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ABSTRACT
Delimited continuations are a tool for expressing complex

control flow, and they are supported in languages of differ-

ent paradigms. To ensure safety of languages with delimited

continuations, it is important to develop a mathematical for-

malization of those languages. In this paper, we formalize an

object-oriented language with delimited control operators

shift and reset. Our approach is to represent continua-

tions as 𝜆-expressions. This allows us to treat continuations

as first-class values, but it also increases the complexity of

programs due to Java’s requirement for type annotations.
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1 INTRODUCTION
Delimited continuations are a tool for expressing complex

control flow, and they are supported in languages of various

paradigms. To give a few instances of functional languages

with continuations, OchaCaml [13] supports the delimited

control operators shift/reset, and Eff [6], Koka [10], and

Links [12] have algebraic effects and handlers. As an example
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of non-functional languages with continuations, JEff [9] is a

Java-like object-oriented language that has effect handlers.

To ensure the safety of languages with delimited continu-

ations, it is important to develop a mathematical formaliza-

tion of those languages. For the above mentioned functional

languages, there exist formalizations based on the lambda

calculus [1, 2, 7, 11]. For JEff, there is a formalization called

FJEff [9], but it is rather different from formalizations of func-

tional languages, especially with regard to the treatment of

continuations.

In this work, we explore formalizations of object-oriented

languages with continuations that are close to existing for-

malizations of functional languages. To this end, we de-

velop FJs/r, an extension of Featherweight Java (FJ) [8] with

shift/reset. A key feature of FJs/r is that it has lambda-

expressions, borrowed from the work of Bettini et al. [3].

lambda-expressions allow us to treat continuations as first-

class values, as in the aforementioned functional languages.

However, they pose new challenges due to Java’s require-

ment for type annotations of lambda expressions. This in-

creases the complexity of programs as well as reduction rules

and proofs.

In the rest of the paper, we present the specification of FJs/r

(Section 2), discuss related work (Section 3), and conclude

the paper with future directions (Section 4).

2 FORMALIZATION OF FJs/r
In this section, we formalize FJs/r, an extension of Feath-

erweight Java with generic types, 𝜆-expressions, function

interfaces, and the shift/reset operators.

We begin with an example showing what a program in

FJs/r looks like. To make the example easier to understand,

we use booleans, numbers, addition, which we do not include

in our formalization.

⟨ if Sk<Bool,Num>.

k.apply(true) + k.apply(false)

then 1 else -1 ⟩

During evaluation of the above program, the shift opera-

tor S captures a continuation up to the reset operator ⟨⟩.
It then evaluates the body with the captured continuation
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(Types) S, T, U, V, W ::= X | N
( Anotated Types ) AT ::= T@T

(Non variable types) N, P, Q ::= C<T> | FT
(Functional types) FT ::= I<T,T,T>

(Class declarations) CD ::= class C<X ⊳ N> ⊳ C<T>{T f; K M}
(Interface declarations) ID ::= interface I<X ⊳ N,Y ⊳ P,Z ⊳ Q>{Y@Z m(X x);}

(Constructor declarations) K ::= C(T f){super(f); this.f=f;}
(Header declarations) H ::= <X ⊳ N>AT m(T x)
(Method declarations) M ::= H{return e;}

(Terms) e, d ::= v | x | e.f | e.m<T>(e) | new C<T>(e) | Sk<T,T>.e | ⟨e⟩
(Values) u, v ::= w | p → e

(Proper values) w ::= new C<T>(v) | (p → e)FT

(Parameters) p ::= x | T x

Figure 1: Syntax

x → ⟨ if x then 1 else 0 ⟩ bound to the variable k.
The continuation is called using the method apply. In this

case, the two calls of the continuation evaluates to 1 and -1,
respectively, hence the whole program evaluates to 0.
Notice that the shift expression has two type annota-

tions Bool and Num. These are the input and output types

of the captured continuation, respectively.

2.1 Syntax
We define the syntax of FJs/r in Figure 1. Most constructs

are adopted from FJ and its extensions. Specifically, generic

types are borrowed from FGJ [8], whereas 𝜆-expressions

and interfaces are adopted from FJ&𝜆 [3]. We highlight our

additions in gray.

