in the de-
sign of AOP features in Aspectual Caml, and our proposed solu-
tions:

Type inference: ML (including Objective Caml) and Haskell pro-
grams usually omit types in expressions thanks to the type infer-
ence system, whereas types are more explicitly written in Java
and AspectJ program. Aspectual Caml has a type inference sys-
tem for pointcut and advice descriptions.

Polymorphic types: Strongly typed languages such as ML and
Haskell often have polymorphic types. We found that polymor-
phic types in pointcuts sometimes break programmers’ intu-
ition. This is coped with two types of pointcuts, namely poly-
morphic and monomorphic pointcuts.

Curried functions: Functional programs often use curried func-
tions to receive more than one parameters. If the semantics of
call pointcut were merely capture one application to functions,
it would be inconvenient to identify second or later applications
to curried functions. To cope with this problem, Aspectual Caml
offers curried pointcuts.

Static AOP mechanism: Although AOP mechanism similar to the
inter-type declarations in AspectJ would be useful, they should
be carefully designed because functional programs usually rep-
resent structured data by using variant types, whereas object-
oriented programs do by using classes. In particular, the inter-
type declarations in AspectJ relies on the type compatibility of
classes with additional instance variables and methods, which is
not guaranteed for the variant types. The type extension mecha-
nism in Aspectual Caml therefore has limited scope to preserve
type compatibility.

2.3 Example: Extending Simple Interpreter

This section shows a program with an aspect to give an overview
of the AOP mechanisms in Aspectual Caml. The base program is
an interpreter of a simple language written in Objective Caml. The
simple language merely has numbers, variables, additions and let-
terms. The aspect adds a new kind of terms—subtractions—into
the simple language without directly changing original interpreter
definitions.

2.3.1 Simple Language Interpreter

The interpreter definition begins with definitions for variables
which are of type id, an identifier type:

type id = I of string
let get_name (I s) = s

A term is of variant type t, which can vary over number (Num),
variable (Var), addition (Add), and let (Let) terms:

type t = Num of int

aspect AddSubtraction
type+ t = ... | Sub of t * t
pointcut evaluation env t = call eval env; t
advice eval_sub = [around evaluation env t]

match t with
Sub(t1, t2) -> (eval env t1) - (eval env t2)

| _ -> proceed t
end

Figure 1. An aspect that adds subtraction to interpreter

| Var of id
| Add of t * t
| Let of id * t * t

There are a couple of functions and a variable for manipulating
environments, whose definitions are omitted here:

let extend = (* env -> id -> int -> env *)
let lookup = (* id -> env -> int *)
let empty_env = (* env *)

The interpreter eval is a recursive function that takes an environ-
ment and a term and returns its value:

let rec eval env t = match t with
| Num(n) -> n
| Var(id) -> lookup id env
| Add(t1, t2) ->

let e = eval env in (e t1) + (e t2)
| Let(id, t1, t2) ->

eval (extend env id (eval env t1)) t2

For example, the following expression represents evaluation of let
x=3+4 in x+x, which yields 14.

eval empty_env (Let(I("x"), Add(Num(3),Num(4)),
Add(Var(I("x")),Var(I("x")))))

2.3.2 Adding Subtraction to the Simple Language

Figure 1 shows an aspect definition in Aspectual Caml that extends
the interpreter to support subtractions. The first line declares the
beginning of an aspect named AddSubtraction, which spans until
keyword end. The body of the aspect consists of an extension to the
data structure and a modification to the evaluation behavior.

The second line is type extension that adds an additional con-
structor Sub to type t so that extended interpreter can handle sub-
traction terms. Within AddSubtraction aspect, the type t has a
constructor Sub as well as other constructors defined in the base
program. Section 2.5 explains this mechanism in detail.

The third line defines a pointcut named evaluation that speci-
fies any application of an environment and a term to eval function.
The pointcut also binds variables env and t to the parameters of
eval. This is also an example of curried pointcut that can specify
applications to curried functions. Section 2.4.2 will explain this in
detail.

Lines 4–7 are an advice declaration named eval_sub that eval-
uates subtraction terms augmented above. The keyword around on
the right hand side at the fourth line specifies that the body of the
advice runs instead of a function application matching the pointcut
evaluation. The lines 5–7 are the body of the advice, which sub-
tracts values of two sub-terms when the term is a Sub constructor.
Otherwise, it lets the original eval interpret the term by apply-
ing the term to a special variable proceed, which is bound to a
function that represents the rest of the computation at the function
application.

Note that the pointcut and the body of the advice have no
type descriptions, which is similar to other function definitions

Table 1. Kinds of Join Points in Aspectual Caml and AspectJ
in Aspectual Caml in AspectJ
function call method call
function execution method execution
construction of a variant constructor call
pattern matching field get

in Objective Caml. The type system infers appropriate types and
guarantees type safety of the program.

2.4 Pointcut and Advice Mechanism

Aspectual Caml offers a pointcut and advice mechanism for mod-
ularizing crosscutting program behavior. The following three key
elements explains the mechanism:

• join points are the points in program execution whose behavior
can be augmented or altered by advice declarations.

• pointcuts are the means of identifying join points, and
• advice declarations are the means of effecting join points.

The design is basically similar to those in AspectJ-like AOP lan-
guages. We mainly explain the notable differences below.

2.4.1 Join Points

Similar to AspectJ-like languages, Aspectual Caml has a dynamic
AOP mechanism, in which join points are the points in program
execution, rather than the points in a program text. There are four
kinds of join points in Aspectual Caml, which are listed in Table 1
with their AspectJ counterparts. Those join points are conserva-
tively selected by considering those in AspectJ and hypothetical
aspect definitions written for Objective Caml programs. Although
there are variety of additional kinds of join points, such as construc-
tion of function closures and access to reference cells, we believe
that further experience of writing aspects in Aspectual Caml would
give us a better insight into an appropriate set of join points.

Note that the correspondences between Aspectual Caml and
AspectJ are rather subjective as functional programs and Java-
like object-oriented programs often express similar concepts in
different ways. For example, functional programs often use variant
types to represent compound data while object-oriented programs
use objects. Therefore we place the pattern matching (which takes
field values out of a variant) and field get join points in the same
row. There are no field-set-like join points in Aspectual Caml since
values of variant types are immutable1.

