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ABSTRACT
Language implementation frameworks such as RPython and Truf-
fle/Graal are effective tools for creating a high-performance lan-
guage with lower effort than implementing from scratch. The two
frameworks support only a single JIT compilation strategy, trace-
based compilation and method-based compilation, but they have
its own advantages and disadvantages. We proposed a meta-hybrid
JIT compiler framework to take advantages of the two strategies
as a language implementation framework. We also implemented a
proof-of-concept framework called BacCaml.

As a next step, in this position paper, we propose a new approach
to realize a method-based baseline JIT compiler along with a trace-
based JIT compilation. We aim to use it for further speed-up by
preventing the path-divergence problem, which causes serious slow-
down. We also show how to implement the baseline JIT compiler
with minimal changes on top of RPython.
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1 INTRODUCTION
Asmore andmore applications require a high-performance runtime,
the complexity of VMs is increasing. In responding to this trend, the
code size of VMs becomes bigger and bigger. For example, in early
2021, the latest OpenJDK consists of over 3 million source lines of
code (SLOC) only in Java, and CRuby is composed of about 2 million
SLOC in Ruby and C. This means that creating a new practical and
sophisticated language from scratch requires language developers
is a more complicated implementation task.

Using language implementation frameworks [3, 21] is one of
the important ways to the reduce engineering effort for language
implementers. A language implementation framework is a tool-
chain to create a high-performance VM without implementing
from scratch; from an interpreter definition, it generates a fast
VM empowered by a JIT compiler. There are two state-of-the-art
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frameworks, namely RPython [3] and Truffle/Graal [21]. RPython
is a restricted subset of Python. On the other hand, Truffle/Graal
generates a VM on the top of GraalVM. Many VMs such as PyPy [3],
GraalPython [16], Topaz [18], TruffleRuby [15], RSqueak [14], and
TruffleSqueak [4] are generated by RPython and Truffle/Graal; they
archived higher performance than original interpreters.

Currently, users of a language implementation framework have
to choose one JIT compilation strategy; trace-based [1, 5, 9] or
method-based [17, 19] strategies. It is because RPython and Truf-
fle/Graal support only a single strategy; RPython generates trace-
based, while Truffle/Graal generates a method-based JIT compiler.
However, the two strategies have its own advantages and disad-
vantages [7, 8, 10, 12], thus language developers have to carefully
choose which one is better for the language they are going to realize
beforehand.

To make frameworks less constrained by a compilation strategy,
we proposed a meta-hybrid JIT compiler framework [10]. Its hybrid
JIT compiler can use both strategies in a single framework, since
we constructed the two strategies by extending a (meta-) tracing
JIT compiler. We found that there existed programs which ran
faster by a hybrid strategy than others, but there was a room for
further improvements and production-level experiments since our
BacCaml framework [10] is still proof-of-concept.

In the next phase, we are going to implement our hybrid JIT
approach in RPython itself to make the hybrid JIT more practical.
In this position paper, as a first step for it, we propose method-based
baseline JIT approach on the top of RPython 1. A baseline JIT com-
piler aims to less startup time and memory footprint. The objective
of creating the baseline JIT on RPython is preventing the perfor-
mance degradation problem, which was reported in [7] and [8] (we
call this problem path-divergence problem here). This problem is
that paths that are rarely executed are selected for compilation. The
resulting traces from less-executed paths cause many guard failures,
so it leads poor performance in trace-based JIT compilation. There-
fore, we aim to apply baseline JIT compilation for programs with
path-diverged functions. We implement this not realize it creating
a new compiler, but design an interpreter for traversing all paths
of a target function and stitching a resulting trace to create a trace
tree which covers the entire of a target function.