There is one syntactic category that is unique to our lan-

guage, namely annotated types AT. An annotated type is

literally a type annotated with a type, where the second type

is called an answer type. An answer type represents the re-

turn type of a delimited context, and it is needed for safe

execution of shift expressions.

We use several abbreviations borrowed from FJ and its

extensions for conciseness. The notation on the right-hand

side of colon is abbreviated to the one on the left-hand side.

- ⊳ : extends
- f : f1, . . . , f𝑛 (∀𝑛 ∈ N ∪ {0})
- • : empty sequence

- #(x) : the length of a sequence x
- C : C<>
- T f : T1 f1, . . . ,T𝑛 f𝑛
- T f; : T1 f1; . . . T𝑛 f𝑛;
- this.f=f; : this.f1=f1; . . . this.f𝑛=f𝑛;
- <X ⊳ N> : <X1 ⊳ N1, . . . ,X𝑛 ⊳ N𝑛>

We also assume that any sequences of field declarations,

method declarations, and parameter names does not contain

duplicate names.

A class declaration class C<X ⊳ N> ⊳ D<V>{T f; K M}
defines a class named C, which has type variables X bounded

by N (i.e. X is restricted to the subtype of N), a superclass

D<V>, fields f with types T, a constructor K, and methods M.
An interface declaration interface I<X ⊳ N,Y ⊳ P,Z ⊳

Q>{Y@Z m(X x);} defines an interface named I, which has

type variables X, Y and Z bounded by N, P and Q respectively,

and a method header whose argument type is X, result type is
Y and answer type of the body of the method is Z. A function

does not perform effects as it is a value, but its body may

perform effects after application. Thus, it requires an answer

type annotation. Although we could use two type variables,

one for the input and one for the annotated type (includ-

ing both the output type and the answer type), we opt for

three type variables to ensure safe instantiation. We use in-

terfaces only for 𝜆-expressions; therefore, in FJs/r, we restrict

interfaces to functional interfaces with a single method that

takes one argument. Consequently, we do not have interface

implementations for classes or interfaces.

We assume a pre-defined interface Cont for continuations.
This interface has a method called apply, whose argument

type, return type, and answer type are polymorphic.

interface Cont<S extends Object,
T extends Object,
U extends Object>{

T@U apply(S x);
}

The reason we have a separate interface for continuations is

that it enables finer-grained reasoning when the language

is extended with purity. Since the body of a continuation
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𝑓 𝑖𝑒𝑙𝑑𝑠 (Object) = • [F-Object]

class C<X ⊳ N> ⊳ N{S f; K M} 𝑓 𝑖𝑒𝑙𝑑𝑠 ( [X ↦→ T]N) = U g
[F-Class]

𝑓 𝑖𝑒𝑙𝑑𝑠 (C<T>) = U g, [X ↦→ T]S f

class C<X ⊳ N> ⊳ N{S f; K M} <Y ⊳ P>U@W m(U x){return e;} ∈ M
[MT-Class]

𝑚𝑡𝑦𝑝𝑒 (m, C<T>) = [X ↦→ T]<Y ⊳ P>U → U@W

class C<X ⊳ N> ⊳ N{S f; K M} m ∉ M
[MT-Super]

𝑚𝑡𝑦𝑝𝑒 (m, C<T>) =𝑚𝑡𝑦𝑝𝑒 (m, [X ↦→ T]N)

class C<X ⊳ N> ⊳ N{S f; K M} <Y ⊳ P>U m(U x){return e;} ∈ M
[MB-Class]

𝑚𝑏𝑜𝑑𝑦 (m<V>, C<T>) = x.[X ↦→ T, Y ↦→ V]e

class C<X ⊳ N> ⊳ N{S f; K M} m ∉ M
[MB-Super]

𝑚𝑏𝑜𝑑𝑦 (m<V>, C<T>) =𝑚𝑏𝑜𝑑𝑦 (m<V>, [X ↦→ T]N)

interface I<X ⊳ N,Y ⊳ P,Z ⊳ Q>{Y@Z m(X x);}
[MT-Interface]