A join point holds properties of program execution, such as the
name of the function to be applied to and values and types of argu-
ments. The names of functions are those directly appear in program
text. For example, evaluation of let lookup = List.assoc in
lookup var env generates a function call join point whose func-
tion name is lookup, rather than List.assoc. We believe that pro-
grammers give meaningful names to functions even if the higher-
order functions make renaming of functions quite easy in functional
programming 2.

We distinguish functional call and execution join points, sim-
ilar to AspectJ’s method call and execution join points. The dis-
tinction would be useful for coping with aliasing in functional

1 Many functional programming languages offer references for representing
mutable data. The operations over references are also the candidates of join
points in future version of Aspectual Caml.
2 In contrast, models of AOP languages should be tolerant with renaming
of variables. MiniAML [26], for example, distinguishes between variable
names and signatures that pointcuts match by introducing labels into the
calculus.

Table 2. Summary of Primitive Pointcuts
syntax matching join points
call N P1 ; ...; Pn function call
exec N P1 ; ...; Pn function execution
new N(P1,. . .,Pn) construction of a variant
match P pattern matching (before se-

lecting a variant)
within N all join points within a static

scope specified N

programming. A call join point represents application to a func-
tion at caller’s side, which might use aliased name (e.g., lookup
for List.assoc in the above example). On the other hand, an
execution join point represents evaluation of a function body at
callee’s side, which contains an original name of the function (e.g.,
List.assoc in the above example).

A pattern matching join point represents an operation to access
a value of type a variant record regardless superficial syntax in a
program. Even when a match with expression with many cases
(i.e., pairs of a pattern and an expression), it creates only one join
point. Therefore, there is no direct means to advise in the middle of
pattern matching. Future work would relax this limitation, but we
have not encountered examples that require precise control over the
order of pattern matching thus far.

Note that function call join points include those to anonymous
functions such as (fun x -> x+1) 3.

2.4.2 Pointcuts

A pointcut is a predicate over join points. It tests join points based
on the kinds and properties of join points, and binds values in the
join point to variables when matches.

Primitive Pointcuts: Similar to AspectJ, Aspectual Caml has a
sublanguage to describe pointcuts. Table 2 lists the syntax of prim-
itive pointcuts and kinds of join points selected by respective point-
cuts. In the table, N denotes a name pattern and Pi denotes a pa-
rameter pattern.

A name pattern N is a string of alphabets, numbers, and wild-
cards followed by a type expression. It matches any function or
constructor whose name matches the former part, and whose type
matches the latter part. When call or exec pointcuts use a wild-
card in a name pattern N , they match calls or executions of any
function including an anonymous function. The type expression
can be omitted for matching functions of any type.

A parameter pattern P is a pattern that used to describe a formal
parameter of a function in Objective Caml3. It is either a variable
name, or a constructor with parameter patterns, followed by a type
expression. It matches any value of the specified type, or any value
that is constructed with the specified constructor and the field val-
ues that match respective the parameter patterns. Again, the type
expression can be omitted. For example, “x:int” matches any in-
teger. “Add(Num(x),Var(y))” matches any Add term whose first
and second fields are any Num and Var terms, respectively. Note
that parameter patterns with constructors are basically runtime con-
ditions. This is similar to args, this and target pointcuts in As-
pectJ which can specify runtime types of parameters.

Pointcut within(N) matches any join point that is created
by an expression appearing in a lexical element (e.g., a function
definition) matching N . In order to specify function definitions
nested in other function definitions, the pattern N can use a path
expression, which is not explained in the paper.

3 In Objective Caml, it is simply called a “pattern”, but we refer it to as a
“parameter pattern” for distinguishing from the name patterns.

Table 3. Summary of Combined Pointcuts
syntax matches join points when
C1 or C2 either C1 or C2 matches
C1 and C2 both C1 and C2 match
not C C does not match
cflow C C or cflowbelow C match
cflowbelow C there exists a calling-context matching C
I0 I1 ...In named pointcut I0 matches

Parameter Binding: The parameter patterns in a primitive point-
cut also bind parameters to variables. For example, when string
"abc" is applied to function lookup and there is a pointcut call
lookup name, the pointcut matches the join point and binds the
string "abc" to the variable name so that the advice body can ac-
cess to the parameter values. When a pattern has an underscore
character (“ ”) instead of a variable name, it ignores the parameter
value.

Combining and Reusing Pointcuts: As summarized in Table 3,
Aspectual Caml offers various means of combining and reusing
pointcuts similar to AspectJ. In the table, C denotes a pointcut and
I denotes pointcut name or variable name. There are the operators
for combining pointcuts, namely and, or, not, and cflow. It also
supports named pointcuts. For example, the line 3 in Figure 1
names a pointcut expression (call eval env; t) evaluation,

pointcut evaluation env t = call eval env; t

which can be used in a similar manner to primitive pointcuts in the
subsequent pointcut expressions, like evaluation env t at line
4 in the same figure.

Pointcuts for Curried Functions: The call and exec pointcuts
also support curried functions. For example, call eval env; t
matches the second partial application to function eval. There-
fore, when an expression eval empty_env (Num 0) is evalu-
ated, the pointcut matches the application of (Num 0) to the func-
tion returned by the evaluation of eval empty_env. The pointcut
matches even when the partially applied function is not immedi-
ately applied. As a result, when let e = eval env in (e t1)
+ (e t2) is evaluated, the applications of t1 and t2 to e match
the above call pointcut.

The following definition gives more precise meaning to call
pointcuts:

• call N P1 matches evaluation of an expression (e0 e1)
when the expression e0 matches the name pattern N and the
expression e1 matches the parameter pattern P1.

• call N P1; ...; Pn matches evaluation of an expression
(e0 e1) when the evaluated value of e0 is returned from a
join point matching call N P1; ...; P(n−1) and the ex-
pression e1 matches the parameter pattern PN .

In the above example, since the evaluation of eval env matches
call env and e binds its evaluated value, evaluations of (e t1)
and (e t2) match call eval env; t.

Similarly, exec pointcuts support curried functions on the
callee’s side.

Section 3.4 presents how this advice declarations with a curried
pointcut can be implemented.