1Our proposal is work-in-progress, thus we introduce the idea and basic mechanism
of the RPython baseline JIT compiler in this paper.
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i28 = call_i(ConstClass(tla_CALL, p1, 8))
���
i32 = call_i(ConstClass(tla_RET, p1, 12))
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[p0]
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i12 = call_i(ConstClass(tla_CONST_INT, p0, 2))
i16 = call_i(ConstClass(tla_LT, p0, 4))
���
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Figure 1: A sketch of how RPython method-based baseline JIT compiler works. From the target function in the left-hand side,
it generates the trace tree shown in the right-hand side.

2 THE COMPILATION TACTIC OF
RPYTHON’S BASELINE JIT

In this section, we present how to realize method-based baseline
JIT strategy on top of RPython not by implementing from scratch.

2.1 Compilation Principle
The principle of the method-based baseline JIT is based on threaded
code [2], which is a technique where the emitted code consists
entirely of calls to subroutines. The objective of introducing it is for
less startup and compilation time in the RPython. Our baseline JIT
compilation strategy is method-based, so we compile not a linear
execution path but the whole body of a target function. We apply
it for reducing the occurrence of the path-divergence problem.

For less implementation effort, we don’t create two compilers
individually but realize the baseline JIT compiler as an extension of
RPython’s trace-based JIT compiler. In other words, we construct a
trace tree which covers all paths of a target function. Briefly speak-
ing, the baseline JIT traces all paths with a specially instrumented
interpreter, cuts and stitches the obtained trace to make a trace tree.

Figure 1 shows a high-level example of RPython baseline JIT
compiler. The left-hand side of Figure 1 represents the control flow
of a target function. B – C – E is a conditional branch, D is a back-
edge instruction, and F is a return. The compiler finally generates a
trace tree 2, which covers a function body as shown in the right-
hand side of Figure 1. In contrast to trace-based compilation, it keeps
the original control flow, we can see that the bodies of subroutines
are not inlined but call instructions to them are left.

To produce such a trace tree, the tracer of RPython baseline
JIT has to sew and stitch generated traces. We call this behavior
trace tailoring. Technically speaking, the compiler traces a special
instrumented interpreter namelymethod-traversal interpreter. Since
the obtained trace from themethod-traversal interpreter ignores the
original control flow, we have to restore it. To rebuild the original
control flow, in the next phase, the baseline JIT compiler stitches
the generated trace. We call this technique trace stitching. In the
next sections, we will explain method-traversal interpreter and
trace stitching, respectively.

2Each trace has a linear control flow, but they are compiled as a bridge.
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Figure 2: Tracing the entire of a function with method-
traversal interpreter.

2.2 Method-traversal Interpreter
The baseline JIT is built on top of a tracing JIT, thus we have to
trick RPython’s tracer by instrumenting an interpreter definition to
cover all paths of a target function. To enable it, we propose method-
traversal interpreter. It is a special instrumented interpreter for the
baseline JIT, and when applying baseline JIT the tracer follows
its execution path. The method-traversal interpreter works as an
abstract interpreter because it follows complete control flow graph
by exploring both sides of a conditional branch.

The skeleton is shown in Figure 3. All subroutines are decorated
by dont_look_inside hint, which tells the tracer not to trace the
function body. Therefore, a resulting trace has only call instructions
to subroutines.

Figure 2 shows how the baseline JIT compiler traces a function
body with method-traversal interpreter. The gray-colored dotted
line means a generated trace withmethod-traversal interpreter. Nor-
mally, tracing JIT only follows an executed side of the conditional
branch. In contrast, the baseline JIT tracer follows the both sides. To
enable it, method-traversal interpreter prepares a special stack data
structure namely traverse_stack. It only stores program counters,
so it is marked as green and finally removed from a resulting trace.