𝑚𝑡𝑦𝑝𝑒 (m, I<S,T,U>) = S → T@U

𝑚𝑡𝑦𝑝𝑒 (m, N) = <Z ⊳ Q>U → U0 implies P, T = [Z ↦→ Y] (Q, U) and Y <:P ⊢ T0 <: [Z ↦→ Y]U0
[Override]

𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒 (m, N, <Y ⊳ P>T → T0)

Figure 2: Auxiliary Functions

captured by shift is surrounded by reset, we know that

it must be pure. If we only had general function interfaces,

we would need to treat every continuation as effectful.

A constructor declaration C(S g,T f){super(G); thi
s.f=f;} defines how the fields of an instance of C are ini-

tialized. The superclass fields are initialized by the call to

super and the fields of C are initialized by assignment.

Amethod declaration H{return e;} consists of amethod

header H and a method body that returns term e. A header

declaration <X⊳N>AT m(T x) has type variables X bounded
by N, a method name m, arguments x with its types T, and
return type annotated with answer type AT. The variables x
and special variable this are bound in the e.
A term e is either a value v, a variable x, a field access

e.f, a method invocation e.m<T>(e), an object creation

new N(e), a shift expression Sk<S,T>.e, or a reset
expression ⟨e⟩. A shift expression carries an annotation

<S,T,U>, where S, T and U are the input, output and an-

swer types of the captured continuation. Note that we do

not include casting in FJs/r for simplicity.

A value v is either a proper value w or a plain1 𝜆-expression
p → e. A proper value w is either an object creation whose ar-
guments are all values new N(v) or a decorated 𝜆-expression
(p → e)FT that has an annotation FT representing a func-

tional type. A functional type is the type of a 𝜆-expression,

often referred to as "target type" in the Java community. It

is an interface with one method, and has the information of

the argument, return, and answer types. The decoration is

used to track the type of 𝜆-expressions at runtime, and does

not appear in a user program. We write e𝜆 to mean plain

𝜆-expressions. The parameter p of a 𝜆-expression may or

may not carry its type.

A class table 𝐶𝑇 is a mapping from non-variable types to

their declarations. A program in FJs/r is a pair of a class table

and a term. We will hereafter assume the existence of a fixed

class table.

2.2 Auxiliary Functions
We next define several auxiliary functions (Figure 2), which

we use in the reduction and typing rules. Most of them are

also adopted from FJ and its extensions. Lookup functions

give fields of a class, the type and body of a method in a

1
What we call a plain lambda expression is called a pure lambda expression

in FJ&𝜆. We use the word "plain" to avoid confusion with the concept of

purity (absence of effects).
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𝑓 𝑖𝑒𝑙𝑑𝑠 (N) = T f
[R-ProjNew]

new N(v).f𝑖 −→ (v𝑖 )?T𝑖

𝑚𝑏𝑜𝑑𝑦 (m<V>, N) = x.e0 𝑚𝑡𝑦𝑝𝑒 (m, N) = <Y ⊳ P>U → U@W
[R-InvkNew]

new N(v).m<V>(u) −→ [x ↦→ (u)?[Y↦→V]U, this ↦→ new N(v)] (e0)?[Y ↦→V]U

𝑚𝑡𝑦𝑝𝑒 (m, FT) = S → T@U
[R-Invk𝜆U]

(y → e0)
FT.m(v) −→ [y ↦→ (v)?S]e0?T

𝑚𝑡𝑦𝑝𝑒 (m, FT) = S → T@U
[R-Invk𝜆T]

(S y → e0)
FT.m(v) −→ [y ↦→ (v)?S]e0?T

⟨𝐹 [Sk<S,T>.e]⟩ −→ ⟨[k ↦→ (x → ⟨𝐹 [x]⟩)Cont<S,T,U>]e?T⟩ [ R-Shift ]

⟨w⟩ −→ w [ R-Reset ]

R −→ e
[E-Step]

𝐸 [R] −→ 𝐸 [e]