Type Inference for Pointcuts: When types are omitted in a point-
cut expression, they are automatically inferred from the advice
body in which the pointcut is used. This fits with the programming
style in Objective Caml, where types can be omitted as much as
possible.

For example, the advice eval_sub in Figure 1 has no type
expressions in the pointcut evaluation env t. However, it is
inferred from the expressions in the advice body, that the types
of the variables env and t and the return type of the function are
the types env, t and int, respectively. As a result, the pointcut,
whose definition is call eval env; t, matches applications to a
function named eval and of type env → t → int.

The type inference gives the most general types to the variables
in the pointcuts. In the following advice definition, the system gives
fresh type variables α and β to variables env and t, respectively:

advice tracing = [around call eval env; t]
let result = proceed t in print_int result; result

As a result, the pointcut matches any applications to functions
whose type is more specific than α → β → int. As a result,
this advice captures applications to eval as well as other eval
functions that takes two parameters and returns integer values.

Polymorphic and Monomorphic Pointcuts: Aspectual Caml pro-
vides a mechanism that programmers can make the types in a
named pointcut either polymorphic or monomorphic. This is use-
ful when there are more than one advice definition that uses the
same named pointcut. When a named pointcut is defined with the
keyword concrete, it is a monomorphic pointcut whose type vari-
ables can not be further instantiated. Otherwise, it is a polymorphic
pointcut whose type variables are instantiated when the pointcut is
used in an advice definition4.

For example, the evaluation pointcut in Figure 1 is poly-
morphic. It hence matches any function applications eval of type
∀αβγ.α → β → γ. When evaluation used in advice eval_sub,
the type system instantiates α, β, and γ and then infers the types
with respect to the advice body. Therefore, another advice defini-
tion that uses evaluation with different types do not conflict with
the previous advice definition:

advice tracing = [before evaluation env t]
print_string env; print_string t

This mechanism is quite similar to the let-polymorphism in ML
languages.

Although the polymorphic pointcuts are useful to define gen-
eralized pointcuts, they are sometimes inconvenient when the pro-
grammer wants to specify the same set of join points at any ad-
vice that uses the same pointcut. Monomorphic pointcuts are use-
ful in such a situation. Consider the following aspect definition that
prints messages at the beginning and end of any function applica-
tion (Note that ??$ is a wildcard that matches any name):

aspect Logging
pointcut logged n = call ??$ n
advice log_entry = [before logged n]

print_string ("\nenters with "^(string_of_int n))
advice log_exit = [after logged n]

print_string "\nexits"
end

Since logged is a polymorphic pointcut that matches any applica-
tion to functions of type ∀αβ.α → β, the type system instantiates
type variables for each advice declaration. Hence the first advice
matches only functions that take integer values as their parameter,
whereas the second matches any function.

By declaring logged pointcut with the keyword concrete and
type expression to the variables that are used in the advice:

4 Note that polymorphic pointcuts instantiate type variables only when types
are omitted in the pointcut descriptions. It is possible to give concrete
types to some parameters in a pointcut, while leaving other parameters
polymorphic.

concrete pointcut logged n = call ??$ (n:int)

logged pointcut becomes monomorphic that matches any applica-
tion to functions of type int → α. With this pointcut definition,
the two advice definitions are guaranteed to advise the same set of
join points because the types in the pointcut will not be instantiated
further.

2.4.3 Advice

An advice definition includes the name, timing keyword, pointcut,
and body expression. The timing keyword, either around, before,
and after, specifies that the advice body runs instead of, before or
after each join point matching the pointcut. In the body of advice,
the programmer can use all top-level variables, variables bound by
the pointcut, and the special function proceed (available only in
around advice). Since proceed means the original behavior, it
resumes the original execution when it is applied with an argument.

For preserving type safety, the body expression of around ad-
vice must have the same type as returning values of specified join
points. In addition, that of before and after advice must have
the type unit. In the example of subtraction extension, the body of
eval_sub has the type int that is the same type as a result value
of eval.

2.5 Type Extension Mechanism

The type extension mechanism allows aspects to define extra fields
or constructors in variant types (also known as algebraic types) in a
base program. The former mechanism can be seen as a rough equiv-
alent to the inter-type instance variable declarations in AspectJ.

Despite the simplicity of the mechanism, we believe that it is as
crucial as the pointcut and advice mechanism. As you can observe
in example programs in AspectJ, not a few crosscutting concerns
contain not only behavior (which is implemented by the pointcut
advice mechanism) but also data structures (which are implemented
by the inter-type declarations).

2.5.1 Defining Extra Constructs

One of the abilities of the type extension mechanism is to define
additional constructors to existing variant types. A variant type
definition type+ T = ... | C adds constructor C to existing
type whose type name is T . In Figure 1, we have already seen an
example that adds Sub constructor to the type t.

The constructors added to a variant type by aspects often make
pattern matching non-exhaustive. In other words, a base program
that originally defined the variant type usually has functions that
process for each constructor differently (e.g., eval in the simple
interpreter). Therefore, an aspect that added a constructor to a
variant type would also need to advise such functions so as to
process the case for the additional constructor. In the example
Figure 1, the advice eval_sub processes the constructor Sub for
the function eval, which otherwise reports non-exhaustiveness
warnings.

2.5.2 Defining Extra Fields

The type extension mechanism can also allow to define additional
fields to constructors of existing variant types. A variant type defi-
nition

type+ T0 = C of ... * T1{e1} * · · · * Tn{en}

adds fields of type T1, . . . , Tn to a constructor C of type T0. The
expressions e1, . . . , en in the curly brackets specify default values
to the respective fields.

For example, assume we want to associate a number (e.g., a
line number in a source program) to each variable in the simple
language of Section 2.3. A solution with the type extension mecha-

nism is to add an integer field to ident type by writing the follow-
ing definition:

type+ ident = I of ... * int{0}

As the base program originally defines ident type as type ident
= I of string, a value created by the constructor I has a pair of
string and integer.

The extended fields are visible only in the aspects that define
the extension. This means that a value of the extended type looks
differently inside and outside of the aspect:

• Inside the same aspect, the extended type is seen with the
extended fields. Therefore, I ("x",1) is a correct expression
in the aspect.

