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ABSTRACT
Modern virtual machines support a multitier JIT compilation
strategy to balance the code quality and compilation time. This
strategy brings many benefits to the user. However, it is hard for
virtual machine developers to build andmaintainmultiple compilers
in a single managed runtime. In this work-in-progress paper, we
describe the problem that occurred by our use of a meta-tracing
JIT compiler and propose a solution to it based on our previous
work. Our preliminary performance evaluation of the compilation
and execution times suggests that the proposed threaded code
generation is promising as a lower-tier runtime compiler in a
multitier JIT compilation system.

KEYWORDS
JIT compiler, interpreter, meta-tracing JIT compiler, multitier JIT
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1 INTRODUCTION AND BACKGROUND
Many managed language runtimes provide multiple optimization
levels to balance code quality and compilation time. Not only
research-oriented virtual machines (VMs) like Jikes RVM [1], but
also recent practical VMs, such as OpenJDK1, SpiderMonkey2, and
V83, have multiple optimization levels. In particular, OpenJDK has
two different compilers, namely C1 [8] and C2 [9], and four different
levels of optimization.

Creating more than one compiler and optimizer from scratch
and maintaining them long-term requires language developers
a significant amount of effort. For example, Mozilla developers
struggled with the complexity and pain of managing two different
JIT compilers, namely, TraceMonkey and JaegerMonkey, as a single
JavaScript VM4. However, that mechanism must be needed in a
“wild” situation where a VM runs a variety of software; from batch
processing to GUI-based programs, and from data processing to
business-oriented server-side applications.

In this work-in-progress paper, we improve our threaded
code generation technique [7] by proposing the shallow tracing,
which lets the tracing compiler yield only handler calls without
performing side effects. Moreover, we implement a small language
with our proposed framework called Adaptive RPython, by
extending our previous work [5, 6] that enables a meta-tracing
compiler to emit code at different optimization levels.
1https://openjdk.java.net/
2https://spidermonkey.dev/
3https://v8.dev/
4https://blog.mozilla.org/javascript/2013/04/05/the-baseline-compiler-has-landed/
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Figure 1: At the preprocessing phase, we generate interpreters
from the generic interpreter. Next, at the JIT compilation
phase, we choose an optimal interpreter depending on the
current runtime situation.

The rest of the paper is organized as follows. First, section 3
explains the problem when we naïvely apply threaded code
generation to an interpreter and the solution called shallow tracing.
Second, section 2 shows the overview of Adaptive RPython and its
compilation steps. Third, section 4 measures the compilation and
execution times of our threaded code generation to compare with
other code generation techniques. Finally, section 5 concludes the
paper.

2 OUR APPROACH: ADAPTIVE RPYTHON
This section briefly introduces Adaptive RPython which can
generate code of different code quality and show its compilation
steps, namely, preprocessing and JIT compilation steps.

Adaptive RPython [6] can change its level of optimization
depending on the corresponding interpreter definition. For example,
we can let the meta-tracing JIT compiler perform threaded code
generation (tier1) by providing a specially annotated interpreter to
the meta-tracing JIT [7]. The compilation steps can be divided into
the following steps;

Preprocessing step. Figure 1a illustrates the preprocessing step
of Adaptive RPython in the case of preparing the two-level JIT
compilation. At the top of this figure, the adaptive RPython
preprocessor generates interpreters corresponding to each level
from a common interpreter definition called generic interpreter. The
preprocessor produces a shared interpreter that collects common
definitions and other level-specific primitives5 to reduce virtual
machine footprints.

5The primitives consist of the handler of CALL/RET, JUMP, and JUMP_IF (i.e. branching)
instructions.
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Figure 2: Overview of the threaded code generation technique.
The tree on the left-hand side shows an example of the target
program, and the final output is shown on the right-hand
side.