(Pure Eval Ctx) 𝐹 [ ] ::= [ ] | 𝐹 [[ ].f] | 𝐹 [[ ].m<T>(e)] | 𝐹 [w.m<T>(v,[ ],e)] | 𝐹 [new N(v,[ ],e)]
(Eval Ctx) 𝐸 [ ] ::= [ ] | 𝐸 [[ ].f] | 𝐸 [[ ].m<T>(e)] | 𝐸 [w.m<T>(v,[ ],e)] | 𝐸 [new N(v,[ ],e)] | 𝐸 [⟨[ ]⟩]

(Redex) 𝑅 ::= new N(v).f | w.m<V>(v) | ⟨𝐹 [Sk<S,T>.U𝑒]⟩ | ⟨w⟩

Figure 3: Reduction Rules and Evaluation context

class, and the type of method in an interface. 𝑓 𝑖𝑒𝑙𝑑𝑠 (C<T>)
gives fields of a non-variable type class C<T> and its super-

class N. Type variables are instantiated accordingly with the

notation [X ↦→ T]. 𝑚𝑡𝑦𝑝𝑒 (m, C<T>) gives argument types

and a return type of a method m in class C<T> or its su-

perclass N.𝑚𝑏𝑜𝑑𝑦 (m<V>, C<T>) gives the arguments and re-

turn term of a method m in class C<T> or its superclass N.
𝑚𝑡𝑦𝑝𝑒 (m, I<S,T,U>) gives an argument type and a return

type annotated with an answer type of a method m in in-

terface I<S,T,U>. The override validation function ensures

that a method in the subclass overrides one in the superclass

properly.

2.3 Evaluation
2.3.1 Reduction Rules. In Figure 3, we define reduction rules,
which give a call-by-value semantics to FJs/r. The rule [R-

ProjNew] reduces field access and the rule [R-InvkNew] re-

duces method invocation. We will explain the notation (t)?T
in Section 2.3.2. The rule [R-Invk𝜆U] and [R-Invk𝜆T] reduce

an application of a plain and a decorated 𝜆-expression. Note

that the 𝜆-expression must have a target type annotation to

determine the type of 𝜆-expression at the end of evaluation.

The details of target type annotation are described in Section

2.3.2.

The rule [R-Reset] removes the reset expression sur-

rounding a proper value. The rule [R-Shift] reduces a shift
expression surrounded by a pure evaluation context F and a

reset expression. The 𝜆-expression (x → ⟨𝐹 [x]⟩)Cont<S,T,U>
here represents the captured continuation. The context 𝐹 is

guaranteed to have no reset surrounding a hole, whichmeans

the reset on the left-hand side of [R-Shift] is the innermost

one. That is, ⟨𝐹 [Sk<S,T>.e]⟩ means 𝐹 [ ] is the continua-
tion delimited by the closest reset corresponding to the

shift Sk<S,T>.e. The captured continuation is expressed

in 𝜆-expression and substitutes continuation variable k in

shift body e0. The target type of the continuation is easily

obtained from annotation of shift.
[R-Step] defines one-step evaluation as reduction inside an

evaluation context. Here, evaluation contexts are designed

in a way that enforces call-by-value, left-to-right evaluation.

2.3.2 Target Type Decorations. As we briefly mentioned ear-

lier, the target type of 𝜆-expressions is represented as a func-

tional type. It is determined by the context surrounding a

𝜆-expression. Therefore, a 𝜆-expression may appear only at

places where the compiler can infer its types from its location.

In FJs/r, a 𝜆-expressions is allowed in

- arguments of object creations

- arguments of method invocations

- a body of 𝜆-expressions
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Δ ⊢ T <:T [S-Refl]
Δ ⊢ S <:T Δ ⊢ T <:U

[S-Trans]

Δ ⊢ S <:U Δ ⊢ X <:Δ(X) [S-Var]

class C<X ⊳ N> ⊳ N {...}
[S-Class]

Δ ⊢ C<T> <: [X ↦→ T]N
Δ ⊢ U <:S Δ ⊢ T <:V

[ S-Func ]
Δ ⊢ I<S,T,W> <:I<U,V,W>

Figure 4: Subtyping

Δ ⊢ Object ok [WF-Object]