• Outside the aspect, although values of the extended type have
extended fields, the extended fields are hidden. Therefore, a
value created by I ("x",1) inside the aspect is seen as I "x"
outside the aspect. Conversely, evaluation of I "y" outside the
aspect uses the default value 0 for the value of the extended
field, which actually yields I ("y",0) when viewed from in-
side the aspect.

3. Implementation
We implemented a compiler, or a weaver of Aspectual Caml as
a translator to Objective Caml. Many parts of the compiler are
implemented by modifying internal data structures and functions
in an Objective Caml compiler as the AOP features deeply involve
with the type system.

The compiler first parses a given program to build a parse tree.
Then the next five steps process the parse tree:

1. infers types in the base function definitions;
2. infers types in the aspect definitions;
3. modifies variant type definitions in the base program by pro-

cessing type extensions;
4. simplify advice definitions; and
5. inserts applications to advice bodies into matching expressions.

Finally, it generates Objective Caml program by unparsing the
modified parse tree.

Below, those five steps are explained by using the example in
Section 2.3.

3.1 Type Inference for Base Functions

The types in the base function definitions are inferred by using the
internal functions in the original Objective Caml compiler. After
the type inference, all variables in the functions are annotated with
types (or type schemes):

type id = I of string
let (get_name:id->string) = fun (I(s:string)) -> s
type t = (* omitted *)
let extend = (* ibid. *)
let lookup = (* ibid. *)
let empty_env = (* ibid. *)
let rec (eval:env->t->int) =
fun (env:env) -> fun (t:t) -> match t with

| Num(n:int) -> n
| Var(id:id) -> lookup id env
| Add((t1:t), (t2:t)) ->

let (e:t)->int = eval env in (e t1) + (e t2)
| Let((id:id), (t1:t), (t2:t)) ->

eval (extend env id (eval env t1)) t2

3.2 Type Inference for Aspects

The types in aspect definitions are inferred in a similar manner to
the type inference for the base functions. Notable points are the
treatments of polymorphic/monomorphic pointcuts, and scope of
the variables.

The type of a pointcut is a type of join points that can match the
pointcut and a type environment for the variables in the pointcut.
The type of matching join points is decided by the shapes of
primitive pointcuts in the pointcut and the types of the variables.
The variables bound by the pointcuts have unique type variables
otherwise explicitly specified. For polymorphic pointcuts, those
type variables are quantified with universal quantifiers that can be
instantiated at the advice definitions. Monomorphic pointcuts use
the special type variables that can not be instantiated in the later
processes.

For example, evaluation pointcut in Figure 1 has, type of
∀αβγ.α → β → γ for the matching join points with a type
environment env : β, t : γ for variables bound by the pointcut.

Note that the type inference of pointcuts does not use the types
of function names; e.g., the type of eval in the base program. This
is because the function names in pointcuts do not necessarily refer
to specific functions in the base program, but they rather refer to
any function that have matching name.

The type inference of an advice definition is basically sim-
ilar to the type inference of a function definition, but it takes
types of parameters from the types of the pointcut, and gives a
type to proceed variable that is implicitly available in the advice
body. Given an advice definition advice a = [around call p]
e where p is a pointcut of join point type α1 → · · · → αn → β
and type environment Γ, the type of e is inferred under the global
type environment extended with Γ, proceed : αn → β.

For example, type inference of eval_sub advice uses a global
type environment extended with env : α, t : β, proceed : β → γ,
and assigns types as follows:

(* global type environment has
Sub:t*t->t, eval:env->t->int *)

advice eval_sub
= [around evaluation (env:env) (t:t)]

(* let proceed:t->int *)
match t with
Sub((t1:t), (t2:t)) ->

(eval env t1) - (eval env t2)
| _ -> proceed t

Note that the types of eval and Sub are taken from the global
type environment, which eventually instantiates the types of other
variables including those in the pointcut.

3.3 Reflect Type Modifications in Base Programs

In this phase, type extensions are reflected in the base programs.
The definition of types are changed according to the aspects. Ad-
ditionally, the default values are added to expressions whose fields
are extended by the aspects.

3.4 Simplify Advice Definitions

The next step is to transform the advice definitions into simpler
ones in order to make the later weaving process easier.

First, it transforms every before and after advice definition
into around advice, by simply inserting an application to proceed
at the beginning or end of the advice body.

Second, it transforms an advice declaration that uses curried
pointcuts so that all call or exec pointcuts takes exactly one
parameter. The next is a translated advice definition from eval_-
sub (inferred types are omitted for readability):

advice eval_sub = [around call eval env]
let proceed = proceed env in

fun t -> match t with
Sub(t1, t2) -> (eval env t1) - (eval env t2)

| _ -> proceed t

When an environment is applied to eval, the transformed advice
runs and returns a function that runs the body of the original advice
when it takes a term. In other words, eval is advised to return a
function that runs the original advice body.

Generally, it transforms an advice definition with a curried
pointcut by iteratively removing the last parameter in the curried
pointcut by using the following rule that transforms an advice defi-
nition:

advice a = [around call f v1; · · ·; vn]
e

into the next one:

advice a = [around call f v1; · · ·; vn−1]
let proceed = proceed vn−1 in

fun vn -> e

There is a subtle problem with this approach when curried
pointcuts are used with a disjunctive (or) operator, which is left
for future research. The problem is a conflict with advice execution
policy in AspectJ-like languages. In AspectJ, an advice definition
runs at most once for each (dynamic) join point. In other words,
when there is an advice definition that prints a message, and a
program calls a function, the advice should print only one message.
In Aspectual Caml, the following advice definition with curried
pointcut causes the problem:

advice trace_eval_or_e =
[around (call eval _; t) || (call e t)]
print_string "eval"; proceed t

When we evaluate eval empty_env (Add(Num(0), Num(1)))
with this advice, evaluation of each subexpression of Add is advised
twice if the advice declaration is translated by following the above
rule. This is because the advice is translated into the following two
advice declarations:

advice trace_eval_or_e_1 = [around (call eval env)]
let proceed = proceed env in
fun t -> print_string "eval"; proceed t

advice trace_eval_or_e_2 = [around (call e t)]
print_string "eval"; proceed t

Since eval has a subexpression let e = eval env in (e t1)
+ (e t2), the first advice modifies the value of e to run the body
of the advice, and the second advice runs the body of the advice
at e t1 and e t2, respectively. Consequently, evaluation of e t1
and e t2 runs the body of advice twice.