JIT compilation step. In the preprocessing step, Adaptive
RPython generated interpreters that correspond to each
optimization level. The JIT compiler has to choose the appropriate
interpreter definitions for the current optimization level. Looking
at Figure 1b, if threaded code generation is to be performed
at runtime, the Adaptive RPython JIT compiler chooses the
appropriate interpreter definition Ishared and Ithreaded) (blue dashed
line). Furthermore, if we want to move to tier2, we let the JIT
compiler select Ishared and Itracing (the green dashed line).

3 INCONSISTENCY PROBLEM AND OUR
SOLUTION IN THREADED CODE
GENERATION

In this section, we introduce a problem called inconsistency problem,
which is caused by our use of a meta-tracing JIT compiler, and
our solution to it. To illustrate them, first of all, we briefly explain
how we realize our threaded code generation by exploiting a meta-
tracing JIT compiler.

3.1 Overview of Threaded Code Generation
Usually, in the context of meta-tracing JIT compilation, an
interpreter definition is a target of a partial evaluator. In the case
of RPython, its meta-tracing JIT compiler produces trace-based
compiled code by specializing the interpreter with respect to the
source program at runtime.

RPython[interptracing, source] = executabletracing
Since the meta-tracing compiler generates a specialized

interpreter with respect to a trace of the interpretation of a source,
it can be considered as a specialized case of the first Futamura
projection [4].

Our technique obtains executables of the source at different
optimization levels by providing different interpreter definitions.
The following equations illustrate how we want to explain those in
the above sentences.

RPython[interpU , source] = executableU
RPython[interpV , source] = executableV

· · ·

Threaded code generation [7] is realized by an interpreter that is
instrumented to perform threaded code [3]. The running overview
is shown in Figure 2. First, RPython’s tracer follows the execution
of an instrumented interpreter called method-traversal interpreter.
After tracing it, the temporarily generated trace does not keep the
original structure. We apply trace stitching to retrieve the original.

On the interpreter side, this technique is achieved by placing
RPython hint functions according to the following policies P1 —

P4 .

P1 Leave only a CALL instruction. the method-traversal
interpreter suppresses inlining by decorating all handlers with
a hint dont_look_inside.

P2 Start at the beginning of a function and do not inline a function
call. Tracing compilation usually starts at the top of a loop or
function, but the method-traversal interpreter lets the RPython’s
tracer (1) start at the top of a function and (2) not inline a function
call.

P3 Follow all sides of a branch. the method-traversal interpreter
tells the RPython tracer to follow all sides of the branch. This
behavior is enabled by the traversal stack technique [7], which
saves another side of the branch to trace the side later. The saved
pcs are retrieved when the tracer reaches the end of a function, for
example, RET or JUMP.

P4 Basically do not end the tracing in JUMP or RET. the method-
traversal interpreter does not finish tracing there but requires the
tracer to domore things: trace another branch saved at P3.Moreover,
the threaded code interpreter requires language developers to put
pseudo-functions emit_JUMP or emit_RET for trace stitching.

3.2 Shallow Tracing to Solve Inconsistency
Problem

When we naïvely apply the threaded code generation technique
to an interpreter of a practical language, we will encounter the
inconsistency problem, where the tracing compiler makes the
interpreter’s state inconsistent after tracing. This is caused by the
nature of the tracing compiler, which actually executes the program
during the tracing. It is not a problem when the tracing compiler
only follows the trace in the actual program execution. However,
with our threaded code generation technique, we let the tracing
compiler execute all paths in the method, which includes paths
that might not be executed in the actual execution. This makes the
interpreter’s state (like the operand stack) inconsistent, which will
result in incorrectly compiled code.The problem is evenworsewhen
the interpreter performs global side effects, such as I/O operations
and function calls.

To avoid this problem, we propose shallow tracing technique,
allowing the tracer to follow the code without also executing it. The
key to this technique is to add a dummy flag in the last argument of
each bytecode handler. The value of that flag is set to True during
tracing, but after the trace has been recorded it gets rewritten to
False in the trace.