X ∈ 𝑑𝑜𝑚(Δ)
[WF-Var]

Δ ⊢ X ok

class C<X ⊳ N> ⊳ N {...} Δ ⊢ T ok Δ ⊢ T <: [X ↦→ T]N
[WF-CVar]

Δ ⊢ C<T> ok

interface I<X ⊳ N,Y ⊳ P,Z ⊳ Q>{...} Δ ⊢ S, T, U ok

Δ ⊢ S <: [X ↦→ S, Y ↦→ T, Z ↦→ U]N, T <: [X ↦→ S, Y ↦→ T, Z ↦→ U]P, U <: [X ↦→ S, Y ↦→ T, Z ↦→ U]Q
[WF-IVar]

Δ ⊢ I<S,T,U> ok

Figure 5: Well-formed Types

- a body ofshift expressions

- method declarations

A decorated 𝜆-expression can appear as a method receiver

for function application, but this happens only at runtime (in

the rule [R-Invk𝜆U] and [R-Invk𝜆T]). Any other appearance

of 𝜆-expressions causes a compile error.

During reduction, we need to decorate 𝜆-expressions with

their target and keep track of it. This is important because

the reduction process loses information about the structure

surrounding the 𝜆-expression, making it impossible to deter-

mine its type after the evaluation. To decorate 𝜆-expressions,

we use a mapping (e)?FT in the following manner:

(e)?FT =
{
(e)FT (if t is a plain 𝜆-expressions)
e (otherwise)

The subterm on the left-hand side of the reduction which

can be a 𝜆-expression, gets annotated with (e)?FT on the

right-hand side.

2.4 Typing
In this section, we define typing of FJs/r.

There are two kinds of environments in FJs/r. An environ-

ment Γ maps variables to types, and a type environment Δ
maps type variables to non-variable types within its bound.

(Environment) Γ ::= ∅ | Γ,x : T
(Type environment) Δ ::= ∅ | Δ,X <:N

There are also three judgments in FJs/r: Δ ⊢ S <:T for

subtyping: Δ ⊢ S ok for well-formedness of types, and

Γ;Δ ⊢ x : T for typing terms. We use the following ab-

breviations for conciseness: Δ ⊢ S <:T as a shorthand for

Δ ⊢ S1 <:T1, . . . ,S𝑛 <:T𝑛 and Δ ⊢ S ok as a shorthand for

Δ ⊢ S1 ok, . . . ,Δ ⊢ S𝑛 ok and Γ;Δ ⊢ x : T as a shorthand

for Γ;Δ ⊢ x1 : T1, . . . ,x𝑛 : T𝑛 .
We define a mapping 𝑏𝑜𝑢𝑛𝑑Δ (T) that returns the upper

bound of a given type T in Δ. 𝑏𝑜𝑢𝑛𝑑Δ (T) always returns a
non-variable type because the syntax of declaration ensure

that the bound of a type variable must be a non-variable

type.

𝑏𝑜𝑢𝑛𝑑Δ (T) =
{
Δ(X) (T = X)
N (T = N)

Subtyping is defined in Figure 4. Δ ⊢ S <:T means S is

a subtype of T in Δ. Subtyping is the reflexive and transi-

tive closure of subtype relation yielded by extends in 𝐶𝑇 .

Subtyping for functional types exhibits contravariance in

the argument position, similar to the arrow type subtype

relation. Note that Subtyping for non-variable class types

does not have this property, i.e. Δ ⊢ S <:T does not imply

Δ ⊢ C<S> <:C<T>.
We need to validate proper substitution for type variables

in typing. For example, if class C is declared as class C<X ⊳
N> ⊳ N {...}, then type C<T> should satisfy bound of its

type variables Δ ⊢ T <: [X ↦→ T]N. Types satisfying this

property, called well-formed types, are defined in Figure 5.

The typing rule for terms and classes, interfaces, and

method declarations are given in Figure 6.