3.5 Weave Advice Definitions

The last step is to insert expressions that runs advice bodies at
appropriate times in the base functions. It first transforms each
advice definition into a function definition. It then walks through
all expressions (i.e., join point shadows) in the function definitions,
and inserts an application to an advice function when it matches the
pointcut of the advice.

Given an advice definition, the first step is to simply generate
a recursive function that takes proceed parameter followed by the
parameters to the advice. For example, it generates the following
function for eval_sub advice (again, types are omitted for read-
ability):

let rec eval_sub proceed env =

let proceed = proceed env in
fun t -> match t with

Sub(t1, t2) -> (eval env t1) - (eval env t2)
| _ -> proceed t

The second step is to rewrite the bodies of the base functions5 so
that they call advice functions at appropriate places. By traversing
the expressions in the given program, for each expression type of
function application, lambda abstraction, constructor application,
or pattern matching for structured values, it looks for advice defi-
nitions that have the respective kind of primitive pointcuts. When
the name pattern of the pointcut matches the name in the expres-
sion, and the type of the pointcut is more general than the type of
the expression, it replaces the expression with an application to the
advice function.

For example, eval function in the base program has a sub-
expression (eval env) where eval:env->t->int and env:env.
This application sub-expression matches the call pointcut in
eval_sub as the types of the join point and the pointcut are the
same. In this case, it replaces the expression with (〈eval_sub〉
eval env) where 〈eval_sub〉 is an expression that references the
advice function (explained below).

It is a little tricky to define and reference advice functions due
to recursiveness introduced by advice. An advice definition has a
global scope; it can advise any execution in any module and it also
can use global functions defined in any module. Consequently, ad-
vice definitions can introduce recursion into non-recursive func-
tions in the original program. For example, the following code frag-
ment recursively computes factorial numbers by advising the non-
recursive function fact[1]:

let fact n = 1
aspect Fact
advice realize = [around exec fact n]

if n=0 then proceed n else n*(fact (n-1))
end

In order to allow advice to introduce recursion, we proposed two
solutions:

• Define advice functions in a recursive module[20] in Objective
Caml. As recursive modules allow mutual recursion between
functions across modules, this would directly solve the prob-
lem.

• Reference advice functions via mutable cells. In this solution,
the translated program begins with definitions of mutable cells
that hold advice functions. The subsequent function definitions
run advice functions by dereferencing from those mutable cells.
Finally, after defined advice functions, the program stores the
advice functions into the mutable cells.

Although trickier, our current implementation uses the latter solu-
tion. We will consider the former one in our future version.

After finished above processes, the compiler generates the fol-
lowing translated code for the example program:

(* define mutable cells for advice functions *)
let eval_sub_ref = ref (fun _ -> failwith "")
(* definitions for id, t and env are omitted *)
let rec eval env t = match t with
| Num(n) -> n
| Var(id) -> lookup id env
| Add(t1, t2) ->

let e = !eval_sub_ref eval env in
(e t1) + (e t2)

5 Precisely, the base functions also include the advice bodies. This enables
to advise execution of advice as well as execution of function.

| Let(id, t1, t2) ->
!eval_sub_ref
eval
(extend env id (!eval_sub_ref eval env t1))
t2

(* advice function *)
let rec eval_sub proceed env =
let proceed = proceed env in
fun t -> match t with

Sub(t1, t2) ->
(!eval_sub_ref eval env t1) -
(!eval_sub_ref eval env t2)

| _ -> proceed t
(* store advice function into mutable cell *)
let _ = eval_sub_ref := eval_sub

Note that all applications to eval function, including those in
the advice body, are replaced with applications to !eval_sub_-
ref eval. The eval_sub_ref is defined at the beginning of the
program with a dummy value, and assigned eval_sub function at
the end of the program.

3.6 Implementation Status

Thus far, we developed a prototype implementation6 of Aspectual
Caml. Although some of the features discussed in the paper are
not available yet, it supports essential features for validating our
concept, including the type extension, around advice, and most
kinds of primitive pointcuts except for wildcarding. In fact, the
next section introduces an example that can be compiled by our
prototype implementation.

The current implementation has approximately 24,000 lines of
Objective Caml program (of which 2,000 lines are modified or
added for implementing Aspectual Caml), including the parser and
type inference system that are modified from the ones in the orig-
inal Objective Caml compiler. Although it would be theoretically
possible to directly pass the translated parse tree to the back-end
Objective Caml compiler, our compiler generates source-level pro-
gram by unparsing the parse tree. This is mainly for the ease of
development and for debugging.

4. Application Programs
Among several small application programs that we have written in
Aspectual Caml, we briefly sketch two of them.

The one is, as we have seen thought the paper, to augment an
interpreter of a simple language with additional kinds of terms,
such as subtraction. Although it is a very small program, the aspect
illustrates its usefulness for pluggable extension; since the aspect
does not require to change the original interpreter definitions, we
can easily fall back to the original language.

The second application program is larger. It extends a compiler
of an untyped language to support static type system. The base part
of the program define types for the parse trees of the source and
intermediate languages and functions that translate the parse tree
in the source language into the intermediate language called K-
normal forms. The aspects extend the type of the source parse tree
with type information, and modifies the transformation functions to
carry out type inference during the transformation.

The aspects in the program can improve comprehensibility of
the compiler implementation in particular educational purposes.
Since the translation rules in the original can be complicated by the
types, separating the compiler into the one for untyped language

6 Available at http://www.graco.c.u-tokyo.ac.jp/ppp/projects/
acaml/.

and the extension for types would clarify both the core translation
rules and the interaction between translations and type system.

The second program, which consists of approximately 100 lines
of base program and 100 lines of aspect definitions, is shown in
Appendix A.

5. Related Work
AspectJ[17, 18] is the first AOP language that offers both the point-
cut and advice and inter-type declaration mechanisms. Aspectual
Caml is principally designed by following those mechanisms. How-
ever, we see AspectJ-family of languages might be too complicated
to theoretically study the AOP features as they primarily aim prac-
tical languages. For example, AspectJ 1.2 compiler does not report
type errors for the following advice declaration:

Object around() : call(Integer *.*(..))
{ return new Float(0); }

even though it could cause a runtime error if applied to an expres-
sion like Integer.decode("0").intValue(). A simpler lan-
guage that yet has a notion of polymorphism would help to reason
about such a situation.