First, we explain that technique from the interpreter definition
side. The example definition is shown in the Listing 1. Looking into
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@dont_look_inside
def ADD(dummy):
# do nothing
if dummy: return
w_y, x_x = pop(), pop()
push(w_x.add(w_y))

def interp():
while True:

jit_merge_point(..)
if opcode == ADD:
if we_are_jitted():
ADD(dummy=True)

else:
ADD(dummy=False)

...

def f(n):
if n < 1:

return g(n)
return n + 1

# bytecode
# "f":
# DUP,
# CONST_I, 1,
# LT,
# JUMP_IF, L2,
# L1:
# CALL "g",
# RET
# L2:
# CONST_I, 1,
# ADD,
# RET

Listing 1: Example of an interpreter definition for the
shallow-tracing technique (left-side). In addition, the
function f and its bytecode that is applied to the shallow
tracing technique (right-side).

# Just after shallow tracing.
# Flags are still activated.

# Loop 0
call_n('DUP', p0, 1)
call_n('CONST_I, 1', p0, 1)
i0 = call_n('LT', p0, 1)
guard_true(i0) [p0]
call_n('CALL', p0, 'g', 1)
p31 = call_n('RET', p0, 1)
finish(p31)

# Bridge 0
call_n('CONST_I, 1', p0, 1)
call_n('ADD', p0, 1)
p31 = call_n('RET', p0, 1)
finish(p31)

# Just after deactivating flags.

# Loop 0
call_n('DUP', p0, 0)
call_n('CONST_I, 1', p0, 0)
i0 = call_n('LT', p0, 0)
guard_true(i0) [p0]
call_n('CALL', p0, 'g', 0)
p31 = call_n('RET', p0, 0)
finish(p31)

# Bridge 0
call_n('CONST_I, 1', p0, 0)
call_n('ADD', p0, 0)
p31 = call_n('RET', p0, 0)
finish(p31)

Listing 2: Before and after applying shallow tracing to the
function f are shown on the right-hand side of Listing 1.
During shallow tracing, all flags are activated (left side), but
they are finally deactivated in the resulting trace (right side).

the ADD handler, on the handler side, all handlers need to have the
extra flag dummy. During tracing, it should be True to do nothing but
leave only a call operation to the handler. On the dispatching the
loop side, we manage the dummy’s state with the we_are_jitted
hint function. we_are_jitted returns true during tracing, so we
turn on the dummy flag at then branch while turning off at else
branch.

Then, we explain how that technique works with several
examples. The running example is shown in Listings 2. First, the
RPython tracer shallowly traverses all paths of the function f,
which is displayed on the right-hand side of Listing 1. Then, we
get the trace as shown on the left-hand side of Listing 2. Next, we
deactivated all extra flags dummy to make the trace runnable. We
already knowwhere those flags are.Therefore, we can automatically
turn them off. Finally, we get the executable traces as shown on the
right-hand side of Listing 2.

4 PRELIMINARY EVALUATION
In this section, we preliminarily evaluate whether threaded code
generation can be tier1 JIT in Adaptive RPython. Tier1 JIT is in a
very early stage in all optimization tiers, so we compare the startup
speeds of an interpreter, the generation of threaded code, and the

tracing JIT executions. Then, we discuss an adaptive compilation
strategy to appropriately apply an optimal compilation strategy
from the point of view of running speed.

The objective of this preliminary evaluation is to find the break-
even points between the three tiers; interpreter, threaded code,
and tracing JIT executions. Therefore, we decided to measure the
cumulative execution times of each microbenchmark program.

Methodology. According to Barret et al.’s method [2], we ran
every microbenchmark program with 2000 in-process iterations
and 30 out-process iterations. To compare the earlier performance
characteristics, we plot the cumulative speeds of each program’s
first 30 in-process iterations.

Target. As a microbenchmark program, we took the same
programs that we used in our previous project called BacCaml [5]
6. We use a small language called TLA that has integer, floating,
and array variables. The source code can be accessed at Heptapod7,
and the bytecode compiler is hosted on GitHub8.