2
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1 @dont_look_inside
2 def tla_ADD(self, pc):
3 x, y = self.pop(), self.pop()
4 self.push(y.add(x))
5 return pc
6
7 @dont_look_inside
8 def tla_CONST_INT(self, pc):
9 arg = ord(self.bytecode[pc])
10 self.push(W_IntObject(int(arg)))
11 return pc + 1
12
13 def interp(self, pc, traverse_stack):
14 while True:
15 jit_merge_point(bytecode=self,bytecode,pc=pc,
16 self=self,
17 traverse_stack=traverse_stack)
18 opcode = ord(self.bytecode[pc])
19 pc += 1
20 if opcode == ADD:
21 pc = self.tla_ADD(pc)
22 elif opcode == CONST_INT:
23 pc = self.tla_CONST_INT(pc)
24 elif opcode == JUMP:
25 ...
26 elif opcode == RET:
27 ...
28 elif opcode == JUMP_IF:
29 ...

Figure 3: Skeleton of method-traversal interpreter and sub-
routines decorated with dont_look_inside.

We explain how method-traversal interpreter works by refer-
encing examples. The difference from a normal tracing JIT is the
following: (1) conditional branch, (2) back-edge instruction, (3)
function call and (4) function return. We explain them as follows.

Conditional branch. Our baseline JIT tracer follows both sides
of a conditional branch; firstly, tracing then branch, else branch
next. Finally its control flow is restored by trace stitching (which is
explained in Section 2.3).

When tracing 1 in Figure 2, it saves the other direction of
a conditional branch to the traverse_stack. Figure 4a shows the
implementation of JUMP_IF behaving as a conditional branch. You
can see that traverse_stack saves another directions in lines 8
and 18.

Back-edge instruction. The baseline JIT tracer doesn’t follow the
back-edge instruction to track all the paths of a target function.
When tracing 2 , it doesn’t follow the destination of JUMP. Next,
at 3 , it restores saved pc from traverse_stack and goes to the
other branch (E in the Figure 1).

Seeing the implementation of JUMP in Figure 4b, before jump-
ing to somewhere, it checks whether traverse_stack or not. If
traverse_stack is empty, the baseline tracer normally executes
JUMP. Otherwise, it restores the saved pc from traverse_stack and
goes to that place. To tell the place of a back-edge instruction, we
have to call a pseudo function cut_here. It is used in trace-stitching
to restore the original control flow.

Function call. To reduce the compilation code size, our base-
line JIT compiler doesn’t inline a function call. When tracing CALL
instruction at 4 , it doesn’t inline the CALL but emit only call in-
struction since subroutines are decorated with dont_look_inside.

1 if opcode == JUMP_IF:
2 target = ord(self.bytecode[pc])
3 e = self.pop()
4 if self._is_true(e):
5 if we_are_jitted():
6 pc += 1
7 # save another direction
8 traverse_stack = t_push(pc, traverse_stack)
9 else:
10 if target < pc:
11 can_enter_jit(bytecode=self.bytecode,pc=target,
12 self=self,
13 traverse_stack=traverse_stack)
14 pc = target
15 else:
16 if we_are_jitted():
17 # save another direction
18 traverse_stack = t_push(target, traverse_stack)
19 pc += 1

(a) Definition of JUMP_IF.
1 @dont_look_inside
2 def cut_here(self, pc):
3 "A pseudo function for trace stitching"
4 return pc
5
6 if opcode == JUMP:
7 t = ord(self.bytecode[pc])
8 if we_are_jitted():
9 if t_is_empty(traverse_stack):
10 pc = t
11 else:
12 pc, traverse_stack = traverse_stack.t_pop()
13 pc = cut_here(pc) # call pseudo function
14 else:
15 if t < pc:
16 can_enter_jit(bytecode=self.bytecode,pc=t,
17 tstack=tstack,self=self)
18 pc = t

(b) Definition of JUMP.
1 if opcode == RET:
2 if we_are_jitted():
3 if t_is_empty(traverse_stack):
4 return self.tla_RET(pc)
5 else:
6 pc, traverse_stack = traverse_stack.t_pop()
7 else:
8 return self.tla_RET(pc)

(c) Definition of RET.

Figure 4: Method-traversal interpreter definition.