There are several proposals of theoretical models of AOP fea-
tures. As far as the authors know, most work merely on the pointcut
and advice mechanism. Aspect SandBox[27] describes a seman-
tics of an dynamically-typed procedural language with a point-
cut and advice mechanism. Tucker and Krishnamurthi presented
a pointcut and advice mechanism in dynamically-typed func-
tional languages[25]. MiniAML is a core calculus for expressing
the pointcut and advice mechanism in strongly-typed functional
languages[26]. Such a calculus would be suitable to describe the
language design of Aspectual Caml, which is currently explained
at the source language level. TinyAspect is a model of pointcut
and advice mechanism for strongly-typed languages with ML-like
modules[1]. It proposes a module system for aspects so as to pro-
tect join points in a module from aspects outside the module.

From the application programmers’ viewpoint, Aspectual Caml
has several unique language features that can not be found in those
theoretical models, including polymorphism in pointcuts and ad-
vice, various kinds of pointcuts other than function calls, and the
type extension mechanism. On the other hand, those models are
theoretically sound; i.e., they come with static and dynamic se-
mantics with proven type soundness. Those properties of Aspectual
Caml are to be shown in future.

AspectML is an AOP extension to Standard ML with the point-
cut and advice mechanism[26]. The semantics of AspectML is
defined as a translation into MiniAML. PolyAML is a polymor-
phic aspect-oriented functional language[8]. While both Aspectual
Caml and PolyAML provide polymorphism in pointcuts and ad-
vice declarations, there are several differences in the other AOP
features:

• PolyAML has a formal type system that has been proven sound.
• Pointcuts in PolyAML are first-class data, which can be consid-

ered generalized mechanism of named pointcuts in Aspectual
Caml and other AspectJ-like languages.

• PolyAML can reify calling-contexts so that the programmer can
change advice behavior by examining into the context informa-
tion. This powerful mechanism could be used for cflow point-
cuts in AspectJ. However, it is not clear how efficient imple-
mentation techniques[15, 22] and optimizations based on static
analysis[2, 23] can be applied with this mechanism.

• PolyAML provides case-advice mechanism that runs advice
declarations based on runtime types of parameters, which is
essential for defining universal aspects like tracing. Aspectual
Caml does not offer mechanisms to examine runtime types

yet. We believe such a feature should be carefully designed in
strongly-typed languages like Objective Caml in which types of
values are not always available at runtime for efficiency reasons.

• PolyAML pointcuts specify join points by names in scope;
i.e., a pointcut {f}:(t1,t2) specifies function f in the lexical
scope in which the pointcut declared, and types t1 and t2 are
merely used for type checking. It is not clear how PolyAML can
advise anonymous functions and locally defined functions with-
out invasively inserting advice declarations into original func-
tion definitions. Pointcuts in Aspectual Caml are different in
that they match join points in all scope, they can use wildcards
for function names, and they can use types for matching. For
example, a pointcut call ??f$ (x:int) in Aspectual Caml
matches any function calls when the name of the function be-
gins with f and the type of the first parameter is int, even if the
functions are defined locally.

• In addition to above differences, Aspectual Caml provides sev-
eral unique features that are not available in PolyAML, such as
support for curried functions and variant types (both in terms
of static extension and dynamic advising). We presume those
features would also be useful in PolyAML.

There are several studies for adding fields or constructors into
existing types, but not in the context of aspect-oriented program-
ming. Type-safe update programming provides a means of ex-
tending existing data types[11], which inspired the type extension
mechanism in Aspectual Caml. Polymorphic variants[13] allow to
define functions that manipulate variant records without prior dec-
laration of the variant type. This can improve code re-usability of
a program when it uses polymorphic variants instead of ordinary
variants[14]. Since there have been many programs that developed
with ordinary variants, we believe that the polymorphic variants
and our type extension mechanism would complement each other.

6. Conclusion
This paper presented the design and implementation of Aspec-
tual Caml, an AOP functional language. The language design aims
at developing practical applications by adapting many AOP fea-
tures in existing AOP languages. In order to fit for the program-
ming styles in strongly-typed functional languages, we reconsid-
ered AOP features, including type inference of aspects, polymor-
phism in pointcuts, and type extension mechanisms. We believe
that those features would serve a good basis for further theoretical
development of AOP features such as type safety.

A compiler of an Aspectual Caml subset is implemented as a
translator to Objective Caml. It is capable to compile non-trivial
application programs in which base and aspect definitions deeply
interact. Those application programs would also demonstrate that
AOP is as useful in functional programming as in object-oriented
programming.

We plan to work more on the design and implementation of As-
pectual Caml. We so far informally defined the language seman-
tics and compilation processes, which should be defined more for-
mally. A module system for aspects that would nicely work with
the ML module system would be investigated. We also consider
further polymorphism in advice bodies so as to easily define type
universal aspects like tracing. One idea is to integrate the language
with G’Caml[12] so that advice can use functions that can examine
values in different types.

Acknowledgments
We would like to thank Jun Furuse for his expert knowledge on the
implementation of Objective Caml as well as his comments on the
language design. We would also like to thank the members of the

Yonezawa’s research group, the members of PoPL meeting, and the
members of Kumiki meeting at University Tokyo for helpful dis-
cussion. We thank the anonymous reviewers of an earlier versions
of the paper for their helpful comments.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In

C. Clifton, R. Lämmel, and G. T. Leavens, editors, Foundations of
Aspect-Oriented Langauges (FOAL2004), Technical Report TR#04–
04, Department of Computer Science, Iowa State University, Mar.
2004.

[2] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, , and J. Tibble.
Optimising AspectJ. In PLDI2005, June 2005.

[3] J. Bonér. What are the key issues for commercial AOP use: how does
AspectWerkz address them? In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software development,
pages 5–6. ACM Press, 2004. Invited Industry Paper.

[4] B. Burke and A. Brok. Aspect-oriented programming and JBoss.
Published on The O’Reilly Network, May 2003. http:/
/www.oreillynet.com/pub/a/onjava/2003/05/28/aop_-
jboss.html.