Environment. We ran all microbenchmarks on the standalone
server machine, which equips the Ryzen 9 5950X CPU, 32 GB DDR4-
3200MHz Memory, and the Ubuntu 20.04.3 LTS operating system
with a 64-bit Linux kernel 5.11.0-34-generic.

Threat to validity. The tested language is smaller than widely
used ones, so the results may change if we test on production-level
languages like PyPy.

4.1 Results and Discussion: Can Threaded Code
Generation Be a Tier1 JIT?

Figure 3 shows the cumulative execution times. From these plots,
we can find the following four performance patterns;

♦ Tracing. Tracing JIT is the fastest at the beginning. fib-tail,
gcd, random, sum-tail are in this pattern. Those programs
are loop-heavy.

♣ Threaded-Tracing. The threaded code is dominant first and
the trace JIT finally becomes the fastest. ack, fib, square, sum,
tak, and tarai are in this pattern. Those programs have at
least one recursive call.

♠ Interp-Threaded-Tracing. First, the interpreter is
predominant, the next threaded code is predominant, and
finally, the trace JIT becomes the fastest. ary and prefix_sum
are in this pattern. Those programs manipulate an array of
data structures.

♥ Exception. In fact, the interpreter is first predominant, and
finally tracing JIT becomes the fastest. While in the sieve,
threaded code is predominant and fastest.

By looking into these patterns, we discuss the performance
characteristics of threaded code generation from the point of view of
startup performance. Especially in ♣ and ♠ patterns, threaded code
is predominant in early iterations within the first 0.3 s. Otherwise, as
in the pattern ♦, the threaded code does not show good performance
even in the starting situation for loop-heavy programs. These

6They are chosen from all runnable programs from the shootout benchmark suite. The
original shootout benchmark suite is here: https://dada.perl.it/shootout/.
7https://foss.heptapod.net/pypy/pypy/-/tree/branch/threaded-code-generation
8https://github.com/prg-titech/prg-caml
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Figure 3: Result of cumulative execution times of each microbenchmark program. Because of the space, break-even points
between threaded code and tracing JIT are only plotted.

results imply that threaded code can be useful in the initial stage
of execution, but the use of trace JIT is better from the start
when programs are run in loops heavily. Meanwhile, we find the
unusual pattern ♥ and, in fact, the sieve. fact uses multiplication,
and sieve has a point where many equally probable branchings
occur. Investigating why such situations occur is left as future work
since there is not enough material to judge.

Those results suggest a promising sign that threaded code
generation can be used as tier-1 JIT in RPython. When we use
threaded code generation as a tier1 JIT, its threshold should be
much lower than that of tracing JIT’s. In the case of RPython, its
tracing JIT’s threshold is 1039 for loops. Given this context, that of
threaded code generation should be 5.

5 CONCLUSION AND FUTURE WORK
In this paper, we propose a new technique called shallow tracing,
which avoids an inconsistency between the states of interpretation
and tracing in threaded code generation. Next, we illustrate the
overview of Adaptive RPython and its compilation steps. These
steps can be divided into preprocessing and JIT compilation steps.
At the preprocessing step, Adaptive RPython generates a shared
interpreter and other primitives for each optimization level from
a common interpreter definition called the generic interpreter.
Then, we preliminarily evaluated the performance of threaded code
generation as a tier1 JIT compilation strategy. From the result, we
got the implication that the threaded code generation can be useful
in the early stage of execution, especially for programs with at least
one recursive call.

We have a lot of work to do in the future. First, we need to
evaluate the performance of threaded code generation in larger
languages. As a reasonable next step, we believe that PySOM9

is a good option to change from TLA since it already has a well-
written interpreter implementation andmany benchmark programs.
Second, we must develop a level-shifting strategy in the context of
9https://github.com/smarr/PySOM

adaptive compilation. Of course, we are investigating a reasonable
way to realize our tier1 JIT on PyPy. Finally, we need to develop a
strategy for adaptive compilation in Adaptive RPython. For example,
we should consider a more concrete condition when shifting from
interpreter to threaded code generation, or from threaded code
generation to tracing JIT.
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