[T-𝜆U] and [T-𝜆T] type 𝜆-expressions with target type

decoration. As mentioned in Section 2.3.2, 𝜆-expression only

appears in positions where the compiler can infer its type

by the surrounding structure. This is why there exist typing

rules for decorated 𝜆-expressions only.
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Γ;Δ ⊢ x : Γ(x)@T [T-Val]
Γ;Δ ⊢ e0 : T@U 𝑓 𝑖𝑒𝑙𝑑𝑠 (𝑏𝑜𝑢𝑛𝑑Δ (T)) = T f

[T-Field]

Γ;Δ ⊢ e0.f𝑖 : T𝑖@U

Γ;Δ ⊢ e0 : T@W 𝑚𝑡𝑦𝑝𝑒 (m, 𝑏𝑜𝑢𝑛𝑑Δ (T)) = <Y ⊳ P>U → U@W
Δ ⊢ V ok Δ ⊢ V <: [Y ↦→ V]P Γ;Δ ⊢∗ e : [Y ↦→ V]U@W

[T-Invk]

Γ;Δ ⊢ e0.m<V>(e) : [Y ↦→ V]U@W

Δ ⊢ N ok 𝑓 𝑖𝑒𝑙𝑑𝑠 (N) = T f Γ;Δ ⊢∗ e : T@U
[T-New]

Γ;Δ ⊢ new N(e) : N@U

Δ ⊢ S, T, U, W ok Γ, y : S;Δ ⊢∗ e0 : T@U
[U-𝜆U]

Γ;Δ ⊢ (y → e0)
I<S,T,U>

: I<S,T,U>@W

Δ ⊢ S, T, U, W ok Γ, y : S;Δ ⊢∗ e0 : T@U
[T-𝜆T]

Γ;Δ ⊢ (S y → e0)
I<S,T,U>

: I<S,T,U>@W

Δ ⊢ S, T, U ok Γ, k : Cont<S,T,U>;Δ ⊢∗ e0 : T@T
[ T-Shift ]

Γ;Δ ⊢ Sk<S,T>.e0 : S@T
Γ;Δ ⊢ e0 : T@T

[ T-Reset ]

Γ;Δ ⊢ ⟨e0⟩ : T@U

class C<X ⊳ N> ⊳ N {...} 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒 (m, N, <Y ⊳ P>T → T0)
Δ = X <:N, Y <:P Δ ⊢ T, T, P x : T, this : C<X>;Δ ⊢∗ e0 : S@𝛼 Δ ⊢ S <:T

[T-Method]

<Y ⊳ P>T@𝛼 m(T x){return e;} OK IN C<X ⊳ N>

K = C(S g,T f){super(g); this.f=f;}
X <:N ⊢ N, N, T ok 𝑓 𝑖𝑒𝑙𝑑𝑠 (N) = S g M OK IN C<X ⊳ N>

[T-Class]

class C<X ⊳ N> ⊳ N{T f; K M} OK

X <:N, Y <:P ⊢ N, P ok

[T-Interface]

interface I<X ⊳ N,Y ⊳ P,Y ⊳ m>{Y@Y X(X x);} OK

Figure 6: Typing Rules

In [T-Shift], continuation variable k is typed in functional

type because continuations are function. The body of the

shift has the return type of continuation and the shift
itself has the argument type of continuation. It is because

where shift is placed is where the argument variable of

the continuation is placed. [T-Reset] shows the removal of

reset bracket does nothing to its typing.

Judgment ⊢∗ plays a different role depending on whether

t is a plain 𝜆-expression, similar to the notation (e)?T in

reduction rules. If t is a plain 𝜆-expression, ⊢∗ annotate t
with a type. Otherwise, ⊢∗ checks if the term has a subtype

of an expected type.

Γ;Δ ⊢ (e𝜆)FT : FT@U
Γ;Δ ⊢∗ e𝜆 : FT@U

Γ;Δ ⊢ e : S@U Δ ⊢ S <:T
Γ;Δ ⊢∗ e : T@U

Combining the two yields the following judgment using

(e)?T:
Γ;Δ ⊢ (e)?T : S@U Δ ⊢ S <:T

[⊢⊢∗]
Γ;Δ ⊢∗ e : T@U

Without this, we must consider both cases for every single

term that could be a plain 𝜆-expression. Note that ⊢∗ only
achieves a simpler notation of the typing rule and is not

another typing system other than ⊢.