[5] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and J. S. Ong.
Structuring operating system aspects: using AOP to improve OS
structure modularity. Communications of the ACM, 44(10):79–82,
Oct. 2001.

[6] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to
improve the modularity of path-specific customization in operating
system code. In Proceedings of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT
symposium on Foundations of software engineering, pages 88–98,
Vienna, Austria, 2001.

[7] A. Colyer and A. Clement. Large-scale AOSD for middleware.
In G. Murphy and K. Lieberherr, editors, Proceedings of the 3rd
international conference on Aspect-oriented software development,
pages 56–65. ACM Press, 2004.

[8] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. PolyAML: A
polymorphic aspect-oriented functional programmming language. In
ICFP 2005, Sept. 2005.

[9] B. de Alwis and G. Kiczales. Apostle: A simple incremental weaver
for a dynamic aspect language. Technical Report TR-2003-16, Dept.
of Computer Science, University of British Columbia, 2003.

[10] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming.
Communications of the ACM, 44(10):29–32, Oct. 2001.

[11] M. Erwig and D. Ren. Type-safe update programming. In ESOP
2003, volume 2618 of Lecture Notes in Computer Science, pages
269–283, 2003.

[12] J. Furuse. Extensional Polymorphism: Theory and Application. PhD
thesis, Université Denis Diderot, Paris, Dec. 2002.

[13] J. Garrigue. Programming with polymorphic variants. In ML
Workshop, 1998.

[14] J. Garrigue. Code reuse through polymorphic variants. In Workshop
on Foundations of Software Engineering, Sasaguri, Japan, Nov. 2000.

[15] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In
Proceedings of the 3rd international conference on Aspect-oriented
software development, pages 26–35. ACM Press, 2004.

[16] R. Hirschfeld. AspectS - AOP with Squeak. In Workshop on
Advanced Separation of Concerns in Object-Oriented Systems
(OOPSLA 2001), Oct. 2001.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with AspectJ. Communications of
the ACM, 44(10):59–65, Oct. 2001.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In ECOOP 2001, pages 327–353,
2001.

[19] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In

M. Akşit and S. Matsuoka, editors, ECOOP ’97 — Object-Oriented
Programming 11th European Conference, number 1241 in Lecture
Notes in Computer Science, pages 220–242, Jyväskylä, Finland,
1997. Springer-Verlag.

[20] X. Leroy. A proposal for recursive modules in Objective Caml,
May 2003. http://cristal.inria.fr/~xleroy/publi/
recursive-modules-note.pdf.

[21] H. Masuhara and G. Kiczales. Modeling crosscutting in aspect-
oriented mechanisms. In L. Cardelli, editor, Proceedings of European
Conference on Object-Oriented Programming (ECOOP2003),
volume 2743 of Lecture Notes in Computer Science, pages 2–28,
Darmstadt, Germany, July 2003. Springer-Verlag.

[22] H. Masuhara, G. Kiczales, and C. Dutchyn. A compilation and
optimization model for aspect-oriented programs. In Proceedings of
12th International Conference on Compiler Construction (CC2003),
volume 2622 of Lecture Notes in Computer Science, pages 46–60,
2003.

[23] D. Sereni and O. de Moor. Static analysis of aspects. In M. Aksit,
editor, Proceedings of the International Conference on Aspect-
Oriented Program Development, page ., Boston, Mar. 2003.

[24] O. Spinczyk, A. Gal, and W. Schroder-Preikschat. AspectC++:
An aspect-oriented extension to C++. In Proceedings of the
40th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 2002), pages 18–21, Sydney,
Australia, Feb. 2002.

[25] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-
order languages. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD2003), pages 158–
167. ACM Press, 2003.

[26] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In
ICFP2003, 2003.

[27] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. In
R. Cytron and G. T. Leavens, editors, Foundations of Aspect-Oriented
Langauges (FOAL2002), Technical Report TR#02–06, Department
of Computer Science, Iowa State University, pages 1–8, Enschede,
The Netherlands, Apr. 2002.

A. An Example of Compiler written in Aspectual
Caml

A.1 Base Program: A Simple Compiler

(*type of (untyped) identifiers*)
type ident = I of string

(*type of immediate values*)
type imm =
| Int of int
| Float of float

(*terms in the source language*)
type syntax =
| S_Let of ident * syntax * syntax
| S_Var of ident
| S_LetRec of s_fundef list * syntax
| S_App of syntax * syntax list
| S_NegInt of syntax
| S_SubInt of syntax * syntax
| S_IfLEInt of syntax * syntax * syntax * syntax
| S_Imm of imm

(*mutually recursive functions*)
and s_fundef = { s_name : ident;

s_args : ident list;
s_body : syntax }

(*target: untyped K-normal terms*)
type knormal =
| K_Let of ident * knormal * knormal

| K_Var of ident
| K_LetRec of k_fundef list * knormal
| K_App of ident * ident list
| K_NegInt of ident
| K_SubInt of ident * ident
| K_IfLEInt of ident * ident * knormal * knormal
| K_Imm of imm

and k_fundef = { k_name : ident;
k_args : ident list;
k_body : knormal }

(*return a fresh identifier*)
let fresh_knormal =
let r = ref 0 in

fun () -> (incr r; I(("_knormal_" ^
(string_of_int !r))))

(*K normalizing for the constructor LetRec*)
let rec knormal_letrec fundef = match fundef with

[] -> []
| {s_name = ident;

s_args = ident_list;
s_body = exp}::tl ->
{k_name = ident;
k_args = ident_list;
k_body = (knormal exp)}

::(knormal_letrec tl)

(*K normalizing for the constructor App*)
and knormal_app exp explist =
let rec arg_knormal fresh_fun explist id_list =

let rec sub el il = match el with
[] -> K_App(fresh_fun, il)

| exp::tl -> begin match knormal exp with
K_Var(x) -> sub tl (il@[x])

| kexp ->
let fresh_arg = fresh_knormal () in

K_Let(fresh_arg, kexp,
sub tl (il@[fresh_arg]))

end in
sub explist id_list in

insert_let (knormal exp)
(fun x -> arg_knormal x explist [])