Function return. When tracing RET, firstly, it checks whether
traverse_stack is empty or not. If traverse_stack is not empty,
it restores a saved pc and continues to trace. Otherwise, it executes
RET instruction. The implementation is shown in Figure 4c, and the
behavior is almost same to JUMP.

2.3 Trace Stitching
The obtained trace by tracing the method-traversal interpreter is a
linear execution path, since the tracer was led to track all paths by
the interpreter. For correct execution, we propose trace stitching,
which is a technique to reconstruct the original control flow.

The left-hand side of Figure 5 shows how trace stitching works,
and 1 – 5 are the working flow. Firstly, in 1 , the tailor of
RPython baseline JIT cuts that point. By doing this, we can handle
each branch as a separate trace. At this point, the cut_here pseudo
function is used for it. cut_here works as a mark for the cutting

3
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Figure 5: The working flow of trace stitching.

point and helps the tailor to find where to cut. Next, to restore the
conditional branch at B, the compiler has to compile it as a bridge.
In 2 , the tailor generates a label L, and rewrites the destination of a
guard failure in B when it fails. Then, in 3 , the tailor restores JUMP
instruction at the bottom of D. After that, in 4 , for the correctness,
it copies variables and instructions not in the scope of the branch
B – E – F. Finally, in 5 the compiler removes constant or unused
variables/instructions and we get the resulting trace tree shown in
the right-hand side of Figure 5.

3 RELATEDWORK
It is a trace-off relation between compilation time and peak perfor-
mance. Server-side applications are so long-running applications
that slow compilation time is acceptable. However, short-term ap-
plications like GUI programs or batch processing programs need
better response time, thus a baseline JIT compiler is usually applied
for such applications.

The Java HotSpot™ VM has two JIT compilers; the server com-
piler [17] and the client compiler [11]. The server compiler is a
highly optimizing compiler and tuned to gain a much faster peak-
time performance with lower compilation speed. On the other hand,
the client compiler is a JIT compiler designed for low startup time
and small memory footprint.

Firefox baseline compiler [20] is a warm-up compiler used in
IonMonkey JavaScript JIT compiler [13]. Firefox’s baseline JIT is de-
signed to work as an intermediate layer between interpretation and
highly optimizing JIT compilation. Firefox used different JIT com-
pilers, JaegerMonkey and IonMonkey, depending on a situation, but
it had several significant issues. For example, the calling convention
in the two compilers are different. Moreover, JaegerMonkey itself
is indeed much complex. Firefox’s baseline JIT compiler is designed
and created to ease such a situation. Its baseline JIT compiler is
implemented simpler than other compilers but achieves from 10 to
100x faster than interpretation.

Liftoff [6] is a baseline JIT compiler for V8 and WebAssembly.
V8 has already a JIT compiler namely TurboFan, but its compilation
process is complicated and it consumes longer compilation time.
Liftoff makes code quality secondary in order to get a faster startup
time. In this way, it separates itself from the existing TurboFan
compiler.

4 CONCLUSION AND FUTUREWORK
In this paper, we proposed the ideas of a threaded-code-based
RPython’s baseline JIT compiler and how to implement it. The
essential technique is trace tailoring, which consists of the method-
traversal interpreter and the trace stitching. Method-traversal in-
terpreter is an interpreter design that tricks the trace to follow all
paths of a target function. Trace stitching rebuilds a trace tree from
a resulting trace generated from a method-traversal interpreter,
aiming to restore the original control flow.

Currently, we designed the method-traversal interpreter on a
tiny language and created a compiler that can emit a trace tree
which contains only call instructions to subroutines. Our next task
is implementing a JIT backend to emit machine code. After im-
plementing the backend, we will confirm the performance of our
baseline JIT. By comparing with the original tracing JIT in RPython,
we will see how much startup time and memory footprint can be
reduced. Finally, we will verify the effectiveness of our baseline JIT
on production-level applications. Given this context, we will imple-
ment it on Python with the PyPy interpreter to run production-level
benchmarks.
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