[T-Method], [T-Class], and [T-Interface] check the well-

formedness of method, class, and interface declarations. In

[T-Method], typing of method body e0 uses judgment ⊢∗ be-
cause 𝜆-expression can appear in the method body. Function

𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑒 guarantees proper method overriding on superclass

methods. [T-Class] checks valid super call to superclass

fields.

2.5 Soundness
We prove the soundness of FJs/r by showing the progress and

subject reduction properties. So far, we have proven these

properties for a variation of the formalization that does not

have answer types. Here, we outline what needs to be proven

for our current formalization.

The progress property is stated as: if a term e is closed

and well-typed, it is a value, or it takes a step, or it is a stuck

term composed of a shift expression and a pure evaluation

context. Note that the stuck case is often present in the

progress property for effectful languages.

Theorem 2.1 (Progress).

If ∅; ∅ ⊢ e : T@U, then e is a proper value, or there is e’ with
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e −→ e’, or e = 𝐹 [Sk<S,V>.e0] for some pure evaluation
context 𝐹 .

The subject reduction property is stated as: if a term e is

well-typed and takes a step, then the term e’ after one-step

evaluation is also well-typed.

Theorem 2.2 (Subject Reduction).

If Γ;Δ ⊢ e : T@U and e → e’, then Γ;Δ ⊢ e’ : S@U for some
S@U <:T@U.

Both properties are proven by induction on the typing

derivation of e.

3 RELATEDWORK
There are several attempts on introducing computational ef-

fects into object-oriented languages. JavaEffekt [4] is a Java

library for effect handlers. In JavaEffekt, effect signatures

are defined as interfaces and handlers as classes that imple-

ment those interfaces. Continuations are represented using

𝜆-expressions as in FJs/r.

JEff [9] is a Java-like language with native support for

effect handlers. In JEff, effect handlers are expressed in a sim-

ilar way to JavaEffekt, but continuations are represented as

a resumption object containing the definition of the resume
method. The language has a formalization, called FJEff, which

extends FJ with interfaces and generics but not 𝜆-expressions.

In the functional programming community, different con-

trol operators have been formalized with different typing

features. Danvy and Filinski [5] present a simple type sys-

tem for shift/reset. The type system is derived from the

CPS semantics of shift/reset, and allows modification

of answer types. Asai and Kameyama [1] formalize a poly-

morphic type system for shift/reset. Similar to Danvy

and Filinski, they allow answer type modification, and in

addition to that, they distinguish between pure and impure

terms by introducing the notion of answer type polymor-

phism. Materzok and Biernacki [14] propose a type system

for shift0/reset0, a minor variation of shift/reset.
In their type system, an effect is a list of answer types repre-

senting the return types of nesting delimiters, and they can

be adjusted via a subtyping relation defined in terms of the

length of effects.

4 CONCLUSION AND FUTUREWORK
In this paper, we formalized FJs/r, an extension of Feather-

weight Java with generic types, 𝜆-expressions, function in-

terfaces, and the shift/reset operators. We also outlined

our ongoing proof of the soundness theorem.

In future work, we intend to introduce the concept of

purity to FJs/r. Purity expresses the absence of effects. The

introduction of purity would change how answer types ap-

pear in types of terms. Currently, every term has an answer

type annotation, even if it does not perform any effects and

hence there is no need to consider the type of the context.

After introduction of purity, terms will be divided into two

categories: pure terms, which do not have an answer type

annotation, and impure terms, which have an annotation.

The next thing we would like to do is to add casting to

FJs/r. Casting is used to convert types based on subtyping

relations. Upcast converts a type to its superclass, which

is always safe. In contrast, downcast converts a type to its

subclass, which can be unsafe. The ability of casting types is

crucial in a language with purity, because we often wish to

treat pure terms as impure ones. We plan to support upcast

of answer types so that we can type more programs while

enjoying soundness.
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