(*K normalizing*)
and knormal = function

S_Var(x) -> K_Var(x)
| S_NegInt(exp) ->

let f x = K_NegInt(x) in
insert_let (knormal exp) f

| S_SubInt(exp1, exp2) ->
insert_let

(knormal exp1)
(fun x -> insert_let

(knormal exp2)
(fun y -> K_SubInt(x, y)))

| S_IfLEInt(exp1, exp2, exp3, exp4) ->
insert_let

(knormal exp1)
(fun x -> insert_let

(knormal exp2)
(fun y ->

K_IfLEInt(x, y,
knormal exp3,
knormal exp4)))

| S_Let(ident, exp1, exp2) ->
K_Let(ident, knormal exp1, knormal exp2)

| S_LetRec(fl, exp) ->
K_LetRec(knormal_letrec fl, knormal exp)

| S_App(exp, explist) -> knormal_app exp explist
| S_Imm(i) -> K_Imm(i)

and insert_let e c = match e with
K_Var(x) -> c x

| exp -> let fresh = fresh_knormal () in
K_Let(fresh, exp, c fresh)

(*K normalizing main*)
let knormal_main s_exp = knormal s_exp

A.2 An Aspect to Add Typing

aspect AddType
(*a type of an expression*)
type typ =

Tint
| Tfloat
| Tvar of typ option ref
| Tfun of typ list * typ

(*type extension to indentifiers. NOTE: the *)
(*extended field can only be seen in this aspect*)
type+ ident = I of ... * typ{Tvar(ref None)}

(*return fresh variables with types*)
let fresh_knormal_with_type =
let r = ref 0 in

fun typ ->
(incr r;
I(("_knormal_" ^ (string_of_int !r)), typ))

(*find concrete type by resolving Tvars*)
let rec get_type = function

Tvar({contents = Some(t)}) -> get_type t
| Tfun(t_list, t) ->

Tfun(List.map get_type t_list, get_type t)
| t -> t

(*occur check*)
let rec occur r1 = function

Tint | Tfloat -> false
| Tfun(t2s, t2’) ->

List.exists (occur r1) t2s || occur r1 t2’
| Tvar(r2) when r1 == r2 -> true
| Tvar({ contents = None }) -> false
| Tvar({ contents = Some(t2) }) -> occur r1 t2

(*unification of two types*)
exception Unify of typ * typ

let rec unify t1 t2 =
match t1, t2 with

Tint, Tint | Tfloat, Tfloat -> ()
| Tfun(t1s, t1’), Tfun(t2s, t2’) ->

(try List.iter2 unify t1s t2s
with Invalid_argument("List.iter2") ->

raise (Unify(t1, t2)));
unify t1’ t2’

| Tvar(r1), Tvar(r2) when r1 == r2 -> ()
| Tvar({contents = Some(t1’)}), _ ->

unify t1’ t2

| _, Tvar({contents = Some(t2’)}) ->
unify t1 t2’

| Tvar({ contents = None } as r1), _ ->
if occur r1 t2 then raise (Unify(t1, t2));
r1 := Some(t2)

| _, Tvar({ contents = None } as r2) ->
if occur r2 t1 then raise (Unify(t1, t2));
r2 := Some(t1)

| _, _ -> raise (Unify(t1, t2))

(*typing expressions after K normalization *)
(*NOTE: this function uses the extended type*)
(*field in identifiers *)
let rec id_typing k_exp t_env = match k_exp with

K_Var(I(x, typ)) -> begin try
let typ1 = List.assoc x t_env in

unify typ typ1; typ
with Not_found ->
failwith ("unbound_variable: " ^ x) end

| K_NegInt(I(_, typ)) -> unify typ Tint; typ
| K_SubInt(I(_, typ1), I(_, typ2)) ->

unify typ1 Tint; unify typ2 Tint; Tint
| K_Let(I(name, typ), k_e1, k_e2) ->

let typ1 = id_typing k_e1 t_env in
unify typ1 typ;
id_typing k_e2 ((name, typ1)::t_env)

| K_LetRec(k_fundef_list, k_e) ->
let new_t_env = id_typing_letrec

k_fundef_list t_env in
id_typing k_e new_t_env

| K_App(id, id_list) ->
id_typing_app id id_list t_env

| K_IfLEInt(I(_, typ1),I(_, typ2),k_e1,k_e2) ->
unify typ1 Tint; unify typ2 Tint;
let ke1_typ = id_typing k_e1 t_env in
let ke2_typ = id_typing k_e2 t_env in

unify ke1_typ ke2_typ;
ke1_typ

| K_Imm (Int _) -> Tint
| K_Imm (Float _) -> Tfloat

(*typing LetRec after K normalization*)
and id_typing_letrec k_fundef_list t_env =
let rec make_tmp_t_env = function

{k_name = I(fun_name, typ);
k_args = id_list;
k_body = _}::tl ->
let args_type = List.map

(fun (I(_, t)) -> t)
id_list in

unify typ (Tfun(args_type,
Tvar(ref None)));

(fun_name, typ)::(make_tmp_t_env tl)
| [] -> t_env in

let tmp_t_env = make_tmp_t_env k_fundef_list in
let rec id_typing_k_fundefs = function

{k_name = I(_, fun_type);
k_args = id_list;
k_body = k_exp}::tl ->
let new_t_env = (List.map

(fun (I(name, typ)) ->
name, typ)

id_list)@tmp_t_env in
let args_type = List.map

(fun (I(_, t)) -> t)

id_list in
let exp_type =

id_typing k_exp new_t_env in
unify fun_type

(Tfun(args_type, exp_type));
id_typing_k_fundefs tl

| [] -> () in
id_typing_k_fundefs k_fundef_list;
tmp_t_env

(*typing App after K normalization*)
and id_typing_app fun_id arg_ids t_env =
let id_type id = id_typing (K_Var id) t_env in
let fun_type = id_type fun_id in
let arg_types = List.map id_type arg_ids in
let result_type = Tvar(ref None) in

unify fun_type (Tfun(arg_types, result_type));
result_type

(*perform typing after K normalization*)
let rec advising = (*a flag to detect*)
ref false (*top-level calls *)

advice knormal_with_typing =
[around (call knormal s_exp)]

if not !advising then (*top call to knormal*)
let _ = advising := true in
let k_exp = proceed s_exp in
let _ = id_typing k_exp [] in
let _ = advising := false in k_exp

else
let k_exp = proceed s_exp in k_exp

end

